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1. Introduction 

 

In the real world, the scene may contain some well-illuminated areas 

as well as some areas that are in the darkness. The dynamic range of the 

scene, or the radiance ratio between the brightest and the darkest spots, can 

be quite big – it can span several orders of magnitude in some cases. This is 

a lot wider range than the range that our digital camera can adequately 

capture, and that our monitor can adequately display. The areas that are too 

bright for the dynamic range of our camera are going to be saturated on our 

image, and the areas that are too dark will be under-exposed. In both cases, 

all the information about these areas will be lost in the image.  

A way to solve this problem is to combine different shutter speeds of 

our camera. Smaller shutter speeds can give us good information about the 

bright areas (because we won’t have saturation), and longer shutter speeds 

effectively capture the dark areas. So by alternating the shutter speeds and 

by combining the two images into one in real-time, we can achieve higher 

dynamic range for digital video cameras. 

2. Constructing high dynamic range image: Debevec’s algorithm 

 

In [1], Paul Debevec and Jitendra Malik have proposed a useful 

algorithm that can calculate the radiometric response of the camera and 

combine differently exposed images into one high dynamic range image. 

Radiometric response is a function that describes the relationship between 

the amount of light received by film grain or CCD, the exposure setting, and 



the final pixel brightness. The algorithm was designed for still photographic 

images, but it can be easily applied to digital video as well.  

The main advantage of their approach is that they make very little 

assumptions about the response function: indeed, the only constraints are 

that the function is invertible and smooth. The proposed algorithm has 

proved to be quite robust and easy to use. And, as a bonus, the theory behind 

it is easy to understand. 

Let us consider a pixel the position i in the image. Let Ei be the 

irradiance (total amount of incoming energy) for the corresponding 

photosensitive element of the camera, and let ∆tj be the exposure time. If f (⋅) 

is the response function of the camera, then the intensity of the image pixel 

is 

)( jiij tEfZ ∆=  

We assume that the inverse of f (⋅) is well defined: 
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Now, let us define a function g (⋅) as ln f -1 (⋅); then, we have 

jiij tEZg ∆+= lnln)(   (1) 

Instead of finding the response function f (⋅), we can find the discrete 

values of g (⋅) for all possible pixel intensities; let M be the number of such 

distinct intensity levels. Normally, for a black and white image M is 256.  

Now, let us consider a set of P images, each taken with a different 

exposure time. Each image depicts the same scene and consists of N pixels. 

If we write equation (1) for each pixel and each exposure time, we will have 

N*P equations, with i varying from 1 to N, and j varying from 1 to P. The 

knowns here are the exposure times and the pixel intensities; we have to find 

the irradiance values and the values that function g (z) takes over the range 



of pixel intensities. We have to find such values of Ei and g (z) that best 

satisfy our set of equations in the least square error sense. This is equivalent 

to minimizing the objective function O: 
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The second term is introduced in order to make g(z) smooth; to do so, we 

have to minimize the second derivative of g(z). The parameter λ represents 

the “significance” of the smoothness relative to the significance of data 

fitting: if we want to make our function smoother, we must increase λ. 

Second derivative is defined discretely as 
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So, at the end we have N*P equations for data fitting (in the form of 

(1)) and M-2 equations for smoothness. Number of unknowns is N + M; this 

overdetermined system of equations can be solved, for example, using 

singular-value decomposition method.  

An additional constraint is enforced on g (z): let Zmid be the pixel 

intensity in the middle of the intensity range (Zmid = 125 for 256 intensity 

levels), and we set g (Zmid) = 0.  

Also, Debevec makes a somewhat ad hoc assumption that g (z) will fit 

the data more poorly for very low and very high values of z, since the 

function has more slope in these regions. So he introduces a weighting 

function w(z) go give more emphasis to the data points in the middle of 

intensity range. A hat function is used for that, so that Zmid gets the 

maximum weight.  Objective function (2) now takes the form 
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Once we have recovered the response function g(z), we can 

reconstruct the high dynamic range image, i.e. for each pixel in our image 

we can estimate the corresponding irradiance value: 
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Debevec proposes to use pixel values from all exposures to estimate 

the irradiance. These pixels are weighted by the same weighting function 

w(z): 
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The advantages of Debevec’s method are numerous. No assumptions 

are made about the response function, other than its invertability. Most 

radiometric calibration methods assume the monotonicity of the response 

function; to achieve this, we can increase the smoothness coefficient λ, so 

the function will be monotonic as well as smooth. Also, this method is quite 

robust, due to the simplicity of equations and stability of singular value 

decomposition method used to solve the equation system.  

3. Constructing high dynamic range image: Mitsunaga’s 

algorithm 

 

In [2], Tomoo Mitsunaga and Shree Nayar developed a slightly 

different method of radiometric calibration for the case when we don’t know 

exact exposure time intervals. They use a polynomial model for the response 

function, which makes their method somewhat less flexible than the one 

developed by Debevec and Malik. 



Let us start by analyzing how the pixel brightness corresponds to the 

scene radiance. The image irradiance E (the amount of incoming energy) 

relates to the scene radiance L as follows: 
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where h is the focal length of the camera lens, d is its aperture diameter, and 

φ is the angle between the principal ray and the optical axis. In the idealized 

case when the camera has a linear response, the brightness of the 

corresponding pixel would be I = Et, where t is the time interval during 

which the camera is exposed to the scene. Quantity I, which is traditionally 

called “photographic exposure”, can be expressed as the product 

I = L k e 

Here, k = φ4cos / h2, and e = (π d2 / 4) t, which will be referred to as the 

exposure setting of the camera, and can be controlled by adjusting aperture d 

or exposure time interval t. 

 If the camera has the response function f (typically non-linear), pixel 

brightness will be Z = f (I). Let g be the inverse of response function f, and, 

therefore, I = g (Z). Mitsunaga’s approach uses a polynomial model for this 

function: 

∑
=

==
N

k

k
k ZcZgI

0
)(  

so the task of the calibration becomes one of finding the polynomial 

coefficients and the maximum order N.  

Also, this algorithm does not require the exact values of exposure time 

intervals (which is quite practical, because for many cameras these values 

are either not specified at all or approximate values are given). These 

intervals are also estimated in the process of calibration. Actually, the 



algorithm works not with the exposure time intervals, but rather with the 

ratios of consecutive intervals.  

Let us take a look at two images of the same scene, taken with 

exposure settings eq and eq+1. Let Rq,q+1 be their ratio eq / eq+1. Then the ratio 

of quantities of light received at any CCD (let us say that pixel p 

corresponds to that CCD) is  
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If g is the inverse of response function f, then we have 
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And, since we represent g with a polynomial, this can be rewritten as 
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If we know the ratios of exposure settings and maximum order N, then the 

problem of finding the response function can be solved approximately by 

calculating the values of polynomial coefficients ck that minimize the error 

function 
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This can be obtained by setting to zero the derivatives of ε with respect to 

the coefficients: 
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and solving the resulting system of linear equations.  

 We can expand this algorithm to the case when exact exposure setting 

ratios are not known. The user must provide the initial guesses for the ratios, 

let us call them Rq,q+1
(0). Then, the iterative scheme is used: with the help of 

these ratios, we estimate the set of coefficients ck
(1), which, in turn, is used to 

compute the next guess for ratios: 
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and so forth. We stop when the convergence criterion 
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is satisfied for all values of Z, where δ is a small number provided by the 

user. 

 N, maximum order of the polynomial, can be found in the following 

fashion: the user places the upper bound on N, and the algorithm is applied 

repeatedly to find N that minimizes ε.   

 The main advantage of this method is the fact that it doesn’t require 

the user to know exact shutter speed values; also, the polynomial model used 

for the response function is compact and easy to use. However, in practice I 

have observed that the method is not very robust. 

4. Acquisition of high dynamic range image in digital video 

 

My implementation of the high dynamic range video can be broken up 

into the following steps: 



- Radiometric calibration of the video camera. This step gives us the 

radiometric response function for a particular camera: for each pixel 

intensity value Z and exposure time ∆t (used to obtain the image 

containing this pixel), the function assigns the irradiance value E, 

which is a measure of the light incoming to the corresponding CCD.  

- Construction of the high dynamic range image. We acquire two 

images with two different exposure settings, calculate the 

corresponding irradiance values for each pixel using the response 

function, and use these values to make the high dynamic range image. 

- Display of the high dynamic range image. In a general case, where the 

range of the resulting image is wider than the displayable range, we 

have to perform tone mapping on the image to make it displayable. 

4.2 Radiometric Calibration 

 

Two algorithms of radiometric calibration were tested: one as described 

by Paul Debevec and the other as described by Mitsunaga.  

In both cases, we have to provide a set of differently exposed pictures.  

The scene has to be carefully chosen such that it contains bright objects, 

such as a lamp or a window on a sunny day, and large areas that are 

illuminated relatively poorly and at the same time contain some important 

scene features (the indoors of a room in the shadow). Shutter speeds have to 

be chosen so that they could meet the following criteria: 

a) a substantial subset of the range of shutter speeds available for this camera 

was covered; 

b) the details of the brightest spots of the scene could be revealed on a 

snapshot only if the fastest shutter speed setting was used; 



c) at the same time, the only way to get most details of the darkest regions of 

the scene was to set the camera to the slowest shutter speed. 

Debevec’s algorithm requires a set of differently exposed images of the 

same scene and the exposure times specified for each image. The result is 

the response function represented as a set of discrete values specified for 

each pixel intensity value in the range of [0; 255] (which covers the range of 

intensities for 8-bit pixels).  

Mitsunaga’s approach does not assume that we know the exact values of 

the shutter speed; it tries to estimate them. So, together with differently 

exposed images, we need to provide a set of initial guesses for the shutter 

speeds. This approach to calibration gives us a response function, 

represented as a set of polynomial coefficients, and the estimated shutter 

speed values. 

The calibration software can be downloaded from the authors’ websites: 

- Paul Debevec’s: http://www.debevec.org 

- Tomoo Mitsunaga’s: 

http://www1.cs.columbia.edu/CAVE/tomoo/RRHomePage/rrhome.html 

4.2 High Dynamic Range image acquisition 

 

Acquisition of an image with high dynamic range is performed in real 

time using the response function of the camera and two images taken at 

different shutter speeds. The main idea of the process is to estimate, for each 

pixel, the level of irradiance that of the corresponding CCD element of the 

camera. Note that this irradiance is calculated in relative units, rather than in 

W/m2.  

The two shutter speeds must be carefully selected. The lower shutter 

speed of the two (which is the one that gives the darker image) must be 



selected so that no pixels are saturated, because corresponding pixels in the 

brighter image will be definitely saturated, and it would be impossible to 

recover any information from these pixels. In general, for the recovery of the 

information about the dark areas of the scene, the image taken with higher 

shutter speed will be more significant (because of the low level of 

illumination, these areas don’t register too well in the other image); and, the 

image taken with the lower shutter speed will be more responsible for the 

brighter areas (because they might saturate the CCD at the higher shutter 

speed). Also, these two speeds should be quite far apart, to obtain a higher 

range of irradiances and therefore a higher dynamic range of the resulting 

image. 

Since I used two methods of radiometric calibration (and these two 

methods lead to different ways of construction of high dynamic range 

image), two separate programs were written. 

4.2.1 Using Debevec’s approach 

 

The inverse of response function, noted as g, can be used to calculate the 

irradiance at the camera element that corresponds to a pixel. For the 

exposure time setting ∆tj, and for pixel i with brightness Zij, the logarithm of 

relative irradiance is 

jiji tZgE ∆−= ln)(ln  

In Debevec’s paper, the authors recommend calculating the relative 

irradiance as follows: using the pixel brightness values at the same location 

of differently exposed images, calculate relative irradiances for each image 

and then calculate their weighted sum. I have chosen a different, simpler, 

approach.  



First, we have to know what is the pixel brightness value when the 

camera CCD is saturated; this is quite easy to find out by selecting a long 

exposure time and then pointing the camera towards some bright area. Let us 

call the obtained pixel brightness as the saturation threshold.  

Then, we obtain two images at two different shutter speeds. We go 

through the brighter image, pixel-by-pixel. We assume that the information 

at the pixel is useful, unless the pixel is saturated. In that case, we use the 

information at the same location in the darker image.  

So, the logarithm of relative irradiance value is: 
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After one walk through the brighter image, the high dynamic range image is 

constructed. Every pixel location of this image holds the value of relative 

irradiance. 

 To speed up the process, we can use look-up tables that hold the 

irradiance values for a given pixel value. In this case, we need to have two 

look-up tables, one for brighter image and one for lighter image; each one 

contains the values of 

tZgE ∆−= ln)(ln  

with the corresponding values of ∆tBRIGHT and ∆tDARK.  

With the help of this look-up table, construction of the final image is 

easy and quick. First, we obtain the two images with our two different 

shutter speed settings. This is done consecutively: set the camera to the 

faster speed, take the darker image, than set it to the slower speed, take the 

brighter image. Now, we are ready to process the images. We traverse the 

brighter image pixel by pixel and compare the pixel brightness ZBRIGHT to the 



saturated threshold. If it is below, we look at the look-up table computed for 

∆tBRIGHT and obtain the irradiance value for ZBRIGHT. If not, we look at the 

pixel brightness ZDARK located at the same position in the darker image, and 

obtain the corresponding irradiance value from the look-up table computed 

for  ∆tDARK. The obtained value goes to our high dynamic range image which 

will be displayed on the screen.  

4.2.2 Using Mitsunaga’s approach 

 

Mitsunaga’s radiometric calibration algorithm gives us two things: the 

response function (in the form of polynomial coefficients) and the estimates 

of time exposure intervals (or, rather, their ratios). From these estimates, we 

compute the “scaled exposures” eq; the absolute values are not really 

necessary, so we calculate the scaled exposures so that their arithmetic mean 

is 1.  

With the help of the reverse of response function (which we note as 

g(Z)), we can compute the photographic exposure for pixel at position p at 

image q: 
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From this, we can get the relative irradiance value for pixel position p: 

qqpq eIE /,=  

 In the process of high dynamic range image construction, we go, pixel 

by pixel, through both images; using the response function and scaled 

exposure settings calculated for the shutter speeds we use, we compute two 



relative irradiance values. Then the final relative irradiance value is 

calculated using weighted average of the two irradiance values.  

 The choice for weighting function is determined when we take noise 

in the image into account. The reliability of the measurement depends on its 

signal-to-noise ratio (SNR), which is, for our case, estimated as 
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where σ(Z) is the standard deviation of measurement noise. We assume 

that the noise in the image is independent of the pixel brightness Z, so it is 

not significant when operating with relative values. Higher SNR value 

accounts for more reliable measurements, so we use the weighting function 
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Since g(Z) is a polynomial, its derivative is well defined (and easy to 

calculate). So, at the end, our high dynamic range image will contain, for 

every pixel position p, the value  
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 As in Debevec’s case, the algorithm was implemented using a look-up 

table, but in a slightly different way, because here we use the values from 

both pixels to get the final irradiance value. In our case the look-up table 

should map two values of pixel brightness (corresponding to the dark and 

the bright pixels) into one irradiance value. So in our look-up table 

construction we go through each possible pair of pixels from the [0…255] 

range and calculate the irradiance value for that pair.  

With the aid of this table, the high dynamic range image construction 

is even more trivial than for Debevec’s algorithm. We sequentially acquire 



two different images using two different shutter speeds. Then, we go through 

the images pixel-by-pixel (we process both images at the same time). For 

each pixel position, we look up the value of mapped irradiance that 

corresponds to the pair of pixel intensities encountered at this position in the 

brighter and in the darker image. This mapped irradiance value goes into the 

mapped high dynamic range image, which will be displayed on the screen. 

 

5. High Dynamic Range Display and User Interaction 
 

The program has been implemented in OpenGL, which gives a good 

opportunity for low-level display control. The high dynamic range image 

was displayed using OpenGL function glDrawPixels, which sends the pixel 

array to the framebuffer.  

The program works in real time, and, while it’s running, the user can 

control some parameters of the video camera and some displaying options. 

These are: the image which is displayed (we can toggle between the darker 

image, the brighter image and the resulting HDR image), the low and high 

shutter speed settings of the camera, and the colour/black-and-white display 

mode. 

 If the colour mode is enabled, the algorithm works as follows: 

- the images from the camera are aquired in RGB; 

- the images are translated to YCrCb colour space. The Y component 

represents luminance, and the two other components represent 

chromaticity; 



- the high dynamic range image is constructed, using the Y component. 

Then, the chromaticity component of the brighter image is added to 

each corresponding pixel; 

- the high dynamic range image is converted from YCrCb to RGB and 

sent to the framebuffer. 

 

6. Performance 
 

 The program was compiled and tested on a computer with Athlon 1.2 

GHz processor and a NVIDEA GeForce2 video card. Microsoft Visual 

Studio was used to compile the program.  

 I have measured the frame rates using the OpenGL timer. Not 

surprisingly, frame rates for black-and-white and colour modes were 

markedly different, because, in order for the program to work in colour 

mode, it has to perform conversions between RGB and YCrCb colour spaces 

for each pixel. This slows down the execution by approximately a factor of 

two: in black-and-white mode, the average frame rate was 30.6 frames per 

second, and in colour mode – 13.4 frames per second. 

Performance can be somewhat improved if we use the optimization 

option of the compiler. The code was compiled on Microsoft Visual Studio 

C/C++ compiler, which can optimize the compilation in order to maximize 

speed. If this option is used, frame rate of the colour mode improves to 15.9 

frames per second. Performance in black-and-white mode is not affected 

noticeably. 



This measurement of frame rate consists of measuring the time 

intervals required for acquisition of frames, processing (high dynamic range 

image constructio) and consequent display on the screen. I have also made 

further measurements of time interval required for the processing part alone. 

Results can be summarized as following: 

Processing method Processing time, in milliseconds 

Debevec’s algorithm  

b/w, without optimization 19.0 

colour, without optimization 64.9 

b/w, with optimization 10.9 

colour, with optimization 54.3 

Mitsunaga’s algorithm  

b/w, without optimization 19.5 

colour, without optimization 66.8 

b/w, with optimization 6.0 

colour, with optimization 54.1 
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