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A B S T R A C T

Interaction in mid-air can be fatiguing. A model-based method to quantify cumulative subjective
fatigue for such interaction was recently introduced in HCI research. This model separates
muscle units into three states: active (MA) fatigued (MF ) or rested (MR) and defines transition
rules between states. This method demonstrated promising accuracy in predicting subjective
fatigue accumulated in mid-air pointing tasks. In this paper, we introduce an improved model
that additionally captures the variations of the maximum arm strength based on arm postures
and adds linearly-varying model parameters based on current muscle strength. To validate the
applicability and capabilities of the new model, we tested its performance in various mid-air
interaction conditions, including mid-air pointing/docking tasks, with shorter and longer rest and
task periods, and a long-term evaluation with individual participants. We present results from
multiple cross-validations and comparisons against the previous model and identify that our
new model predicts fatigue more accurately. Our modeling approach showed a 42.5% reduction
in fatigue estimation error when the longitudinal experiment data is used for an individual
participant’s fatigue. Finally, we discuss the applicability and capabilities of our new approach.

1. Introduction
Fatigue a�ects the force-production capacity of muscles, as well as inter-joint and inter-muscular coordination. Arm

fatigue has been cited as risk factor for work-related injury (1). While arm fatigue is associated with repetitive injury, the
underlying mechanisms remain poorly understood. However, the advancement of mathematical modeling may help in
more accurately quantifying muscle fatigue development (2). Recently, arm fatigue has become an important factor in
the design of human-computer interfaces (HCI) (3; 4). As AR/VR technologies such as Oculus (5; 6; 7), Hololens 2 (8),
etc, become ubiquitous, HCI will require a comprehensive, robust, and practical method for predicting arm fatigue. A
method that considers both physiological and psychological factors that contribute to fatigue (9) and assesses fatigue
without interference with the ongoing activity is required. Assessment of subjective fatigue is important, as excess
subjective fatigue in industrial settings may be a biomarker of increased injury risk, and it negatively impacts user
experience in HCI (10). An interference-free measurement method could be used to assess fatigue both in the workplace
and in exergames, to avoid long-term deficits such as WMSDs, evaluate novel interaction techniques, optimize user
input positions and orientations, adjust the range of motion, and avoid uncomfortable postures for the user.

Objective fatigue evaluations that measure physiological quantities such as muscle activation (11), heart rate (12),
blood pressure (13), and blood oxygen level (14) require specialized equipment and interfere with the ongoing activity.
Similarly, subjective fatigue measurements like the Likert scale (15), the NASA-TLX (16), the VAS (visual analog
signal) (17), ratings of perceived exertion (RPE) (18), and the Borg CR10 scales (4; 19) require repeated verbalization
of fatigue levels and thus, interfere with the ongoing activity.

Users of mid-air interface typically perceive accumulation of fatigue (i.e., feel the arm getting heavier) over time,
and this perception may negatively impact the user experience. Further, subjective fatigue and its perceived intensity
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are influenced by the demand of the task, the user’s physiological state, and the user’s history of movement choices
(19). Although there are model-based approaches that quantify cumulative fatigue based on physical (e.g., forces,
torques) or physiological (e.g., muscle activation, heart rate) measurements (20), there is relatively little work done
model-based estimation of subjective fatigue. Further, perceived fatigue may vary during static or dynamic tasks.
(21). To address these gaps, we recently used the three-compartment muscle (TCM) model (20) and developed a
method to predict cumulative subjective fatigue for mid-air pointing tasks (19). Once the estimation models are
created through a calibration process, our method estimates subjective fatigue using only remote measurement of
the movement kinematics, thereby eliminating any interference with the ongoing activity. The method does not require
expensive equipment, and furthermore, allows the quantification of cumulative fatigue by accounting for both task and
rest periods, closely mimicking natural behaviors.

This paper presents an improved version of our earlier model. The enhancements include: (1) an improved
estimation of maximal shoulder torque; (2) incorporation of brain e�ort (BE) as a proxy for subjective fatigue; (3)
experimental validation of the improved model on (a) more complex mid-air manual tasks, (b) tasks with varying
durations of rest/task periods, and personalized models for long-term tasks performed over several days.

This model separates muscle units into three states: active (MA), fatigued (MF ), or rested (MR), and defines
transition rules between states.

The TCM model provides a method that takes both physical and subjective measurements (i.e., perception of
muscle fatigue). It involves non-linear di�erential equations to describe the flow between compartments as the product
of the constant parameters times the volume of the compartment. However, the actual flow rate is not constant, but
inherently changing as a function of the compartments. Thus, the flow rates could be di�erent based on the current
muscle capacity and task load (22). Further, Xia and Frey Law (20) included brain e�ort (BE) into the TCM model
as the representation of the central drive required to perform a task. The BE term was adopted to quantify fatigue
during dynamic load tasks. In prior work, BE was used for physiological fatigue evaluation (e.g., reduction of muscle
strength) but not for subjective fatigue quantification. To capture the subjective and physiological changes in fatiguing
and resting rates, we expand the TCM model to include the BE term into our approach. Subsequently, we expand the
practicality of this model-based approach by an improvement in fatigue estimation performance. Moreover, we validate
the applicability of our approach in various interaction conditions and more complex tasks (i.e., situations beyond a
simple pointing task).

Maximum shoulder torque, which varies with joint angle and angular velocity, is an important input to quantify
fatigue status. The TCM model assumes that maximum joint torque depends on individual physical capabilities. For
instance, the posture of the arm is also known to a�ect the maximum shoulder torque (23). The maximum power
capacity of arm muscles when we stretch the arm away from the body could be di�erent from when we are at a natural
standing pose. Thus, we adopt Cha�n’s model of maximum shoulder torque, which is based on elbow and shoulder
angles (24), to get posture-based maximum shoulder torque estimates.

Jang et al. (19) validated the TCM model through a simple mid-air pointing task under incremental subjective
fatigue accumulation. Their evaluation also did not consider task and rest periods of varying length. For more general
application scenarios and to validate the applicability of the model-based approach in estimating subjective fatigue,
varying durations of task periods and rest should be taken into account. Moreover, realistic mid-air interaction
commonly includes not only pointing tasks, but also more complex interaction, such as 3D docking tasks, which
combine rotation and translation (25). In the work presented here, we design a series of experiments to further validate
the feasibility of the model-based approach to fatigue prediction for various interaction conditions. Also, we compare
the performance of our proposed fatigue model with exiting methods.

Our contributions include: (1) a specific maximum strength representation compatible with the TCM fatigue
modeling method that includes posture-based maximum shoulder torque estimation; (2) connecting subjective fatigue
and muscle fatigue without contact-based measurement; (3) a reliable cumulative fatigue model based on brain e�ort
(BE); (4) an experimental validation of the estimation performance of the modified model during a complex mid-air
task, varying durations of rest/task periods, and individual long-term task conditions; (5) a 42.5% decrease in fatigue
estimation error for individualized fatigue modeling.

2. Related Work
Our work broadly links to fatigue estimation methods, maximum arm strength estimation, and arm fatigue in HCI.
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2.1. Objective and subjective Fatigue Evaluation
Objective fatigue evaluation methods involve direct measurements of various physiological quantities, such as

muscle activation (11), heart rate (12), blood pressure (13), and blood oxygen level (14). However, these approaches
require specialized, fully calibrated equipment and are generally too invasive to be used as part of common user
interfaces. Subjective fatigue measurements include the Likert scale (15), the NASA-TLX (16), the VAS (visual analog
signal) (17), and ratings of perceived exertion (RPE) (18). In general, the Borg CR10 scales have been preferred
in HCI research, due to their strong correlation with arm fatigue (4; 19), and physiological measurements (e.g.,
electromyography) under light load (or bare hand) interaction conditions (26). Such subjective measurements provide
critical assessments of the user experience during interaction. However, these methods require repeated verbalization
of fatigue levels during interaction. Thus, direct measurements of subjective fatigue could interfere with interaction
tasks.

In contrast, our model-based approach does not require any expensive set-up nor repeated measurements after we
generate the estimation models, which account for physical and subjective influences on fatigue.

2.2. Modeling Method to Muscle Fatigue Quantification
The three-compartment muscle (TCM) model assumes muscle units can be in either one of active (MA), fatigue

(MF ), and rest (MR) states (20). Recently, Jang et al. (19) validated the applicability of the TCM model in estimating
cumulative subjective fatigue based on movement kinematics.

The TCM model assumes constant parameters in the three di�erential equations, but the modeling of muscle
responses requires nonlinear approaches (22). Sonne et al. (27) proposed a modification of the model based on a
relationship between fatigue/resting rate and target task load (28). However, their work targeted the quantification of
fatigue level based on a reduction in direct capacity measurements, such as grasping force and torque. Other works
(29; 30; 31; 32) have also proposed modified models that evaluate what is lacking in the original TCM model (e.g.,
how the number and placement of fatigue data influences parameter identification), but they do not approach modeling
subjective fatigue with a non-contact approach. Thus, in line with Sonne et al’s work, we propose a modification of the
TCM model by assuming a linear relationship between fatigue/resting parameters as a function of BE and the target
load. In our experiments, we investigate the validity and applicability of the assumption in estimating cumulative
subjective fatigue.

2.3. Maximum Arm Strength Estimation
Enoka and Stuart (9) defined fatigue as a reduction of muscle strength relative to the maximal value. Thus, any

reliable arm fatigue evaluation requires an individual’s maximum arm strength defined as the maximum voluntary

contraction (MVC). In biomechanics research, specialized test rigs have been commonly used for measuring MVC
in torque or force units (33; 34). However, these methods are expensive and impractical to be used in many user
interfaces. In recent years, Jang et al. (19) proposed a simple but e�ective method to estimate the maximum shoulder
strength through an isometric load task. Although this method showed a strong correlation with traditional contact-
based measurements, it ignores the variation of arm strength based on the arm posture. Yet, it is well known that the
arm strength varies based on the person’s posture (23). Based on previous work, we use Cha�n’s strength model (24)
for biomechanically reliable fatigue estimation, which estimates the maximal shoulder torque (MVC) based on elbow
and shoulder joint angles as well as biological sex.

2.4. Arm Fatigue Evaluation in HCI
Recently, researchers investigated arm fatigue and its quantification in HCI. Bachynsky et al. (35) introduced a

biomechanical simulation method to estimate muscle activations. Consumed Endurance (CE) (4) is a fatigue metric that
showed a strong correlation with subjective fatigue measures, more specifically, Borg ratings (18). These methods were
used to study the impact of arm fatigue in mid-air (4) and various touch interface designs (3). However, these approaches
cannot quantify the e�ect of rest on the accumulation of fatigue. Moreover, prior methods ignored individual di�erences
in arm strength.

Jang et al. (19) proposed a model-based method, based on the TCM model, to capture the e�ect of rest on
cumulative subjective fatigue based on individual arm strength. This method was validated in a simple pointing task
under incremental fatiguing condition. Also, this method assumes constant fatiguing and resting rates. However, the
rate of muscle fatiguing and relaxation could decrease or increase based on task types and current exertion level (9).
To further improve the physiological fidelity of the model-based method, we modified the fatigue model parameters by
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Figure 1: Left: Overview of the three-compartment model (TCM), which represents the percentages of motor units that
are at rest (MR), active (MA), and fatigue (MF ) states. F and R represent the fatigue and recovery coefficients, and C(t)
defines the muscle activation-deactivation drive. Right: Controller for pointing task and targets. (a): Oculus Touch device
used to control the pointer (green dot in (b)) and button (green circle in (a)) to indicate “selection”, (b): target circles
(current target in red, inactive in gray) having equal distance to each other. Target width is 10 cm and distance is 30 cm.
The number indicates the selection order. Numbers were not visible to participants.

defining a linear relationship between current muscular capacity and fatigue parameters. We also designed experiments
to test the applicability and capabilities of our new approach.

3. Quantifying Cumulative Fatigue
In this section, we describe our new, modified cumulative fatigue model and maximum arm strength estimation

method.

3.1. Modified Three-Compartment Fatigue Model
The three-compartment muscle (TCM) model (Figure 1) assumes motor units can be in either one of active (MA),

fatigue (MF ), and rest (MR) states (see (20; 36; 19) for more details). Each compartment of motor states is expressed
as a percentage of maximum voluntary contraction (% of MVC). The sum of each compartment is 100%, as our muscle
motor unit quantity does not suddenly change during tasks. Since motor-unit recruitment is binary, this means that a
motor unit is either contracted or it is not. For a MVC task, all motor units are contracted and for a sub-maximal task,
fewer motor units are contracted. The transition among motor units is defined as:

dMR
dt

= *C(t) + R < MF ,

dMA
dt

= C(t) * F < MA,

dMF
dt

= F < MA * R < MF ,

where F and R defines the rate of motor state transitions activation-fatigue and fatigue-rest. C(t) is motor unit
activation function defined as:

C(t) =
h
n
l
nj

LD(TL *MA) if MA < TL,MR > TL *MA
LDMR if MA < TL,MR f TL *MA
LR(TL *MA) if MA g TL

TL is the target load defined as a torque ratio [Tcurrent_Tmax] * 100(%), LD is the force development rate, and LR
is the relaxation factor. The last two parameters are set to 10 based on the sensitivity analysis by Frey-Law et al. (36).
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Residual capacity (RC) indicates the current muscle strength, which is defined as:

RC = MA +MR = 100% *MF

Based on the residual capacity, Xia et al. (20) proposed a Brain e�ort (BE) term that defines the required central
“drive” to perform a task:

BE =
<

TL_RC < 100% if TL f RC
100% if TL > RC

where BE can be related with participant’s subjective fatigue. The BE ranges between 0 and 0.638. Sonne et al. (27)
proposed a modified TCM model (graded motor unit, GMU) to evaluate fatigue based on physical measurements, e.g.,
reduction in maximum grasping force, by assuming a linear relationship between the fatiguing rateF andBE:F = Fc <
BE where Fc is a constant value. They proposed a modified resting rate R as: R = Rc < BE < MF < (↵ * BE)_↵,
where ↵ is a threshold of 63.8%. In our preliminary evaluation of this model in estimating cumulative subjective
fatigue, GMU showed lower estimation accuracy than the TCM model (RMSE-GMU=2.03, RMSE-TCM=1.80). The
threshold value is derived from physiological muscle measurements (i.e., electromyography) under an isometric load
condition (i.e., fixed load). To the best of our knowledge, we are not aware of work supporting such a threshold value
in subjective fatigue evaluation. Also, our experimental condition does not involve constant but dynamically changing
arm movements. Based on this observation, we investigated a modified model (LIN) based on the linear definition of
the fatiguing/resting rates (F , R) as a function of BE and target load:

F =Fs < BE + Fb
R =Rs < BE + Rb

where Fs and Rs are constants defining the e�ect of BE on the rates and Fb and Rb are constants defining the rates
when BE is zero (i.e., resting condition, TL = 0%).

3.1.1. Model Fitting
We used the optimization toolbox in MATLAB to optimize the TCM model and to find the model parameters (F

and R) in mid-air interaction. To find the rate parameters Fs, Fb, Rs, and Rb for an optimal model performance in
estimating cumulative subjective fatigue, we formalized an error function as:

minimize
Fs,Fb,Rs,Rb

yxxw1
n

n…
i=1

[�(MF (i)) * B(i)]2

participant to Fs À [Fslb,Fsub], Fb À [Fblb,Fbub], Rs À [Rslb,Rsub], and Rb À [Rblb,Rbub]. In the above equation,
n is the number of fitting data points, MF (i) is the fatigue level estimation, and B(i) is the Borg scale rating. Based
on prior work (19; 37), the scaling function �(x) is defined as: �(x) = 0.0875 < x. Due to the discontinuity in the
model functions, finding optimal parameters, Fs,Fb,Rs,Rb is non-trivial. We identified them with the “pattern match”
function in the Matlab optimization toolbox with a maximum of 5 ù 106 iterations. The optimal F and R parameters
values for the shoulder joint region from the pattern search stage were identified as those producing the least amount
of error across optimization intensities compared to the criterion intensity-endurance time relationships. We define the
upper and lower bound of the rate parameters as Fslb = Rslb = *1.0, Fsub = Rsub = 1.0, Fblb = Rblb = 0.001,
Rbub = 0.0182 < 100, and Fbub = 0.00168 < 100 following the conditions used for the TCM model (19). When
the e�ect of BE is minimal (e.g., Fs = 0, Rs = 0), we assume that our proposed LIN model behaves similar to the
TCM model. Thus, in defining the initial rate parameters, we first compute the optimal parameters (FTCM , RTCM )
of the TCM model. Then, the initial parameters of the LIN model were set as: Fs,0 = Rs,0 = 0, Fb,0 = FTCM , and
Rb,0 = RTCM .

3.2. Max Shoulder Torque Estimation based on Arm Postures
In computing the shoulder torque (T), we used the biomechanical arm analysis implementation1 provided by Jang

et al. (19). Based on the torque measurements (averaged torque) and the isometric load endurance task (endurance
1
https://github.com/CDesignGitHub/Cumulative-Arm-Fatigue_CHI-2017
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time), we could estimate each individual’s maximum shoulder torque (19). However, this method cannot capture the
variance of the maximum torque based on the arm posture (23). To address this issue, we adopted Cha�n’s model of
arm strength (24). Cha�n’s strength model improves the estimation performance of shoulder torque. We will explain
this further in the discussion section. In this model, the maximum shoulder torque value is estimated based on the
shoulder and elbow angles as well as a biological sex parameter:

Tmax = (227.338 + 0.525↵e * 0.296↵s) ù Gshld

where ↵s = shoulder flex angle, ↵e = 180˝ - elbow flex angle. We used ↵s = 90˝, and ↵e = 180˝, which describe
the arm posture used in the isometric load task (see below). The biological sex adjustment parameter is defined as
Gshld = 0.1495 (female), and 0.2845 (male).

4. Methods
4.1. Participants

Twenty six right-handed participants (18 males; 25.5 ± 4.58 yrs.; 71.8 ± 2.27 kg; hand length 20.3 ± 2.26 cm;
lower arm length = 27.4 ± 3.28 cm; upper arm length = 35.6 ± 2.66 cm) volunteered in three experiments. Participants
reported no musculoskeletal disorder or neurological disease. There were three experiments and they had a total of
20, 12, and 6 participants, respectively. The 12 participants in the second experiment were recruited from the first
experiment. All participants provided written informed consent approved by the Institutional Review Board of Purdue
University.

4.2. Equipment
We used a Microsoft Kinect sensor v2 with its corresponding software development kit (SDK) to track arm

kinematics. We obtained joint torques from the camera data using inverse kinematic computations (19). We also used
a moving-average filter (15th order) to smooth the joint-torque trajectories. Data was sampled at 50 Hz using a desktop
computer with a Core i7 4.00GHz CPU, 64 GB RAM, and an NVIDIA GTX 1080 GPU. A projector displayed the
user interface on a 1.6 ù 0.95 meter screen placed 3 meters in front of the participant, at roughly the participants’ eye
level. The Kinect camera was located between the participant and the screen; it was 1 meter in front of the screen and
1 meter above the floor, so that it did not interfere with the participant’s view of the screen.

Participants interacted with virtual targets projected on the screen using the Oculus Touch (5) motion tracked
controllers. A virtual pointer (green dot in Figure 1a), mapped to the position of the controller held in the participant’s
dominant right hand, was used to either point to targets, or virtually grasp and move objects projected on the screen.
Vertical and horizontal movement of the pointer were controlled by vertical and medial-lateral movements of the
controller, respectively.

4.3. Experimental Tasks
Participants first performed an isometric load task, and then performed one of three types of tasks.

4.3.1. Isometric Load Task
To measure the maximum shoulder torque of each participant, we followed the indirect measurement method

proposed by Jang et al. (19). In this task, participants flexed the right shoulder to about 90˝ relative to the frontal plane
and held a weight in their hand (2.27 Kg for males and 1.36 Kg for females) till volitional failure. Participants used
visual feedback on the current and desired arm positions to maintain the required horizontal position of the arm.

4.3.2. Mid-Air Pointing Task
We adopted the mid-air pointing task used by Jang et al. (19). To start each trial, the participant stood in front of

the screen with their right shoulder flexed in front of them at 90˝, and the elbow fully extended, and with the Oculus
controller in their hand. On the screen, the participant saw one circular target (10 cm diameter) and a smaller green
cursor (4.8 cm diameter) which indicated the current position of the Oculus controller. The participant was instructed to
control the position of the green cursor by altering their shoulder joint angles, while maintaining full elbow extension.
The resulting vertical and horizontal movement of the hand-held controller was mapped to the movement of the cursor
on the screen.
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Figure 2: Docking task interface. (a): “cursor” chair in the center of room (not clutched) and the “target” object to the
right, (b): 3D pointer (green dot) “touches” the cursor chair, (c): the cursor chair is clutched to the pointer, (d): the cursor
chair is docked to the target.

There were nine targets, arranged along the circumference of a circle (30 cm radius; Figure 1b). When the
participant’s shoulder was flexed at 90 ˝, the cursor appeared at the center of the this circle. During the pointing trials,
one target appeared on the screen at a time. The participant rotated their shoulder to place the cursor into the target, and
then pressed a button on the controller to indicate that they had matched the presented target. The current target then
disappeared and another target appeared. The participant rotated their shoulder to place the cursor within the new target.
This sequence continued for a pre-determined duration. The sequence of target presentation was pseudo-randomized
such that the index of di�culty of each movement was consistent at 2.18. The participant matched all the presented
target without lowering their arm between trials, and maintained the elbow at full extension throughout.

4.3.3. Mid-Air Docking Task
To validate our model in a more complex task involving translation and rotational movements of the arm and

the object, participants were given a mid-air docking task in a rich virtual environment (Figure 2). The environment
minimizes ambiguity in the orientation by using a chair object instead of circles as the target and the cursor.

In each trial, a “cursor” chair appeared at the center of the room with neutral orientation (Figure 2), and
simultaneously, a “target" chair appeared at a di�erent location and orientation. The participant moved their arm so
that the controller (green dot in Figure 2a) aligned with the cursor, and then pressed a trigger on the controller to
“grab" the cursor chair. Participants then moved the cursor chair to a target chair through a combination of rotations and
translations and aligned or docked the cursor with the target. Each trial was completed after the participant successfully
aligned the cursor chair with the target chair within a threshold for rotation (5 deg) and translation (3 cm). We provided
auditory (beep sound) and visual (color change of target chair) feedback to indicate a successful docking, at which
point, the participant released the trigger on the controller, signifying the end of the trial. Then, the current cursor and
target chairs disappeared; a new cursor chair appeared at the same location as before, and a new target chair appeared at
a di�erent location and orientation. The participant moved their arm to grab the next cursor chair, without lowering the
arm, and proceeded to dock the cursor with the new target. The target chairs were displayed at a randomly generated
pose, but had the same amount of distance (30 cm) and rotation (45 deg) from the starting pose of the cursor chair.
The starting position and orientation of the cursor chair was identical for all trials. We used our pilot data to determine
the upper bounds of the range of motion of the target chair (i.e., 30 cm and 45˝ ) such that participants experienced
fatigue, but were not so exhausted as to be unable to complete the experiment. Participants were instructed to maintain
the elbow at full extension throughout this task.
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Score Definition Note
0 Nothing At All No arm fatigue

0.5 Very, Very Weak Just noticeable
1 Very Weak As taking a short walk
2 Weak Light
3 Moderate Somewhat but Not Hard to Go on
4 Somewhat Heavy
5 Heavy Tiring, Not Terribly Hard to Go on
6
7 Very Strong Strenuous. Really Push Hard to Go on
8
9
10 Extremely Strong Extremely strenuous. Worst ever experienced

Table 1
Borg CR10 scales with verbal anchoring.

This task was performed in discrete blocks, separated by rest intervals. The durations of the task and rest blocks
were pre-defined, and they were altered across the three experiments (see below). For any task block, the timer began
when the pointer came into contact with the first cursor chair, and the rest block began immediately after the end of
the preceding task block. The total time of the docking task for experiments 2 and 3 was 685 seconds for each set,
including both rest and task periods. Our pilot study confirmed that the participants found the docking task easy to
learn and uncomplicated after an appropriate time of practice (i.e., 5 minutes).

4.4. Procedure
We first measured body segment parameters, including total weight, height, upper arm (shoulder to elbow), lower

arm (elbow to wrist), and hand (wrist to middle finger tip) lengths. The measurements were used to obtain the inertial
properties of each segment (38), which were then to used to estimate shoulder torques via inverse dynamics (19).

Figure 3: Randomized experimental protocol of pointing/docking task. For the shorter duration experiment, a task block
was one minute, followed by either one of 5/10/15/20 seconds of rest. For longer durations, an experiment block consisted
of either one of 100/120/140/160 seconds of task, followed by either one of 10/15/20/120 seconds of rest.

Each participant started with a practice session and then performed the isometric load task, followed by both the
pointing and docking tasks in experiment 1, or, in experiment 2 and 3, only the docking task.

4.4.1. Estimating Maximum Shoulder Torque
For the isometric load task, we recorded the endurance time as the elapsed time from the beginning of the task

till volitional failure, when the participant could no longer hold the weight in their out-stretched dominant arm. The
participants could see the Borg CR-10 scale (Table 1) at the side of screen, so that they could refer to the rating scale
during the task. Participants were asked to report their subjective fatigue level using Borg ratings every 20 seconds.
This task provides a good first-hand experience to participants in using Borg ratings (19), which facilitates its use in the
subsequent tasks. The isometric task was followed by a mandatory 30-minute rest period to ensure su�cient recovery
and minimal e�ect of this task on the subsequent tasks. Then, participants proceeded to either one of three experiments.
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Figure 4: Borg ratings of participants in all experiments. (a): Borg ratings by 20 participants during mid-air pointing
(blue line) and docking (red line) tasks in experiment 1 (shorter task durations), (b): Borg ratings by 12 participants
during mid-air docking tasks (blue: set 1, red: set 2) in experiment 2 (longer task durations), (c): Borg CR10 ratings
by 6 participants during mid-air docking tasks for longer task duration in experiment 3. Each participant (indicated with
different colors) repeated the experiment across 7 days.

4.4.2. Experiment 1: Comparing Mid-Air Pointing and Docking Tasks
The purpose of experiment1 was to validate the fatigue modeling approach of Jang et al. (19) for more complex 3D

interaction tasks, such as 3D docking. The other goal was to evaluate the generalizability of the model-based approach
across di�erent task types. For these reasons, this experiment consisted of two 3D interaction tasks: mid-air pointing
and docking.

Participants had five minutes of mandatory practice for each task, or continued practice until they exhibited
confidence in performing the tasks. The experimenter instructed participants to hit/dock as many as targets as possible.
To follow the guidelines of Fitts’ Law studies (39), instructions to strive for optimal performance, i.e. to ‘hit as many
targets as possible while staying accurate’, contributed to keep each participant motivated. Once the participant was
familiar with the tasks, they took a 15-minute mandatory break prior to the main tasks. Our pilot studies confirmed
that these practice and rest duration were su�cient for minimizing potential learning e�ects and after-practice fatigue
inference.

Subsequently, participants performed the pointing and docking tasks. We randomized the order of the tasks across
participants. Each task had four one-minute blocks during which the trials were administered, and each task block was
followed by either one of 5, 10, 15 or 20 seconds of rest (Figure 3). Throughout the task, participants provided their
perceived Borg ratings every 20 seconds. Participants were given a 15-minute rest period between the pointing and
docking tasks to ensure adequate recovery.

4.4.3. Experiment 2: Mid-Air Docking for Varying Task and Rest Durations
The purpose of experiment 2 was to validate the model with various durations of tasks and rests. Instead of a

monotonous increase of fatigue level (experiment 1), we intended to evaluate the model performance when both
increases and decreases of fatigue appear in the Borg recordings of participants.

We recruited 12 participants from experiment 1 on a separate day, more than a week afterwards, so that we
could minimize any confounding factors from the prior experiment. Participants had the same training session as
in experiment 1, followed by two sessions of mid-air docking tasks. Each session had randomly alternating task blocks
of 100, 120, 140 and 160 seconds. Each task block was followed by either one of 10, 15, 20 and 120 seconds rest.

4.4.4. Experiment 3: Individualized Fatigue Modeling
In our third experiment, similar to experiment 2, we evaluated our model with longer periods of task and rests.

However, to validate that our model was also accurate for multiple recordings of each participant, participants
performed mid-air docking tasks over a 7-day period. In this experiment, each participant performed the isometric
task daily, followed by two sets of the docking task with alternating task and rest periods.

5. Results
In this section, we first show the variations of the Borg ratings in the experiments. Second, we present multiple

cross-validations of interaction types and duration. We also evaluate our model-based approach across multiple trials
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Figure 5: Left: Results of the cross-validation between pointing and docking tasks. Blue line indicates the RMSE of the
model optimized using the pointing task data set. Red line indicates the RMSE of the model optimized using the docking
task data set. Right: Results of the cross-validation between shorter (Exp.1) and longer (Exp.2) durations of task/rest.
Red line indicates the RMSE of the model optimized using experiment1 data. Blue line indicates the RMSE of model
optimized using experiment2 data.

Experiment1 Experiment2 Experiment3
TCM w/o Chaffin 1.42 1.90 1.60
Lin w/o Chaffin 1.33 1.78 1.59
TCM w/ Chaffin 1.34 1.73 1.60
LIN w/ Chaffin 0.88 1.26 1.25

Table 2
Comparison of the estimation performance of four different fatigue quantification methods, for all investigated combination
of fatigue models (LIN vs. TCM, with or without Chaffin’s model). The estimation errors (RMSE) are measured in Borg
ratings (0Ì10).

from single users. Lastly, we draw comparisons between our new modeling method and an existing one (19) in each
experiment.

5.1. Borg CR10 Scale Ratings Across participants
Figure 4(a) and (b) show the average Borg ratings of 20 and 12 participants during experiment1 and 2, respectively.

Although there was variability in the ratings across participants, the trend is similar across tasks. The rating increases
linearly while performing the tasks and decreases linearly during rest periods, particularly during the longest rest period
(120 sec.) where the rating decreases close to a 0 rating. We measured Borg ratings before and after each rest period.
The average Borg rating for all participants in experiment 1 was 3.23 (SD=1.28, Range=[0,8]), while the average rating
for overlapping participants of experiments 1 and 2 was very similar, 3.45 (SD=1.16, Range=[0,7]). Figure 4(c) shows
the variation of the Borg ratings in Experiment 3. This experiment used multiple recordings on the same participants
(N=6), with an average rating of 2.90 (SD=0.90, Range=[0,8]).

5.2. Cross-Validation of Pointing and Docking Tasks
To investigate the applicability of the model for complex interaction tasks (i.e., beyond a simple pointing task), we

performed a cross-validation test where the model is optimized with either the pointing or docking task. Then, we tested
the model on the data set of the other task condition (Pointing õ Docking). Figure 5 (Left) shows the cross-validation
results over all participant data in experiment 1. The mean of root-mean-squared error (RMSE) during pointing tasks
(Docking ô Pointing) was 1.43 (SD=0.644), while the mean RMSE during docking tasks (Pointing ô Docking)
was 1.39 (SD=0.598). A paired-sample t-test showed no significant di�erence between Pointing and Docking tasks
(t(39)=0.932, p=0.357). Thus, we conclude that the complex task condition, i.e., docking task involving pointing,
translating, and rotating, does not a�ect the estimation performance of the model.
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Figure 6: Results of the leave-one-out cross validation of models using all participant data (generalized model) and the
data of each participant (individualized model) in terms of RMSE for experiment3. Green triangles: generalized TCM
model, Red diamonds: generalized LIN, Purple squares: individualized TCM model, Blue circles: individualized LIN model.

Figure 7: Comparisons of the leave-one-out cross-validation results of the models in each experiment (experiment1, 2 &
3). RMSE of estimation performance of four modeling methods are presented. Green triangles: TCM model w/o Chaffin’s
strength model, Red diamonds: LIN model w/o Chaffin’s model, Purple squares: TCM w/ Chaffin’s model, Blue circles:
LIN model w/ Chaffin’s model.

5.3. Cross-Validation of Longer and Shorter Task Periods
To evaluate the validity of the model for di�erent interaction durations, we performed a cross-validation between

shorter (experiment 1) and longer (experiment 2) durations of docking task. Figure 5 (Right) shows the evaluation
of performance between Experiments 1 and 2. Mean RMSE in experiment 1 (experiment 2 ô experiment 1) was
1.30 (SD=0.45) and mean RMSE during experiment 2 (experiment 1 ô experiment 2) was 1.33 (SD=0.36). A
paired-sample t-test showed no significant di�erence in model estimation performance between experiment 1 and 2
(t(23)=-0.28, p=0.782). Thus, we conclude that the duration of intermittent task and rest does not a�ect the estimation
performance of the model.

5.4. Evaluating Generalized and Individualized Models
To investigate the estimation performance of the model in a longitudinal experiment with single participants,

we compared estimation performance between the individualized and generalized models. To assess the predictive
performance of our model, we used a leave-one-out (LOO) cross-validation. With this, one dataset is excluded from
optimizing the model, and then, that previously excluded dataset is used to test the model. Then this procedure is
repeated in turn for every other dataset. We assume that the RMSE measured for each model is independent from
each other when a single dataset is eliminated from the optimization. We obtained generalized models (Mgen) from
the entire data collected from experiment3, while we generated individual models using the data set recorded from
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each participant (Mind). Results showed a RMSE of Mgen = 2.0 (SD=0.586) and Mind = 1.25 (SD=0.315). A
paired sample t-test showed a significant di�erence between the individualized and the generalized model (t(79)=6.87,
p=0.000). Figure 6 further shows a comparison of our new model and the existing method (TCM (19)) for both
individualized and generalized optimization. Our new modeling method (LIN) with individualized optimization
showed consistently improved estimation accuracy. We conclude that our individualized model shows better estimation
performance than a generalized model.

5.5. Comparison of Modeling Methods
To compare the estimation performance of our model with the existing one (the TCM-based model (19)), we used

four modeling methods to estimate the subjective fatigue in each experiment. The four models include (1) TCM without
Cha�n’s model, (2) TCM with Cha�n’s model, (3) LIN without Cha�n’s model, and (4) LIN with Cha�n’s model
(ours). These four models were separately optimized using the dataset for each experiment, experiment1, 2 and 3.
We followed the leave-one-out (LOO) cross-validation approach described in the prior section to test the robustness
of each model in estimating fatigue of an unseen data set. In particular, in experiment3, we performed LOO cross-
validation within each participant’s dataset to compare the model performance for estimating individual fatigue data in
a longitudinal task period. In Table 2, the average RMSE of the Borg ratings for each fatigue modeling method is shown.
Figure 7 shows each model’s estimation performance in terms of RMSE for each experiment. Overall, the LIN fatigue
model combined with Cha�n’s arm strength model consistently showed the best performance relative to the other
methods. To further investigate the statistical di�erence among the RMSE results of the four modeling approaches,
we performed a one-way ANOVA with a Tukey post-hoc test on the RMSE errors from the LOO cross-validation for
each experiment. Results showed that only LIN with Cha�n’s strength model has a statistically significant di�erence
relative to the other three modeling methods (p < 0.0005). The other three methods are not significantly di�erent from
each other (p > 0.8).

5.5.1. Model Parameters
The optimal parameters of our approach (LIN with Cha�n’s model) are Fs = *0.043 (SD=0.011), Fb = 0.040

(SD=0.0035), Rs = 0.0 (SD=0.0), Rb = 0.0046 (SD=0.00097) in experiment 1; and Fs = *0.040 (SD=0.0075),
Fb = 0.035 (SD=0.0015), Rs = 0.0 (SD=0.0), Rb = 0.0046 (SD=0.00040) in experiment 2. From the LOO cross-
validation within each participant’s data in experiment 3, we found the best performance model parameters and the
overall range as Fs = 0.15 (Range=[-0.045, 0.25]), Fb = 0.018 (Range=[0.0010, 0.055]), Rs = *0.031 (Range=[-
0.051, 0.0]), Rb = 0.016 (Range=[0.0052, 0.22]). Experiments 1 and 2 yielded similar optimal model parameters and
they vary relatively less than the parameters from experiment 3. Also, as Rs is zero, the e�ect of Brain E�ort (BE) on
the rest rate was minimal. In contrast, the optimal parameters varied in experiment 3 across participants. This indicates
that the inter-individual di�erence in fatigue and rest rates are well reflected in the optimal parameters through the
individualized modeling approach.

6. Discussion
The purpose of our setup that uses a Kinect to quantify subjective fatigue was to reduce the necessity for expensive

or invasive equipment, such as dynamometers or EMG recordings. With our setup, our results showed the validity of
our new model for quantifying cumulative subjective fatigue in various interaction conditions, including complex (i.e.,
mid-air docking task) and dynamic ones (i.e., varied rest/task periods).

6.1. Generalizability of the Model
Our multiple cross-validations showed that the estimation performance of our model is not a�ected by task

types (simple vs. complex tasks) nor periods (shorter vs. longer task and/or rest). These cross-validations simulated
challenging estimation tasks where the model is optimized using a dataset from either one of two di�erent task
conditions, and then tested on the unseen data. The results imply the generalizability of our model to varying interaction
conditions. For example, we can generate our model from an exemplar task condition and then use the model in other
interaction conditions without having to expect a severe degradation of model performance.

6.2. Improved Performance in Estimating subjective Fatigue
In comparing our new fatigue model (LIN) with an existing one (TCM (19)), we observed that the LIN model alone

does not show a statistical improvement over the TCM model. Yet, we go beyond a simple a addition of Cha�n’s model
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to estimate maximum shoulder torque. When our LIN model is combined with Cha�n’s strength model (24), we see
that the estimation performance is significantly improved, with 31% less error on average in all experiments. In Figure 4,
we showed the large variations in the Borg ratings across participants. Given the variability and uncertain of subjective
fatigue, estimating its accumulation during mid-air interaction is a challenging task. More specifically, it is challenging
to predict how users subjectively experience their fatigue level during mid-air interaction. Thus, our improvement is
an important stepping stone to accurately quantifying subjective user experience during mid-air interaction.

6.3. Individualized Fatigue Modeling
Our modeling approach showed an additional 42.5% reduction in fatigue estimation error when the longitudinal

experiment data in experiment 3 is used for an individual participant’s fatigue quantification rather than for all
participants’. Individualized modeling accounts for the Borg ratings indicated by each participant, and thus it eliminates
the variability in the fatigue perception across participants. We envision that the subjective fatigue ratings could be
periodically captured while users perform mid-air interaction. Then, such information could be used to further inform
the model as the capture of multiple ratings across time would reduce the variability in the model. This will further
enhance the performance for estimating an individual’s subjective fatigue at a given time.

6.4. Model Parameters
Although we did not expect the negative optimal value of Fs for Exp. 1 and Exp. 2, this may have occurred to deal

with the challenging optimization problem for a general model over 20 and 12 participants’ subjective fatigue in Exp. 1
and 2, respectively. For instance, the BE ranged between 0 and 0.638, which defines the range of F in between 0.0142
and 0.040. Thus, F always shows a higher rate compared to R (0.0046). This means that increased BE still contributes
to a higher rate of fatigue than recovery rate. In Exp. 3, we observed more understandable parameter optimization
results where positive Fs and negative Rs values are achieved. We showed that inter-individual di�erences in fatigue
and rest rates are well reflected in the optimal parameters through the individualized modeling approach.

From these observations, we may conclude that constructing a generalized subjective fatigue model from non-
contact information is quite challenging and may not lead to understandable model optimization results (although the
accuracy appears to be slightly enhanced as shown in Tab. 2). The best way to take advantage of our model is to
parameterize individualized subjective fatigue as demonstrated in Exp. 3, which shows about 42.5% improvement over
a single generalized model (see 6 and 7 (Right)).

Then, the optimal parameters for Exp. 3 can be also used to explain how our approach is di�erent from a modified
TCM model. For instance, Looft et al. provided modifications to the TCM model that substantially improved model
predictions when intermittent tasks were involved (2; 30). However, when BE is 0, our model behaves similarly to
this modified TCM as R becomes the max. When BE is not zero, the modified TCM becomes identical to the original
TCM model. However, our approach features variable recovery rating R with respect to BE. This makes our modeling
method superior to the original TCM (see 2 and 6) and may conceptually surpass the modified TCM. That said, the
original TCM model is superior to other approaches when not accounting for the angle and velocity relationships on
strength. In future work, we will generalize other modified models to handle our use case.

6.5. Simple and E�ective Personalization in HCI scenarios
Our results showed an improvement in estimating an individual’s subjective fatigue using only a camera-based

skeleton tracking system instead of invasive and expensive tools that are impractical within HCI. In Kinect-based mid-
air applications which can be adapted to each user’s strength (e.g., exergames, at-home therapy), designers may enable
users to calibrate the system with their own optimal ranges of motion, resting times, input positions, which involve
significant physiological and psychological factors. Designers can also fit this approach to more complex scenarios
by fitting the model parameters. Designers can run the model in any Kinect-based system as long as they collect a
user’s joint torque and Borg ratings corresponding data. Additionally, quantifying subjective fatigue could be used
to develop guidelines for collaborative work involving human-robot interaction, in which human exhaustion can be
relieved by a robot. For instance, our model could be used to design industrial ergonomics and systems in order to
protect industrial workers’ health. Similarly, as technologies such as VR/AR as introduced in industry for upskilling
and training purposes, our model can be useful to investigate human motion and fatigue in various training scenarios.
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7. Limitations
Our model demonstrated promising results and estimation performance; however, we identified some limitations

that go beyond the scope of this work, but that could be addressed in future work in this area. For example, we recognize
that while our model measures elbow and shoulder torque, we have not validated the applicability of our model with
varying grasping forces (i.e., the user holding a heavy object). While the weight of a controller (Ì0.169kg) was a factor
considered in the model, we have not validated our model for heavier objects, which will need higher grasping force.
We also acknowledge that our participant pool is limited. Another limitation is that task di�culty and movement size
(translation and rotation) were relatively limited. These bounds were established based on our pilot studies to avoid
extreme exhaustion from our participants, so they could finish the experiment. To further validate the model, more
challenging and dynamics tasks could be designed and tested.

8. Future Work
Our model enables a variety of applications, also because the end e�ector (i.e., the controller weight) can be added

as a factor when estimating shoulder torque into the model. An interesting direction will be to validate our model using
di�erent weights in the hand. Likewise, we plan to test on a participant pool with larger variability.

We also plan to validate our model for more dynamic and larger-range motions in the future. Another important
direction will be to implement our model within real world applications.

Our future work might also include using our proposed model to quantify fatigue in other areas of the human body,
particularly the upper body. Another interesting future direction is investigating and improving the e�ciency of the
heuristic pattern search for the discontinuous functions during our parameter optimization. We also plan to investigate
the relationship between task accuracy and fatigue perception. Finally, we will release our model to the public so that
it can be further validated and improved upon.

9. Conclusion
We presented an improved fatigue modeling method that incorporates the linear relationship between fatigu-

ing/resting rates and brain e�ort (BE). We also incorporated a maximum arm strength model (24) into the model. Our
new model showed significantly better estimation performance than previous work (19). Statistical analyses revealed
that our model performance is not a�ected by conditions such as complexity of tasks and rest/interaction durations.
Also, our results reveal that a personalized model can quantify an individual’s subjective fatigue better than a general
model. We investigated the relationship between the fatiguing/resting rate and the current muscular e�ort. Prior work
had used constant rate parameters for this relationship (19). In the work presented here we showed that a linearly
varying relationship significantly improved fatigue estimation performance. Our proposed method further generalizes
and validates the applicability of the model-based fatigue estimation method.

We believe that improving and applying such a fatigue model for a variety of HCI scenarios, including mid-air
tasks in AR and VR, will further validate the model-based approach, and will ultimately strengthen design guidelines
targeted at minimizing fatigue during prolonged use of mid-air user interfaces.
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