
When Anchoring Fails: Interactive Alignment of
Large Virtual Objects in Occasionally Failing

AR Systems

Anil Ufuk Batmaz1 and Wolfgang Stuerzlinger2

1 Kadir Has University, Istanbul, Turkey
aubatmaz@khas.edu.tr,

2 Simon Fraser University, Vancouver BC, Canada
w.s@sfu.ca,

http://vvise.iat.sfu.ca

Abstract. Augmented reality systems show virtual object models over-
laid over real ones, which is helpful in many contexts, e.g., during main-
tenance. Assuming all geometry is known, misalignments in 3D poses
will still occur without perfectly robust viewer and object 3D track-
ing. Such misalignments can impact the user experience and reduce the
potential benefits associated with AR systems. In this paper, we im-
plemented several interaction algorithms to make manual virtual ob-
ject alignment easier, based on previously presented methods, such as
HoverCam, SHOCam, and a Signed Distance Field. Our approach also
simplifies the user interface for manual 3D pose alignment in 2D input
systems. The results of our work indicate that our approach can reduce
the time needed for interactive 3D pose alignment, which improves the
user experience.

Keywords: 3D User Interfaces, 3D Pose Alignment, Augmented Reality
Interaction, Orbiting, 3D Navigation

1 Introduction

Augmented Reality (AR) systems show the viewer virtual geometry overlaid
over the real world. There are many applications of this technology, including
entertainment, medicine, education, training, commerce, and maintenance [1].
In many of these areas using an AR application can decrease the cost, time, and
effort required to perform tasks. On the other hand, there are still many limi-
tations of AR technologies, which can affect the performance of the application
and also negatively impact the user experience. In this work, we present several
methods that improve the user experience in situations when the tracking in AR
systems fails. To accurately and robustly visualize virtual objects superimposed
over real ones, AR systems depend on knowing the 3D poses of both the viewer
and the objects in the environment. Many different 3D tracking technologies
exist, yet, none of the contact-less options for 3D tracking is known to be 100%
robust.



2 Batmaz and Stuerzlinger

Most 3D tracking systems that use cameras or optical sensors can be affected
by light sources, varying lighting levels, resolution, and/or occlusion issues. In-
ertial measurement units (IMUs) can measure the motion of the viewer (or the
object), but are prone to drift. Combining multiple tracking systems can in-
crease robustness, as demonstrated by many current commercial systems. Yet,
even those systems that use combinations of tracking technologies are not 100%
robust in practical application scenarios, especially in outdoor environments.
This manifests as occasional “glitches” in tracking, where the overlay does not
match the real world. If tracking does not recover on its own, the only option
is then for the user to manually correct the pose of the overlay, which requires
at least specifying the pose of the virtual content by control of the 3D position
and 3D orientation. In this case, the user has to manually adjust the six degrees
of freedom (6DoF) of the pose (3D position + 3D orientation). While näıve ap-
proaches for this task afford direct manual control over all 6DoF, this also leads
to a complex user interface that requires training and strong spatial cognition
skills.

Many AR applications, including maintenance, focus on a restricted scenario
where the user looks at a single object with known geometry, with information
or a virtual model overlaid on said object [2].

However, the target real-world object might not always be completely visible
to the tracking camera, especially if the user is close to the object. In this case,
the tracking camera on the AR system can be used to recognize the (relative)
pose of the object through a variety of methods, including attaching one or more
markers to the target object or detecting features of the object. Then, the system
first detects specific features in the images, and by using these features, derives
the pose of the real object.

With feature-based algorithms, specific features of the object are detected in
the image, and the pose of the object is computed based on these features. One
approach to this is to anchor the features of the real world object to the virtual
one to derive the pose of the real object relative to the camera, an approach used
in many computer vision systems [3, 4]. In general, marker-less approaches are
preferred, as the object does not have to be instrumented with markers, which
can interfere with real-world usage.

Regardless if markers are used or not, current computer vision algorithms
are not always robust and can fail to detect the real object pose accurately. This
applies to all current AR systems, regardless if tracking is outside-in or inside-
out, especially in outdoor scenarios. Changes in the environmental conditions,
such as lightning, the noise in the system, e.g., due to resolution or timing limits,
or visibility/occlusions issues, can affect the performance of the pose tracking
algorithm in terms of accuracy and can cause the tracking to temporarily fail
in unpredictable ways [5–7]. Sometimes the tracking system is able to quickly
recover on its own, but this is also not always guaranteed [8–10].

In scenarios where the the object that the user is interested in is large enough
so that it does not fit into the camera view, tracking algorithms can fail even more
easily, since the computer vision method may not be able to detect anchoring



When AR Anchoring Fails 3

points and then match them to the virtual model. Or the computer vision system
might not have enough information to recognize all relevant poses [11].

One scenario where this can occur very easily is when the user stands close
to a large object, such as a 300 meter long container ship, which features large,
featureless surfaces, e.g., along the side of the ship [12, 13]. Consider here the
case when the user is (say) 1-2 meters away from the ship’s side, looking directly
at it to inspect some new damage. In this situation, any camera facing in the
viewing direction will see very few features.

Also, because the user is so close to the side of the ship, even the silhouette
may not be distinct enough to detect the relative pose, if said silhouette is even
visible in the field of view of the camera (and it is typically not). This naturally
limits any computer vision-based approach. While one can temporarily rely on
IMUs to compensate for a loss of camera-based tracking, IMU-based approaches
drift too much to make this a practical solution for more than a few seconds.
In the ship inspection scenario accurate, robust pose tracking is thus a very
challenging problem that has no known solution.

When the anchoring algorithm of the tracking system fails in such scenarios,
one approach that can help here is if the user can interactively adjust the pose
of the virtual (overlaid) model in the AR system to match reality better. One
interesting application scenario is to use a mobile device, such as a tablet, as the
AR viewing device, i.e., as a “window” to see the virtual content. Still, a tablet
provides only a 2D input surface, to afford control over all 6DoF. In such cases,
the AR system can benefit from advanced user interface methods that simplify
the interaction by reducing the need to specify all 6DoF directly for matching
the alignment of the virtual model to the real world, which then also improves
the user experience.

The goal of this paper is to present and test algorithms that improve the
user experience when vision-based algorithms, such as anchoring-based ones,
fail to track the target object. In the current maintenance applications, when
the anchoring algorithm fails, the user then has to manually match the virtual
and real world object to be able to use the AR system. Moreover, such pose
matching needs to happen through the 2D tablet screen, and thus, 2D interaction
methods, even though adjustments in more than 2DoF are typically required.
Our objective is to simplify the user interface of the AR system to make it easier
for a user to quickly match the poses of the a virtual and real object.

In this paper, we focus on a scenario where a computer vision-based tracking
method fails in some way in an tablet-based AR context and where the user then
has to interactively adjust the pose of the virtual model. The rest of the paper
is organized as following: in the second section, we describe a use case for the
given problem, followed by an explanation how we stabilized the tracking of the
virtual objects in the third section. The fourth section describes the degrees of
freedom restriction methods we added to simplify the user interface. In the fifth
section we discuss the presented methods, followed by the conclusion.



4 Batmaz and Stuerzlinger

2 Use case

In this paper, and as exemplar large object, we focus on maintenance scenarios
for a commercial passenger airplane [14], more than 30 meters long, 30 meters
wide, and 12 meters high. We also ignore the particulars of the computer vision-
based tracking method and consider only the design of the user interface for
aligning the virtual model in the occasional situations when the computer vision
method fails to accurately detect the pose of the object. We implemented our
system in Unity for an AR tablet.

3 Stabilizing the tracking

As airplanes are usually in a known orientation on the flat ground surface when
they undergo maintenance, it is reasonable to assume that the aircraft does not
have any rotation along the roll (side-to-side axis) or pitch (front-to-back axis)
axes [15]. Since we also know already that the pose of the object is currently not
automatically detectable, the user can only rely on the 6DoF IMU tracking.

Since state-of-art AR tablets have an embedded 6 DoF IMU, it is possible to
use the rotation data of the tablet to stabilize the virtual object pose. However,
the 6 DoF IMU data on tablets is typically noisy, and thus requires filtering be-
fore the data can be used for overlaying the virtual content in the AR system. As
we know that the user is holding the tablet in their hands, we use the One-Euro
filter to stabilize the virtual object rotation, which is appropriate for interactive
applications.

3.1 One-Euro Filter

The One-Euro (1€) filter is a user-centred, low-pass filter designed to work ef-
ficiently with human movement speeds [16]. The One-Euro filter is also a fast
algorithm that can predict a virtual objects’ position with less delay compared
to other methods, such as a Kalman filter. Compared to other algorithms, it
also yields better performance in terms of mean error distance for tracking ap-
plications and significantly reduces battery consumption. These features of the
One-Euro filter motivated us to implement this algorithm for our scenario, see
Figure 1.

Our AR system uses the 9 DoF data received by the tablet’s IMU and com-
pass. This data is subject to jitter, which can have detrimental effects on the
user experience and tracking accuracy [17–21]. We filter the tablet pose with the
One-Euro filter, as this method also features minimal lag. The implementation
of this algorithm requires fine-tuning of the filter coefficients. Each tablet and
application scenario typically requires their own calibration coefficients based on
the performance of the AR system, but this is usually fairly easy to do.

After we fine-tuned the filter algorithm, we used it to rotate the virtual object
in the inverse direction of the filtered tablet IMU data. For instance, if the tablet
is rotated 30 ◦ along an axis, we rotate the virtual object image -30 ◦, which
stabilized the virtual object.



When AR Anchoring Fails 5

Fig. 1. Using the IMU data provided by the tablet, our AR system stabilizes the
rotation of the virtual plane.

4 Restricting the Degrees of Freedom

Restricting the degrees of freedom makes it easier for users to interact with an
object in a virtual environment, e.g., by locking distinct position or orientation
axes, or by limiting the speed of change [22–24]. Various approaches have been
used in 3D environments where the user only needs to control two or fewer DoFs
at a time with the current input mapping.

Such methods allow users to interact with a 3D virtual object with 2 DoF
input, e.g., on the 2D screen of a AR tablet. In our use case, we considered the
situation where the user looks at the real world object from a previously known
distance. For simplicity, we used the final distance between the tablet and the
target object from the vision-based anchoring algorithm, just before it failed.

Thus, in this paper, we restrict the DoFs by allowing users to orbit around a
virtual object. In contrast to näıve orbiting approaches that simply keep the user
at a given distance from the center of the object, we use approaches that keep the
distance between the user and the surface of the object constant. This class of
approaches has been shown to improve the user experience, as the view roughly
corresponds to how a user would move around an object to inspect it. It also
avoids that the user accidentally orbits into an object, e.g., when the user was
standing close to the body of the aircraft, but after orbiting can find themselves
inside the fuselage, an aircraft engine, or the wing, which is undesirable.



6 Batmaz and Stuerzlinger

4.1 HoverCam

HoverCam is a navigation method for orbiting the camera around an object,
while keeping the distance between the camera and the virtual object con-
stant [25], which enables the viewer to maintain a reasonable view of the object
(Figure 2).

This is particularly relevant for airplanes, which are non-convex objects with
long protrusions (such as the fuselage and the wings). For such objects, näıve,
i.e., object-center-based orbiting methods require the user to constantly adapt
the distance, as they may otherwise orbit through a wing or may need to move
closer to the side of the aircraft to be able to see sufficient detail. HoverCam
avoids this issue by maintaining a constant distance from the object [25].

During orbiting at a constant distance to the object surface with HoverCam,
the user only has to focus on movement along two directions (Figure 2), horizon-
tal and vertical. We map horizontal and vertical finger drag movements to the
corresponding orbiting motions for the virtual object. For simplicity, we typically
use the distance to the surface based on the outcome of the computer vision-
based tracking algorithm before the tracking was lost, i.e., the last valid distance
value. However, this requires that the tracking algorithm reliably reports when
it looses tracking, which is not always the case.

To address this issue, the user can simply adjust the distance to the virtual
object with the traditional two-finger pinch-to-zoom in gesture in our 2D AR
tablet system, which is mapped to moving the camera directly towards (and
away) from the object surface that the camera faces.

In essence, our implementation of the HoverCam method enables the user
to orbit at user-defined distances, while still maintaining a constant viewing
distance and avoiding collisions with the object. Given that there are only two
interaction methods (dragging and pinch-to-zoom), this greatly simplifies the
user interface for aligning the virtual object in the AR view.

4.2 SHOCam

While HoverCam generates overall a reasonable orbiting path around the object,
this method suffers from motion artifacts at corners and concavities of the virtual
object, which can reduce the quality of the visual experience (Figure 2).

Thus, we also implemented SHOCam [26], an improved version of the Hover-
Cam method, which still maintains all properties of the HoverCam method. Yet,
for rotation around corners or within concavities, SHOCam provides a smoother
result than HoverCam (Figure 2), which is more visually pleasing. Given that
SHOCam provides a smoother camera motion, this results in a better visual and
user experience during interaction compared to HoverCam. These features also
make SHOCam less error-prone.

4.3 Implementation Issues with HoverCam and SHOCam

Both HoverCam and SHOCam require distance computations for the virtual
model. We initially tried different physics libraries for Unity, including HAVOK,



When AR Anchoring Fails 7

(a) (b)

(c) (d)

Fig. 2. Results for an example scene results with the SHOCam and HoverCam algo-
rithms. In this scene, the distance between the user and the plane is fixed at 2 meters.
When the camera moves around the plane, the algorithm maintains this distance be-
tween the camera and the closest point of the virtual model.

which was too slow, the Unity Physics Package, which was not sufficiently stable,
and Unity’s Data-Oriented Technology Stack (DOTS) library, which exhibited
lag during the interaction. We settled on the the Unity Physics Library, as it
performed best overall. Yet, this library supports only convex meshes with up
to 255 triangles, far below the complexity of our virtual aircraft model.

The limitation of DOTS to convex meshes (such as the convex bounding
polyhedron for the wing shown in Figure 3-1), but not the true non-convex
3D model mesh (Figure 3-2), creates a position-recognition problem for both
HoverCam and SHOCam.

Both methods send a ray from the camera to the virtual object, and detect
the collision point with the convex mesh, but not the object itself (Figure 3-
3). This creates a bias in the virtual object position for the non-convex object
(Figure 3-4). This could lead to false positives, which increases frustration and
thus decrease the quality of the user experience.

To address this problem, the virtual aircraft’s 3D model could be split into
convex sub-objects, each with less than 255 triangles (Figure 3-5). This would
enable the user to follow the surface of the virtual object smoothly with Hover-
Cam or SHOCam. The necessary splitting could either be done manually, which
is laborious, our automatically. Yet, algorithms to compose complex meshes into
convex subparts have their own challenges, including the fact that they can gen-
erate (too) many subparts for non-convex curved portions of a model.This leads
to a more complicated model hierarchy in Unity, and makes the system more
error prone during the developing.



8 Batmaz and Stuerzlinger

Fig. 3. Issues with the polyon mesh that restrict implantation of HoverCam and
SHOCam in Unity. The 3D model of the plane wing is shown with orange lines and the
convex bounding collider with green lines. In location #1 the 3D model and convex
mesh collider both match. At #2, the mesh collider and virtual object occupy the same
position, but since the mesh collider is convex, the green line and orange mesh do not
match. In this case, HoverCam and SHOCam cannot compute the correct distance.
Another example is shown at #3, where a white sphere is over the green line, while it
supposed to be attached to the orange one. In location #4, it is possible to see a correct
distance calculation, i.e., the 3D model and mesh collider occupy the same position,
so that sphere is over both 3D model and mesh collider. As a proposed solution, a
cut through the model along the red line between #4 and #5 could be used to divide
the wing into two different virtual objects, both of which are (roughly) convex). This
would allow to create (approximately) convex mesh colliders so that algorithm is less
error prone. At show through this principle, modeling either only convex 3D objects or
subdividing them into smaller objects can reduce the errors in distance calculations.



When AR Anchoring Fails 9

Additionally, SHOCam and HoverCam’s accuracy has recently been chal-
lenged in studies that use these methods for Virtual and Augmented naviga-
tion [27]. Thus, and to increase the accuracy of our AR system, we decided to
implement another method based on signed distance fields.

4.4 Signed Distance Field

The limitation to convex meshes for our initial HoverCam and SHOCam imple-
mentations forced us to transition to an algorithm that is independent of Unity’s
technical limitations. Thus, we decided to adopt a method based on a Signed
Distance Field [28]. In Computer Graphics, a signed distance field specifies the
distance to the nearest surface at every point in space and often used to improve
the shading around a virtual object, as the impact of the light reflected from the
virtual object can be approximated based by the distance between the virtual
object and the space around it [29].

For this paper, we used a signed distance field to calculate distance values
and gradients around the virtual aircraft object, similar to the computation
in SHOCam Figure 3. In the bottom right of Figure 3, each line represents a
constant distance from the virtual object’s surface.

To integrate the signed distance field (Figure 4) into our system, we used
a Python script with the igl library [30] on a desktop computer, which pre-
computes the distance field and then communicates individual distance mea-
surements at the current viewpoint location over UDP to the software on the
tablet. We also tried the Fast Winding Numbers method, which uses a similar
approach but was designed to also support point clouds [31]. However, the Fast
Winding Number method was not as fast as we expected and the corresponding
lag reduced system responsiveness. Thus, we did not include this method in our
system.

On the positive side, compared to the original HoverCam and SHOCam meth-
ods, the signed distance field yielded more precise and accurate distance values,
especially in areas where the mesh is more complex, such as around the engine
Figure 5-a or small protrusions on the fuselage’s surface Figure 5-b.

Since this methods provides a more accurate value for the distance between
the tablet and the virtual object, it also allows the user to work more accu-
rately with the virtual model, i.e., make annotations on the virtual model that
correspond accurately to the damage to the real object. This improves the user
experience and also enables a better maintenance-related workflow.

5 Discussion

In this paper, we presented an AR system that improves the user experience in
situations where a computer vision-based anchoring/tracking algorithm fails. In
this situation, our user interface enables the user to quickly adjust the position of
the virtual model to match the real one. This is particularly relevant for scenarios
that involve the maintenance of large objects supported by AR systems [32]. We



10 Batmaz and Stuerzlinger

Fig. 4. Software architecture of the AR system for integrating a signed distance field.
Since we used a Python library on a desktop for the signed distance field computation
and lookup and Unity on the AR tablet to interact with the virtual objects, we used
UDP to communicate between two parts of the system. We send the current camera
position from the Unity application on the tablet to the Python code, the Python code
then retrieves the distance value for that position from the signed distance field, and
subsequently sends this result to the Unity application on the AR tablet.

(a) (b)

Fig. 5. Illustration of situations where the signed distance field yields more accurate
results. a) The cavity associated with the turbine of an aircraft engine (facing upwards
in the image) is highly non-convex. Methods based on convex geometry either “fill in”
this cavity or need to decompose the engine into hundreds of individual convex parts.
The signed distance field provides accurate results in this region. b) Similarly, a small
antenna attached to the fuselage is again a non-convex part. The signed distance field
again provides reliably distance values around such a small non-convex part of the
aircraft.



When AR Anchoring Fails 11

tested our approach with a virtual model of an airplane and showed that the
proposed methods are useful in a AR context.

Our most significant contribution is this paper was to apply a Computer
Graphics algorithm to compute a signed distance field to support an orbiting
technique within a 3D user interface on an AR tablet. Signed distance fields are
mostly used in real-time rendering [33] and computer vision [34]. We thus also
extend the utility of such algorithms to 3D user interfaces, where the results
improve the user experience and make the AR system overall more robust.

Moreover, in this paper, we re-implemented two different previously presented
algorithms for desktop systems, HoverCam and SHOCam, in Unity 3D and used
them in a AR tablet application, where the virtual objects are posed in 3D. The
SHOCam algorithm had been previously tested on a large displays and thus this
work also supports the use of such Computer Graphics algorithms to improve
the user experience during 3D interaction.

Finally, we applied the One-Euro filter, a method to decrease jitter and delays
in a interaction software, within our system. We used this algorithm to decrease
the jitter generated by the IMU of the AR tablet and stabilize the virtual object
position when the tablet is rotated.

Overall we created a mobile AR application that can be used on a AR
tablet to the improve user experience when the computer vision-based anchor-
ing/tracking algorithm fails. In such cases, our method enables the user to quickly
and simply fix the pose of the virtual model so they can continue using the AR
application, e.g., to annotate the virtual model to record some damage to the
real object.

6 Conclusion

In this paper, we implemented four different algorithms to improve the user ex-
perience in a AR tablet aircraft maintenance application, to better deal with
situations when a tracking algorithms fails to identify the correct camera and/or
object pose. We first suggest using the One-Euro filter to stabilize the virtual air-
craft’s pose vertically and horizontally when the tablet cannot acquire positional
data from the tracking method.

When no reliable tracking information is available, we also proposed to use
our implementation of the HoverCam and SHOCam methods, which allow the
user to directly control the virtual object’s pose through the surface of the tablet,
to limit the movements to orbiting the virtual model along two dimensions. We
also verified that SHOCam improves the visual experience during AR inspection
over HoverCam.

Finally, we used a signed distance field to compute more accurate distance
values and gradients even in the presence of non-convex or complex shapes, e.g.,
in areas with small protrusions on the plane’s fuselage. This made orbiting more
robust and addressed the restrictions of Unity’s distance calculation methods
through an external Python script.



12 Batmaz and Stuerzlinger

From our initial evaluations we find that our proposed methods reduce the
time needed for interaction with an AR tablet maintenance system when the
anchoring algorithm for large objects fails, which improves the user experience .

7 Future work

In the future, we are planning to merge our proposed solution with a real-world
aircraft AR tablet application and to tune the algorithms based on the real world
experience. For instance, the current One-Euro filter coefficients are tuned only
for stabilizing the virtual object, without considering the data from the DoF
restriction algorithm. A future improvement is to integrate both solutions better
by changing the corresponding One Euro Filter coefficients.

Moreover, we did not run a vision-based tracking algorithm on the tablet we
used in our work, which means that we did not account for any restrictions in
terms of computation due to the presence of the tracking algorithm. Depending
how a tracking algorithm performs, one may have to re-consider the chosen user
interface algorithm. For instance, even though the SHOcam method improves the
visual experience, using HoverCam could lead to better interactive performance
due to limitation in terms of computational power of the used tablet.

We also plan to implement our approach for AR headsets, such as Hololens
2, to make it easier to interact with a virtual object that needs to match a
real one within the context of the AR scenario. AR headsets would also allow
users to interact with the objects in mid-air, which would provide the interaction
with virtual objects in the third dimension, i.e., visual depth. In this case, we
will likely need additional interaction methods to also allow the corresponding
adjustments.

References

1. Alkhamisi, A.O., Arabia, S., Monowar, M.M., et al.: Rise of augmented reality:
Current and future application areas. International journal of internet and dis-
tributed systems 1(04), 25 (2013)

2. Wang, W., Lai, Q., Fu, H., Shen, J., Ling, H., Yang, R.: Salient object detection in
the deep learning era: An in-depth survey. IEEE Transactions on Pattern Analysis
and Machine Intelligence (2021)

3. Yu, Y., Guan, H., Li, D., Gu, T., Tang, E., Li, A.: Orientation guided anchoring
for geospatial object detection from remote sensing imagery. ISPRS Journal of
Photogrammetry and Remote Sensing 160, 67–82 (2020)

4. Dou, Z., Gao, K., Zhang, X., Wang, H., Wang, J.: Improving performance and
adaptivity of anchor-based detector using differentiable anchoring with efficient
target generation. IEEE Transactions on Image Processing 30, 712–724 (2020)

5. Park, M.W., Makhmalbaf, A., Brilakis, I.: Comparative study of vision tracking
methods for tracking of construction site resources. Automation in Construction
20(7), 905–915 (2011)

6. Chi, S., Caldas, C.H.: Automated object identification using optical video cameras
on construction sites. Computer-Aided Civil and Infrastructure Engineering 26(5),
368–380 (2011)



When AR Anchoring Fails 13

7. Bae, H., Golparvar-Fard, M., White, J.: Image-based localization and content au-
thoring in structure-from-motion point cloud models for real-time field reporting
applications. Journal of Computing in Civil Engineering 29(4), B4014,008 (2015)

8. Tomsett, R., Widdicombe, A., Xing, T., Chakraborty, S., Julier, S., Gurram, P.,
Rao, R., Srivastava, M.: Why the failure? how adversarial examples can provide
insights for interpretable machine learning. In: 2018 21st International Conference
on Information Fusion (FUSION), pp. 838–845. IEEE (2018)

9. Athalye, A., Engstrom, L., Ilyas, A., Kwok, K.: Synthesizing robust adversarial
examples. In: International conference on machine learning, pp. 284–293. PMLR
(2018)

10. O’Mahony, N., Campbell, S., Carvalho, A., Harapanahalli, S., Hernandez, G.V.,
Krpalkova, L., Riordan, D., Walsh, J.: Deep learning vs. traditional computer vi-
sion. In: Science and Information Conference, pp. 128–144. Springer (2019)

11. Brilakis, I., Park, M.W., Jog, G.: Automated vision tracking of project related
entities. Advanced Engineering Informatics 25(4), 713–724 (2011)

12. Li, Q., Mou, L., Liu, Q., Wang, Y., Zhu, X.X.: Hsf-net: Multiscale deep feature
embedding for ship detection in optical remote sensing imagery. IEEE Transactions
on Geoscience and Remote Sensing 56(12), 7147–7161 (2018)

13. Schwegmann, C.P., Kleynhans, W., Salmon, B.P.: Synthetic aperture radar ship
detection using haar-like features. IEEE Geoscience and Remote Sensing Letters
14(2), 154–158 (2016)

14. Palmarini, R., Erkoyuncu, J.A., Roy, R., Torabmostaedi, H.: A systematic review of
augmented reality applications in maintenance. Robotics and Computer-Integrated
Manufacturing 49, 215–228 (2018)

15. Eschen, H., Kötter, T., Rodeck, R., Harnisch, M., Schüppstuhl, T.: Augmented and
virtual reality for inspection and maintenance processes in the aviation industry.
Procedia manufacturing 19, 156–163 (2018)

16. Casiez, G., Roussel, N., Vogel, D.: 1€ filter: a simple speed-based low-pass filter
for noisy input in interactive systems. In: Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, pp. 2527–2530 (2012)

17. Teather, R.J., Pavlovych, A., Stuerzlinger, W., MacKenzie, I.S.: Effects of tracking
technology, latency, and spatial jitter on object movement. In: 3D User Interfaces,
2009. 3DUI 2009. IEEE Symposium on, pp. 43–50. IEEE (2009)

18. Batmaz, A.U., Stuerzlinger, W.: The effect of rotational jitter on 3d pointing tasks.
In: Extended Abstracts of the 2019 CHI Conference on Human Factors in Com-
puting Systems, CHI EA ’19, pp. LBW2112:1–LBW2112:6. ACM, New York, NY,
USA (2019). DOI 10.1145/3290607.3312752. URL http://doi.acm.org/10.1145/
3290607.3312752

19. Batmaz, A.U., Stuerzlinger, W.: Effects of 3D rotational jitter and selection meth-
ods on 3D pointing tasks. In: Workshop on Novel Input Devices and Interaction
Techniques (NIDIT) at (IEEE) (VR) 2019) (2019)

20. Batmaz, A.U., Rajabi Seraji, M., Kneifel, J., Stuerzlinger, W.: No jitter please:
Effects of rotational and positional jitter on 3d mid-air interaction. In: Future
Technologies Conference, FTC ’20, vol. AISC 1289 (2020). DOI https://doi.org/
10.1007/978-3-030-63089-8 52

21. Tumanov, A., Allison, R., Stuerzlinger, W.: Variability-aware latency amelioration
in distributed environments. In: Virtual Reality Conference, VR ’07, pp. 123–130
(2007). DOI https://doi.org/10.1109/VR.2007.352472

22. Mendes, D., Relvas, F., Ferreira, A., Jorge, J.: The benefits of dof separation in
mid-air 3d object manipulation. In: Proceedings of the 22nd ACM Conference on
Virtual Reality Software and Technology, pp. 261–268 (2016)

http://doi.acm.org/10.1145/3290607.3312752
http://doi.acm.org/10.1145/3290607.3312752


14 Batmaz and Stuerzlinger

23. Mendes, D., Sousa, M., Lorena, R., Ferreira, A., Jorge, J.: Using custom transfor-
mation axes for mid-air manipulation of 3d virtual objects. In: Proceedings of the
23rd ACM Symposium on Virtual Reality Software and Technology, p. 27. ACM
(2017)

24. Caputo, F.M., Emporio, M., Giachetti, A.: The smart pin: An effective tool for ob-
ject manipulation in immersive virtual reality environments. Computers & Graph-
ics 74, 225–233 (2018)

25. Khan, A., Komalo, B., Stam, J., Fitzmaurice, G., Kurtenbach, G.: Hovercam: in-
teractive 3d navigation for proximal object inspection. In: Proceedings of the 2005
symposium on Interactive 3D graphics and games, pp. 73–80 (2005)

26. Ortega, M., Stuerzlinger, W., Scheurich, D.: Shocam: a 3d orbiting algorithm. In:
Proceedings of the 28th Annual ACM Symposium on User Interface Software &
Technology, pp. 119–128 (2015)

27. Pai, Y.S., Chen, Z., Chan, L., Isogai, M., Kimata, H., Kunze, K.: Pinchmove: im-
proved accuracy of user mobility for near-field navigation in virtual environments.
In: Proceedings of the 20th international conference on human-computer interac-
tion with mobile devices and services, pp. 1–11 (2018)

28. Frisken, S.F., Perry, R.N., Rockwood, A.P., Jones, T.R.: Adaptively sampled dis-
tance fields: A general representation of shape for computer graphics. In: Pro-
ceedings of the 27th annual conference on Computer graphics and interactive tech-
niques, pp. 249–254 (2000)

29. Xu, H., Barbič, J.: Signed distance fields for polygon soup meshes. In: Graphics
Interface 2014, pp. 35–41. AK Peters/CRC Press (2020)

30. Jacobson, A., Panozzo, D., et al.: libigl: A simple C++ geometry processing library
(2018). Https://libigl.github.io/

31. Barill, G., Dickson, N.G., Schmidt, R., Levin, D.I., Jacobson, A.: Fast winding
numbers for soups and clouds. ACM Transactions on Graphics (TOG) 37(4), 1–12
(2018)

32. De Marchi, L., Ceruti, A., Testoni, N., Marzani, A., Liverani, A.: Use of augmented
reality in aircraft maintenance operations. In: Health Monitoring of Structural and
Biological Systems 2014, vol. 9064, p. 906412. International Society for Optics and
Photonics (2014)

33. Haines, E., Hoffman, N., et al.: Real-time rendering. CRC Press (2018)
34. Perera, S., Barnes, N., He, X., Izadi, S., Kohli, P., Glocker, B.: Motion segmenta-

tion of truncated signed distance function based volumetric surfaces. In: 2015
IEEE Winter Conference on Applications of Computer Vision, pp. 1046–1053.
IEEE (2015)


	When Anchoring Fails: Interactive Alignment of Large Virtual Objects in Occasionally Failing AR Systems

