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Abstract

Today many systems exist to generate geometric models of existing scenes and objects. However, no
accurate data about surface appearance such as colors and textures is stored in this process. Such
data can be captured as a series of images that, collectively, capture all surfaces of the object.

This work introduces a method to compute a minimal set of camera positions for this purpose. Taking
images from the computed positions can then be used to derive a complete set of surface appearance
data. A slightly different application of the presented method is the computation of a minimal set of
viewpoints for reference images to be used in image-based rendering methods.

First a method to determine an optimal set of viewpoint regions for a given scene is introduced. It uses
a hierarchical visibility method to preprocess the scene. Then a technique to find an optimal set of
viewpoint regions is presented and the solution is used to derive an optimal set of viewpoints. Results
and visualizations of the computed solutions are presented.

1. Introduction

For many man-made objects CAD (computer aided design) data is available today. Typically the data
set describes the geometry of the scene exactly, but does not contain accurate or content specific data
about surface appearance (such as color or texture). Therefore, a visualization of the object will only
show the geometric structure but will not match the appearance of surfaces.

For objects with known geometry but unknown surface appearance, methods to derive textures from
pre-recorded images (see e.g. [5]) can be used. This is the case when visualizing existing structures
from unreachable viewpoints, visualizing modifications to a real scene, or generating realistic textures
for virtual training systems. In general there are some parts of the scene that are not visible in the
images, therefore a (heuristic) hole-filling algorithm has to used to generate a complete surface
description. For objects with unknown geometry it is possible to reconstruct the geometry from pre-
recorded images with image-based modeling methods. One successful approach [5] helps the user to
construct an approximate geometric model.

It is hard to judge for a human if a set of pre-recorded images is complete in the sense that every part of
every surface and object is visible in at least one of the images. Furthermore, it is time-consuming to
set up camera and lighting so that high quality images (e.g. without highlights and/or reflections) can
be recorded.

This work addresses the visibility portion of the problem with a method to compute an optimal set of
viewpoints from which to capture images. The method assumes that the geometry of the scene is
known. Approximate geometry can be used as well, but the quality of the results depends on the quality
of the approximation. Taking photographs from all the computed viewpoints will guarantee that every
part of every surface is visible in at least one image. Furthermore, the method assupwsrhiatly

a spherical image can be obtained from every viewpoint. Compositing multiple images to a spherical
image [4] can be used to generate such images.

Note that this work addresses the visibility issues of the problem only. Issues such as field of view,
image resolution, surface sampling density, depth of field, and the avoidance of highlights or
reflections are not addressed in this article as they are of a different nature.

Another view of the presented work is that it computes a lower bound on the number of reference
images needed for image-based rendering and modeling. Image-based rendering is a new computer
graphics method that utilizes a set of pre-recorded reference images to produce new views of the scene.
The benefit of image-based rendering is that a new view of an arbitrarily complex scene can be
generated in time proportional to the number of pixels of the reference images. One possibility is to
‘warp’ each pixel of the reference images into the destination view. For more detailed explanations of
image warping see [3], [12]. A prominent open question in image-based modeling is how many images



are needed to represent a scene completely? Phrased differently, how many reference images are
needed to be able to render the scene from any viewpoint without artifacts from missing information?
The presented method computes a lower bound on the number of needed images and computes an
(near-) optimal set of viewpoints for scenes with known geometry.

The hierarchical visibility algorithm used in this work is based on the idea of linking all surfaces that
are at least partially mutually visible (they ‘interact’) and to subdivide these interactions based on the
potential error in visibility. A similar idea was introduced previously in the context of hierarchical
radiosity [10]. Most recently, Drettakis and Sillion [6] exploited a similar method (termed line-space
hierarchy) to store visibility information in a scene. In the hierarchical radiosity literature the (smaller)
parts of a subdivided surface are called elements, and this convention is used here, too.

2. Imaging the Set of Visible Surfaces

The method operates on a predefined scene with known geometry. To make the problem tractable, the
volume of all possible viewpoints for the later rendering stage needs to be defined as input. This
volume is subdivided into a given number of smaller regions. For each of these sub-regions, visibility
of all surfaces of the scene is pre-computed for use in the optimization phase. After computing a set of
near optimal regions a set of near optimal viewpoints is derived from this solution.

2.1. Viewing Regions

A viewing region is defined as a volume of empty space with the interpretation that it represents the
union of all viewpoints inside this volume. The volume of all possible viewpoints is calledotbe

viewing region.This global viewing region is subdivided later into smaller viewing regions. Figure 1
depicts possibilities of global viewing regions for some simple scenes.
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Figure 1: Examples for global viewing regions (see text).

The global viewing region is not restricted to be a convex volume - it might even consist of discrete
parts. The only requirement is that it can be subdivided into a pre-defined number of smaller viewing
regions. The global viewing region can also be a polygon in space. For instance this happens when the
viewpoint is constrained to remain at average eye height level, a common restriction in many
walkthrough systems.

There is a set of limitations for the global viewing region as it is impractical to assume that the camera
can be positioned everywhere in a real scene. One obvious limitation is that the camera cannot be
placed inside objects. To guarantee that a given global viewing region is valid, the global viewing
region may be tested for intersections with the known geometry. Also for real cameras a certain
minimum distance from each object has to be observed due to the non-zero physical size of the camera
and the necessary distance to focus. This can be accomplished by generating appropriate offset
surfaces, intersecting the global viewing region with the offset surface and classifying the results.

The global viewing region is subdivided hierarchically into a pre-defined number of viewing regions. A
general property of a (global or subdivided) viewing region is that the set of surfaces (or elements)
visible from this volume is the union of all surfaces visible from all possible viewpoints inside this
volume. Using this property we can define a sufficient set of viewing regions as a set that ‘sees’ every
part of every surface at least once. An optimal set avoids redundancies as far as possible and has a
minimal number of viewing regions. The same definition applies to viewpoints. A sufficient set of
viewpoints ‘sees’ every surface part at least once. An optimal viewpoint set has a minimal number of
viewpoints. Figure 2 shows a simple scene and an associated global viewing region. An example of an
optimal set of viewing regions and an optimal set of viewpoints is shown.
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Figure 2: Scene, global viewing region and optimal set of viewing regions.

Note that the optimal set of viewing regions is not necessarily unique. There may be other sets with the
same number of viewing regions that provide an equally good solution. An important property of an
optimal set of viewing regions is that least onereference image has to be taken from inside each
region to ensure the correctness of results during renderimgayitalso be necessary to generate
multiple reference images from inside a particular viewing region, to cover all possible viewing angles.
But with decreasing volume the probability that multiple viewpoints are needed decreases as well.
The output of the presented method is a (near) optimal set of viewing regions and an (near) optimal set
of viewpoints. The optimality of the solution depends mainly on the implementation of the hierarchical
visibility-preprocessing step, see the next section
The size of an optimal set of viewing regions is also a good lower bound on the optimal number of
viewpoint for a given scene. This is true because with decreasing viewing region size the probability
that more than one viewpoint needs to be placed inside the viewing region decreases as well. An
informal proof of this can be stated as follows:
= |t is clear that the global viewing region will contain more than one viewpoint for nontrivial
scenes.
= Subdivision decreases the volume of each viewing region and also splits the set of viewpoints into
smaller sets.
= As the viewing regions get very small (epsilon regions), there will be a one-to-one correspondence
between viewing regions and viewpoints.
Therefore with a decreasing viewing region size, the number of viewing region will provide an
increasingly better lower bound on the number of necessary viewpoints. However, it is impractical to
decrease the size of the viewing regions to the point where it can be guaranteed that only one viewpoint
is needed per viewing region. The most prominent limitation is that visibility pre-processing gets
progressively more expensive for deeper subdivisions. The alternative of evaluating the visibility on the
fly is very costly, too, as the number of visibility computations needed to find the optimum grows
quickly with subdivision depth.

2.2.  Hierarchical Visibility

Assume that the scene is given as a set of surface polygons organized in a hierarchy. The interior nodes
of this hierarchy are bounding volumes (also known as clusters) and the leaves are surfaces that are
subdivided further into elements on demand. The hierarchy can be constructed during modeling or
automatically by clustering nearby surfaces together (e.g. [2]). A hierarchical visibility method
subdivides this scene hierarchy depending on the relative visibility of objects.

The hierarchical visibility algorithm used in this method starts with two nodes. One is the top level
bounding box enclosing the whole scene. The other is the global viewing region. The visibility between
these two objects is represented as a link. Each link and with it the objects are subdivided recursively
until the potential error in visibility falls below a predefined threshold. For simplicity a regular
subdivision pattern is used. Figure 3 shows a visualization of the initial situation and two examples for
subdivided links.
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Figure 3: Initial link (left) and examples for refined links.

If there is no occluder between the two nodes a link is stored. Otherwise the larger node is subdivided
and the process is applied recursively. Shaft culling [9] is used to speed the refinement process. Note
that shaft culling can be optimized in the recursive refinement by temporarily storing the current list of
potential occluders during recursive subdivision and using this list during further refinement of the link
[1], [6]. For each link created the list of potential occluders is stored for later use. Figure 4 shows
pseudo-code.
RefineRecursive (Occluder_List)
If scene object is a cluster
RefineRecursive (Occluder_List) & return
Do shaft culling on Occluder_List & create Temp_Occluder_List
If the occluder list is empty

Store visible link & return // totally visible
If there is one occluder which bisects the shaft
Return // invisible -> no link
If there is a set of occluders which occlude the shaft
Return // invisible -> no link
If viewing region and element area smaller than threshold
Store visible link & return // maybe patrtially visible

Refine viewing region or element and create new links
Call RefineRecursive (Temp_Occluder_List) for all new links
Free Temp_Occluder_List.

Figure 4: Pseudo-code for hierarchical visibility computation.

If there is one occluder that occludes the whole shaft, the nodes are mutually invisible and subdivision
stops. This test is a simple addition to the shaft-culling test [1]. Often there is no single polygon that
blocks the shaft completely. This causes unnecessary subdivision and potentially false results - some
areas are falsely classified as partially visible. To evaluate the visibility for each shaft exactly, a
different method such as the visibility skeleton [14] has to be used.

A different description of the above algorithm is to imagine a hierarchical radiosity algorithm that
ignores all energy values when refining links and refines only based on visibility. The presented
algorithm is then equivalent to refining one shooting interaction of a hierarchical radiosity system.

The final result of the hierarchical visibility algorithm is a set of links that associates each viewing
region to the elements, which are at least partially mutually visible from the region. Note that the
visibility information stored in the links is conservative: as long as there is one point in the viewing
region that can potentially see a part of a surface, a link is created.

2.3. Determining the Set of Optimal Viewing Regions

The result of the above hierarchical visibility algorithm is a set of links that express the visibility
relation between the set of viewing regions and the surfaces of the scene. This information is used to
determine an optimal set of viewing regions. The number of combinations to consider increases
exponentially with the size of the viewing region set. This prohibits an exhaustive search for non-trivial
subdivisions of the global viewing region. Furthermore, it is very important for any optimization
method that the benefit of a proposed combination of viewing regions can be evaluated very quickly.
Therefore the link information is processed to generate a better-suited data structure.

The method starts by enumerating all viewing regions and all elements by traversing the corresponding
hierarchies. Then a two-dimensional visibility array is created and filled. It is indexed by viewing
region and element number. To identify all elements that are visible from one particular viewing region



the links of the viewing region and all links of its parents have to be traversed. Each entry is set if a link
exists.

By combining the entries of all rows corresponding to a set of viewing regions all elements visible
from this set can be computed quickly. Furthermore, combining all rows gives all elements visible from
the whole global viewing region. This set is used later to detect if the optimization has reached the
optimum.

The problem of finding the best combination of a set of objects is a combinatorial optimization
problem. One simple way to define the benefit or ‘goodness’ of a particular set of viewing regions is
the total number of visible elements. As the hierarchical subdivision of the surfaces does not
necessarily produce elements with equal areas, it is better to calculate the benefit by summing the areas
of all visible elements. This puts more emphasis on finding large visible elements first during the
global optimization.

The method calls the optimization procedure repeatedly for increasing numbers of viewing regions. As
soon as the maximum set of elements is reached the loop terminates.

2.4. Computing an Optimal Set of Viewpoints

The above computed set of viewing regions is primarily of scientific interest as viewing regions are an
abstract concept. To make the results useful for more practical applications the method has to compute
a set of viewpoints. But the solution for the viewing regions can be used to derive an optimal set of
viewpoints. A simple, yet efficient, heuristic approach was adopted, which works as follows:
Benefit (Current_Viewpoint)
Z = empty /I 'list of locally visible elements
For all links from the current viewing region
Use stored occluder lists for point-polygon shaft culling
If linked element at least partially visible
Z += element
Compute benefit value by summing element areas in (X + Z)

Compute_Optimal_Viewpoints ()
X = empty /I global list of visible elements
Loop as long as X does not include every visible element
Pick the next viewing region (cyclical).
Optimize for optimal viewpoint inside current viewing region
Y = set of elements visible from optimal viewpoint
If Y adds something new to X
Add viewpoint to set of optimal viewpoints.
X+=Y.
End-Loop

Figure 5: Pseudo-code for optimal viewpoint computation.

By cycling through all possible viewing regions the loop in Figure 5 tries to find viewpoints that
maximally improve the current solution. In each viewing region under consideration simulated
annealing is used to find an optimal viewpoint position. Note that the simulated annealing is here used
to optimize for the optimgbosition (floating-point coordinates). The stored occluder lists speed up the
benefit computation significantly as shaft culling for the current viewpoint needs to consider a much
smaller set of geometry. Full visibility is assumed if the shaft is not completely occluded, therefore the
method is conservative.

3. Implementation

In this section a few noteworthy details of our implementation are discussed. The viewing region is
currently defined by hand, as an automatic method was considered outside the scope of this work. Our
current implementation can also handle only one two-dimensional viewing region due to an early
implementation choice. But we can argue that the set of everything visible from an empty cubical
volume in space is equivalent to the combination of everything visible from all six faces of this cube.
Therefore, the generalization to three-dimensional viewing regions is considered to be relatively
straightforward.

The hierarchical visibility pre-processing was implemented by modifying a public domain radiosity
package [1]. Ray tracing is used if there is more than one potential occluder between a viewing region
(or viewpoint) and an element. If all random rays are occluded our implementation (falsely) concludes



that the shaft is occluded. We considered replacing this part with an implementation of an exact
visibility method (e.g. [14]), but the additional implementation effort is substantial.

For efficiency the table encoding the mutual visibility of the viewing regions and elements was realized
as an array of bit-vectors. All needed operations can then be expressed as efficient Boolean operations.
To find the optimal solutions the presented method uses simulated annealing. It works by changing the
vector of solutions randomly. The magnitude of the potential changes is hon-monotonically decreased
over time. Simulated annealing has proven to be a very general and efficient global search method in a
wide variety of applications and also for combinatorial optimization problems. While it cannot be
guaranteed that simulated annealing will find the global optimum it consistently finds at least values
very close to the optimum in reasonable time (see e.g. [11]). The interested reader is referred to the
literature for further details (see e.g. [11], [13]).

One consequence of using simulated annealing is that our implementation cannot guarantee that it finds
the globally optimal solution. In other words the set of viewing regions and/or viewpoints might be
larger than necessary. But experiments with a local search method to improve the solution further show
that the solution computed by simulated annealing is at least a very good local optimum.

4. Results and Discussion

The experimental results obtained for two living room scenes are presented here. All statistics were
measured on a SGI Max Impact and timings are given in seconds.

Figure 6 shows a simple living room scene with 316 polygons subdivided into 1514 elements. The
global viewing region was subdivided into 64 viewing regions. An optimal set of seven viewing
regions is visualized. The shown intensity encodes how many times each element is visible. Black
signifies that the corresponding element is not visible from anywhere in the viewing region (e.g. some
elements under the table). The entire viewing region is depicted in dark gray and the set of optimal
viewing regions is shown in medium gray. Some images of the following images also show wire-frame
outlines to depict the structure of the scene more clearly.

e

Figure 6: Visualization of solution for simple environment with 7 viewing regions.

The same environment was subdivided more finely into 2822 elements with 256 viewing regions
(Figure 7).
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Figure 7: Visualization of solution for simple environment with 9 viewing regions.

Another test with 1024 viewing regions showed that the number of viewing regions does not increase
any further, which shows that the result is optimal. One effect that causes the difference in the number
of viewing regions between the two shown examples is that the algorithm assumes full visibility if the
subdivision limit is reached. Also the visibility is not evaluated exactly in all cases. The result is that a
finer subdivision generates a better solution. But under the stated limitations (see the implementation
section) the set of viewing regions is optimal.

Figure 8 shows a more complex living room scene with 64 viewing regions (1228 polygons subdivided
into 4227 elemxents).
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Figure 8: Visualization of solution for complex enviroment with 7 viewing regions.

The same environment was subdivided more finely into 5959 elements with 256 viewing regions
(Figure 9).



Figure 9: Visualization of solution for complex enviroment with 10 viewing regions.

Again the effects of inexact visibility evaluations are noticeable. An experiment with 1024 viewing
regions was aborted after more than one hour of processing due to memory limitations. Table 1
summarizes the statistics for the test cases:

Figure Elements$ Visibility pre- Links Opt. viewing| Optimization| Memory
processing time (se¢) created regions time (sec) (kb)
6 1514 74 18350 7 31 1538
7 2822 311 96936 9 143 5624
7a (not shown 4690 974 360416 9 374 24799
8 4227 239 59423 7 118 5307
9 5959 817 251381 10 956 16257

Table 1: Statistics for optimal viewing region determination.

Note that a (relative) moderate number of viewing regions suffices for the used scenes. The time spent
in visibility pre-processing grows with the complexity of the environment and the subdivision level.
The last entry in Table 1 emphasizes that the optimization times grow more than linearly with the
number of viewing regions due to the exponential growth in possible combinations. This is also known
as the ‘curse of dimensionality’ in the optimization literature (e.g. [11]). To demonstrate this further,
the statistics of the optimization process for Figure 9 are summarized in Table 2:

Number of viewing regiong 2 3 4 5 6 7 8 9 1(
Percent of optimum 97.11 98.37 99.43 9964 9985 99.82 9P.97 99.97 |100
Visibility evaluations. 360 86 249 404 4805 4296 3452 3429 4402
Time (sec) 10 9 19 25 60 98 19] 224 317

Table 2: Optimization statistics for optimization process for Figure 9.

Optimization times increase strongly with the number viewing regions as the more dimensions are
added to the problem. The statistics show also that the optimization process quickly finds a near
optimal solution for a small number of viewing regions. But the optimal solution can only be found
with an appropriate number of viewing regions. In contrast subdividing the surfaces more finely results
only in a proportional increase in computation as the number of array entries for the benefit
computation is increased linearly.

For the test cases shown in Figure 7 and Figure 9 we also computed an optimal set of viewpoints (again
under the limitations of the implementation). Figure 10 and Figure 11 show the viewpoints as small
light gray dots inside the optimal set of viewing regions.
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Figure 10: Optimal viewpoint set for simple environment.
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Figure 11: Optimal viewpoint set for complex environment.

The method took 166 and 535 seconds to find the shown optimal set of viewpoints. In both cases the
number of optimal viewpoints is equal to the number of optimal viewing regions. Therefore we can
conclude that this method computes indeed an optimal set of viewpoints. Table 3 shows how long the
iterations of the viewpoint optimization for the complex environment took and how optimal the current
solution was.

Percent of optimum 91.26 95.7¢ 96.62 9783 97/48 985 99.15 9p.52 99.74 | 100

Optimization time (sec) 52 49 55 87 47 51 47 56 47 44

Table 3: Optimization statistics for optimal viewpoint determination.

Again the system quickly reaches an almost optimal solution. But for a complete solution the full
number of viewpoints is needed. Optimization times for each viewpoint are approximately constant as
the stored occluder lists simplify the visibility computation.

5. Conclusions and Future Work

This work introduced a method to compute an optimal set of viewpoints for a given scene. First the
scene is preprocessed with a hierarchical visibility algorithm. Then an optimal set of viewing regions is
computed. Finally optimal viewpoints are found inside each of the viewing regions. Taking images
from the computed optimal set of viewpoints will show each part of every surface at least once. Such a
set of images can be used to generate a complete set of textures for the photographed scene.

Our current implementation produces sub-optimal results due to inexact visibility evaluations. In our
experiments we observed that the computed number of viewpoints is equal to the number of viewing
regions, therefore we conclude that our implementation indeed computes an optimal set of viewpoints



under the given limitation. If the visibility were evaluated exactly (e.g. with [14]) the method would

indeed produce optimal results.

The results are not directly applicable to real applications such as photographing and generating

textures for scenes with known geometry as the computed solution relies on the ability to generate

(potentially) a spherical image with high enough resolution at each viewpoint. It is easy to show that it

might not be necessary to take a spherical image at each viewpoint in general - e.g. the ceiling needs to

be photographed only from one viewpoint. But this holds only if it is a homogeneous surface. Phrased
differently the frequency of the color variations on the visible surfaces determines the image resolution
necessary. A trivial example is that a photograph of a textured wall from across the room will not
provide a texture with enough resolution for close-up views. Because of the added complexity of the
sampling problem such issues are outside the scope of this work. Still, the size of the optimal viewpoint
set is a good lower bound on the number of total images to take for image-based modeling (taking the
sampling problem into account can only increase the number).

Future work includes:

= One area for future experimentation is the subdivision level needed to compute results quickly. But
for meaningful experiments a correct visibility evaluation method is needed.

= Better tuning of the optimization process. Almost all possibilities for tuning the optimization
package were not exploited in the current implementation. It might well be that a significant
speedup is possible if the parameters of the global optimization algorithm are tuned appropriately.
Another option is to experiment with alternative search algorithms for the combinatorial
optimization problem (e.g. Tabu-search [7], [8]).

» The sampling issues and other issues related to real images and photographs (image resolution,
field of view, depth of field, highlights, and reflections) need to be handled before the results can
be applied (and experimentally verified) in a real system. We are currently exploring ways to
incorporate this into the system.
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