
A Knowledge-Based Agent for CAD systems

Olivier St-Cyr, Yves Lespérance, and Wolfgang Stuerzlinger

Department of Computer Science, York University
4700 Keele Street, Toronto, Ontario, Canada M3J 1P3

{olivier, lesperan, wolfgang}@cs.yorku.ca
http://www.cs.yorku.ca/~{olivier, lesperan, wolfgang}

Introduction
This poster describes an approach in improving the
usability of computer-aided design (CAD) applications by
adding an intelligent agent that assists the user in his/her
interaction with the system. To implement the agent, I
used ConGolog [GLL97, LLR99] – a very high-level
programming language for developing knowledge-based
agents that are embedded in complex environments.
ConGolog supports the specification of a task-level model
of a dynamic environment, the description of complex
behaviours, and the synthesis of new plans at run-time. A
prototype intelligent agent is being developed to work
with an existing 3D CAD system [GS99]. This agent is
intended to help the user in designing an office layout that
satisfies his goals.

The CAD system [GS99] that our intelligent agent
works with is built to allow the user to design a 3D virtual
environment (office, kitchen, living room, etc.). The
system’s graphical user interface is quite simple.
Interactions consist primarily of using the mouse to pick
and place various types of objects (desk, chair, lamp,
inkwell, etc.) in the room layout. In this, it resembles the
Object Associations system [BS95]. The system handles
the details of interactions based on a model of objects and
the physical constraints that hold in the scene, for
instance, an object being supported by a particular
surface. But the system lacks a model of the user, of the
task that he/she is trying to perform, and of the objectives
that he/she is trying to achieve. It cannot really assist the
user in quickly creating the desired room layout.

An early example for a system that attempts to aid
the user in creating a room layout is CRACK [FM88].
This 2D system critiques the current design with text
messages that explain the problem. The domain
knowledge embedded in the critiquing system is not used
to actively aid the user for placing objects.

It is believed that the use of intelligent agent
technology can provide many benefits in the area of
layout systems. An agent would maintain a high-level
representation of the application domain, including object
behaviour and user knowledge and goals. This could be
used to enforce complex application specific constraints
on the way objects are manipulated and on the layouts

that are produced. Secondly, such a model could be used
for disambiguation and consistency checking. Humans
often communicate information about a task very
inaccurately because they understand the context of the
task and its goals from previous experience. An agent
could use its domain knowledge to resolve ambiguities, as
well as ask more meaningful questions when user input is
required. Moreover, the user goal model could be
exploited to detect inadvertent errors. Thirdly, the agent
could also aid the user in constructing the virtual design
using its knowledge of the domain and user goals.
Because it is aware of the current state of the design, it
can provide suggestions and advice to the user, guide him
through the task, and respond to user’s questions. All this
would lead towards much more natural and intuitive
interaction between the user and the CAD system.

The CAD system
Most of today’s CAD systems are well suited in creating
geometric objects. Nevertheless, users find common
tasks, such as quickly furnishing a room, hard to
accomplish, especially since placing objects is
conceptually different from creating them. The IConS
CAD system [GS99] used in this project is a recently
developed 3D application that exploits knowledge about
the behaviour of objects to provide simple and intuitive
interaction techniques for object placement and
manipulation. Objects are represented using polygonal
models. The application uses a simple two-dimensional
interface. The main interaction device is the mouse;
keyboard commands are used only for switching modes
and organizational tasks. Currently, three modes exist:
constrained object movement, unconstrained object
movement, and viewer navigation (see [GS99] for
details).

A user of this system builds scenes based on a
predefined library of objects. For each object, two sets of
areas are defined: offer areas and binding areas. These
areas are bound together by constraints and thus, limit the
positioning of the constrained object during manipulation.
Collision detection/avoidance is also used to ensure that
no two objects occupy the same space. These principles
(surface constraints and collision detection/avoidance)

capture part of the natural behaviour of objects in the
system.

General geometric constraints are already part of the
IConS system. For example, OnFloor and OnWall are two
of the system’s constraints that can limit where an object
can be placed. All the implemented constraints describe
general placement guidelines for objects that can be used
in any design; they are not specific to the application
domain. This is where a knowledge-based agent could be
useful; it could know for instance, that a computer should
not be placed too close to a heat source.

The knowledge-based agent

Domain representation
In the office layout domain, there are many types of
objects. These are organized into a hierarchy of classes,
e.g. Desk, InkWell, etc. These object classes are
themselves instances of a set of function-related
metaclasses:

• WorkspaceAreaObjectClass, which includes
Desk, Chair, SideTable, etc.

• MeetingAreaObjectClass, which includes
MeetingTable, Chair, WhiteBoard, etc.

• StorageAreaObjectClass, which includes Bookshelf,
Book, FilingCabinet, etc.

• OfficeEquipmentAreaObjectClass, which includes
FaxMachine, Printer, Photocopier, etc.

Spatial relation types (e.g. OnTop, On Floor,
OnWorkspace, etc) are also grouped in a hierarchy.
There are primitive actions for creating and destroying an
instance of an object or relation class.

Another set of fluents and primitive actions is used
to represent interactions with the user or the CAD
module. For example, the agent can perform the
primitive action makeYesNoQuery(msg) and a possible
response of the user is represented by the primitive action
answerYesNoQueryYes. These declarations are used by
ConGolog to initialize the agent’s knowledge base, update
it when actions occur, and check the legality of actions in
a given state.

Agent behaviour specification
So far, the behaviours that have been scripted for the
agent are rather simple. For example, the procedure,
which interacts with the user to help him/her set up the
workspace area of his/her office layout, goes as follows:

proc setUpWorkSpace(officeLayout) [
 addObj(Desk,officeLayout);
 addObj(Chair,officeLayout);
 resetYesNoQuery;
 makeYesNoQuery("Would you
 like to have one more chair
 added to your office?");
 yesNoQueryRespIn?;
 if yesNoQueryAnsYes then
 addObj(Chair,officeLayout));

endProc

Another area where ConGolog helps is in detecting
errors and constraint violations. The agent can easily
check the legality of the actions requested by the user
before performing them. ConGolog’s plan synthesis
facilities could also be useful for dealing with
unanticipated user requests, recovering from failures, or
producing animations.

Acknowledgements
I would like to thank Yves Lespérance and Wolfgang
Stuerzlinger for their thoughtful comments and
discussions of the ideas discussed herein.

References
[BS95] BUKOWSKI, R., & SEQUIN, C. (1995). Object
Associations: A Simple and Practical Approach to Virtual
3D Manipulation. Proceedings of the ACM Symposium
on Interactive 3D Graphics ’95, 131-138. Monterey, CA.

[FM88] FISCHER, G., & MORCH, A. (1988). CRACK: A
Critiquing Approach to Cooperative Kitchen Design.
Proceedings of the International Conference on Intelligent
Tutoring Systems, 176-185. Montreal, Canada.

[GLL97] DE GIACOMO, G., LESPÉRANCE, Y., &
LEVESQUE, H. J. (1997). Reasoning about Concurrent
Execution, Prioritized Interrupts, and Exogenous Actions
in the Situation Calculus. Proceedings of the Fifteenth
International Joint Conference on Artificial Intelligence,
1221-1226. Nagoya, Japan.

[GS99] GOESELE, M., & STUERZLINGER, W. (1999).
Semantic Constraints for Scene Manipulation.
Proceedings of the Spring Conference in Computer
Graphics, 140-146. Budmerice, Slovak Republic.

[LLR99] LESPÉRANCE, Y., LEVESQUE, H. J., & REITER,
R. (1999). A Situation Calculus Approach to Modeling
and Programming Agents. In: WOOLDRIDGE, M., & RAO,
A., editors, Foundations of Rational Agency, 275-299.
Kluwer.

