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The Effects of Predictive Features of Mobile Keyboards on
Text Entry Speed and Errors
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Mobile users rely on typing assistant mechanisms such as prediction and autocorrect. Previous studies on
mobile keyboards showed decreased performance for heavy use of word prediction, which identifies a need for
more research to better understand the effectiveness of predictive features for different users. Our work aims
at such a better understanding of user interaction with autocorrections and the prediction panel while entering
text, in particular when these approaches fail. We present a crowd-sourced mobile text entry study with
170 participants. Our mobile web application simulates autocorrection and word prediction to capture user
behaviours around these features. We found that using word prediction saves an average of 3.43 characters per
phrase but also adds an average of two seconds compared to actually typing the word, resulting in a negative
effect on text entry speed. We also identified that the time to fix wrong autocorrections is on average 5.5
seconds but that autocorrection does not have a significant effect on typing speed.
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1 INTRODUCTION
Supported by the growth of text-based social media, texting is today considered a ubiquitous form
of communication. Many people prefer sending text messages over making phone calls. Further,
people communicate through tweets, Facebook posts, or many other electronic text-based channels.
Thus, text entry methods should support users in transcribing their thoughts in a fast and accurate
manner, especially in mobile devices.

Mobile users have strong opinions about which type of keyboard they prefer and their different,
idiosyncratic ways of using them. This includes, for example, the usage of automatic word prediction
and the response to autocorrection events. These opinions are often informed by their interaction
with mobile systems they have used in the past. To better understand the origins of these opinions,
this paper mainly focuses on an analysis of the behaviors people exhibit in mobile text entry with
respect to prediction and autocorrects and the associated costs in terms of time. Word prediction
could save up to 45% keystrokes in mobile keyboards [15], but this promise is rarely transferred to
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a corresponding increase in typing speed due to the need to fix wrong predictions or due to the
higher cognitive load for handling word completions [25, 41].
Several sources and dimensions of behavioral variability for typing on mobile devices have

been identified through lab studies, e.g., [50]. Recent research demonstrated the need for assessing
real-world variability [9, 37]. Knowing what users intended to write is impossible [14]. Thus,
previous studies of text entry “in the wild” [10, 18] ignored error rates, as calculating error rates for
uncontrolled text input is very challenging. Furthermore, privacy concerns limit the opportunities to
collect data from personal contexts [9]. To balance the need of measuring error rates with keyboard
familiarity, we implement a hybrid approach, where people type predefined, controlled phrases,
using their own mobile devices. To enable us to log detailed predictions and auto-corrections, their
correctness, and to address potential privacy concerns, we deliberately use predefined phrases and
our own predictive system.
This paper presents an online crowd-sourcing study on the cost of using the prediction panel

and autocorrection with diverse participants. We analyze metrics related to the timing of individual
keystrokes through detailed client-side logging in our system. After the discussion of related work,
we present our refined logging and tagging mechanism, and a main study (N = 170) to observe the
effect of predictive features on typing performance.

2 BACKGROUND AND RELATEDWORK
Recent studies in text entry examined the effect of keyboard layouts on typing behavior, e.g., [8, 24].
Such research typically collects data in the lab to evaluate the performance (speed, error rate) of a
new design. Some aspects of users’ behavior are hard to observe in lab studies, as they require a
fixed setting, including sometimes even a specific posture to hold the device. Lab studies also enforce
a uniform protocol, e.g., to reduce variations. Yet, there is growing desire in HCI to understand
users’ behavior and performance beyond the lab [22, 43]. Various methods, such as ethnography
and diary studies as well as experience sampling [16] and behavior sensing and recognition [11],
have facilitated the explanation of behaviors in natural settings [14]. However, such approaches
are not yet widely used to understand human performance and behaviors with text entry [14].
Currently, gathering typing data outside a traditional lab experiment relies on crowd-sourcing [27]
or custom mobile apps [18, 42].

2.1 Predictive Features
Error correction has been highlighted as a key challenge for text entry, as it contributes substantially
to slow down real-life text entry speed [6, 19]. Errors are costly in time and effort. They also affect
user perception of text entry system quality. Additionally, the visibility of suggestions can increase
both perception and interaction costs, which could reduce text entry speed, e.g., [21, 40], and in
some cases seems to even decrease writing accuracy [7].

The effectiveness of word prediction as a feature is unclear for mainstream mobile text entry [37],
considering also that switching the attention from the keyboard and the typed text to the prediction
panel can cause delays [51]. Many factors play a role in the effectiveness of the use of predictive
features [26], including the efficiency of text entry method and the experience of the user [37]. On
the one side, offering multiple choices for corrections can provide notable benefits, because it gives
users the flexibility to deal with a wide range of needs and situations and also helps users who
benefit from good modality choices [36]. In other cases, offering multiple choices for corrections
might lead to less favorable results with users who make overly quick or bad choices, who then
also prefer systems that offer limited interaction possibilities [21]. Still, predictive features can be
beneficial as an assistive technology, e.g, [3].
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Some systems provide phrase correction or completionwhile writing, e.g, VelociTap[55]. However,
phrase correction results in corrections far from the typing position, which the user might not
notice. A recent study introduces a new gaze-assisted positioning technique that allows users to
edit text far from the cursor position [47]. Other systems, such as the Smart-Restorable Backspace
[4] and WiseType [1], suggest text that was previously written or deleted by the user to help them
recover faster from mistakes. Finally, EEG-based systems have been proposed to help with wrong
predictions [38].

2.2 Text Entry Evaluation
Allowing participants to type whatever they want in user studies can confounds experimentation,
as there is a lack of control for performance measurements [32]. Assessing accuracy and errors is
then quite challenging since there is no source to compare the written text with [32] and users
might “game” the experiment by entering gibberish or short, easy words. The standard procedure
in lab-based text entry studies is to show participants predetermined phrases one at a time and ask
them to transcribe them [54]. These phrases should be retrieved randomly from a set and shown one
at a time [31]. Transcribing presented phrases is an appropriate protocol to ensure that participants
do not create phrases that break experimental control, invalidate error measurements, or decrease
reproducibility [32]. Some text entry studies even prevent the use of the mouse cursor or cursor
keys during entry, allowing backspace as the only technique for correction [57]. Restricting at least
some of the above factors enables accurate error rate calculation [48].
The drawback of using a transcription task is that in the real world, users rarely transcribe

text, but typically compose original text [54]. On the other hand, a composition task can be slow,
variable, and might not exhibit the same level of performance as a copy task. Further, the cognitive
overhead associated with creating compositions can increase variance between participants and
decrease the internal validity of an experiment [54].
Alternative approaches ask users to create phrases based on a prompt (composition task) or to

describe images (description task), e.g., [34, 54]. However, it is challenging to calculate writing
accuracy with such approaches, since there is no source to compare the written text with, i.e., no
reference for accuracy measurements.

Another way to conduct text entry experiments is through games with a text input component,
e.g., [44, 52]. Text Blaster [52] is a game platform for conducting both laboratory and crowd-sourced
text entry experiments. The competitive nature of games encourages users to enter text both quickly
and accurately [52]. However, this approach also results in a large amount of garbage data that
requires manual editing and human judgment [44].
An effective approach to measure performance is to ask users to copy presented phrases as

quickly and accurately as possible, e.g., [31, 59]. A previous “in the wild” study calculated text entry
speeds, in words per minute, by parsing out portions of data input streams [14].

The most common approaches to calculate errors involve using a transcription task [31], where
the target is well-defined, or uses the judgment of crowd workers [54]. Researchers usually calculate
uncorrected error rates based on the truly intended text [48, 57]. Uncorrected errors are errors
that remain in the final transcribed string. The other type is corrected errors, which are any
errors that are fixed during entry. Error correction takes time and is therefore subsumed in the
words-per-minute (WPM) metric [57].

3 MOTIVATION
Recent research analyzed text entry with a large sample of participants on mobile or desktop
keyboards, e.g., [12, 37]. These approaches use an online web-based system but are unable to analyze
word prediction. Supported by fine-grained client-side logging, our system enables the analysis
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of word prediction and auto-correction events, including when predictions or auto-corrections
appeared, what they were, and how long it took users to select candidate words. In other words,
with our approach we can detect when a word appeared in the prediction panel and how long it
took until the user tapped on it. Or how much later a user tapped on a word to edit it. This enabled
us to analyze participants’ interaction with system failures more accurately. We asked participants
to use their own keyboard, because we wanted to avoid the overhead of them having to learn a
(potentially) new layout.

Our goal of analyzing word prediction and autocorrect in more detail was also motivated by
previous work [9] that identified that most (27 of 30) people use word predictions and more than
half (16 of 30) use autocorrection, which means that these mechanisms are frequently used. Previous
studies on mobile keyboards also identified decreased performance for heavy use of word prediction
[37, 41]. A recent study [37] identified the need for more detailed analyses to better understand
the effectiveness of predictive features for different users. The potential time-cost of prediction
and autocorrect motivates us to analyze user interaction with autocorrection and the prediction
panel during text entry in more detail, in particular when these approaches fail. We formulated
the following research question to drive our work in this paper: Are human behaviours around
autocorrection and word prediction with a mobile keyboard objectively beneficial, especially when
these algorithms fail?

4 APPARATUS
Our system for data collection is a web application. We implemented the system using HTML, CSS,
JavaScript, and PHP. We used an Ubuntu instance and an Apache server on Amazon EC2 to host our
web application. The application provides a custom autocorrection method and prediction panel,
both of which work independent of the one provided by the operating system or personal keyboard
of the user. The system presents prompts with text for the user to enter and logs all occurring
events at the keystroke level. Due to data logging restrictions, we permitted only Android clients
in the study. We did not require users to install an application.

4.1 Instructions
At the beginning, participants needed to agree that they had read the initial instructions and to also
give their consent for data collection. These initial instructions asked participants to temporarily
disable the predictive features on their Android devices. Once participants agreed to participate,
they were instructed on the procedure and then started the text entry tasks. The main part of the
experiment showed only a single line of instruction, a presented phrase, and a textbox to input that
phrase, our custom prediction bar, as well as the normal keyboard used for text entry, see Figure 1.
Users needed to tap on the “Next” button to move to the next phrase, where they then also saw an
up-to-date average of their speed and error rate.
We used transcription typing to measure participants’ typing speed, as this approach enables

us to study motor performance while excluding cognitive aspects related to the process of text
generation [37].

4.2 Custom Prediction Panel and Autocorrection
To ensure that we could correctly log every action, we forced users to disable their own predictive
system, including their prediction panel and autocorrection. Once a users’ keyboard pops up, our
web-based system adds a custom prediction panel seamlessly above their normal keyboard, modeled
to closely resemble the original Android panel. Our prediction panel thus looks like it is part of
the users’ keyboard, i.e., seems to be a built-in feature. Similar to most other prediction panels,
our prediction panel shows three candidate predictions: the originally inputted text on the left,
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the most probable prediction in the center (highlighted with an underline), and the second most
probable one on the right. As with other systems, users can choose the middle candidate word
by pressing the space key or can tap on any other candidate word in the panel to enter it (see
Figure 1). We had to use a custom prediction algorithm, as we would otherwise need access to
the internals of the word prediction, which current APIs do not provide, and because web-based
services for prediction exhibited a latency too high to be viable for word-level predictions. Our
prediction algorithm is based on string matching with Levenshtein distance [28, 45]. We used a
dictionary with the 40,000 most frequent words from project Gutenberg1. We classify a word as
being misspelled and trigger auto-correction when the Levenshtein distance [28] between the
inputted and the candidate word is less than three edits, i.e., insertions, deletions, or substitutions.
In this case we replace the misspelled word with the (most likely) correct one.

Our Autocorrect and prediction methods match the behaviour of slightly older Android versions,
who offer less-refined methods compared to the most recent version. This is not a major concern,
as most people around the world still use older versions of Android, e.g., [33].

We verified that our prediction algorithm matches commercial systems reasonably well in term
of prediction performance, layout, and position. For this, we randomly chose phrases and compared
the output of our system with that of an Android 9 keyboard. We found that the intended word
appeared in the prediction panel 94% of the time, while the other two predictions matched what
the Android keyboard suggested in 85% of all cases. Our code will be made available in the future
for open access.2

4.3 Data Logging
We suppress the local system’s auto-correction and prediction functionality by making the text
entry field a password field, where we then display the inputted text. We monitor this field for
changes and detect each change through comparisons with the string in the field in the previous
iteration. To detect situations when a user has not turned off their predictive or autocorrection
system, we created our own heuristics scheme that compares the state of the input field before and
after each keystroke. Depending on the timing of the last few characters, the length of the recently
entered text, and the Levenshtein edit distance, we detect the presence of machine-generated text
input and show a warning message to the user that they need to disable their predictive features. A
similar approach was used by Palin et al. [37] to log predictive features on the web. While we were
able to register autocorrection and word prediction events with millisecond accuracy, we match
the delay for individual keystrokes observed in previous work [37].
We record each text change or touch event, which roughly corresponds to the keystroke level,

with a corresponding timestamp. For each phrase, we record the following data: device orientation
(portrait/landscape), presented text, typed text, the complete input stream, keystrokes per character,
words per minute, and total time per phrase. Also, we log all word predictions that appeared (on
a character-by-character-level), as well as all picked word predictions, autocorrections, cursor
movements, and error messages that were triggered during text entry. This comprehensive logging
enables us to fully replay the input of each phrase and analyze participant behaviors in the context
of the current phrase.

4.4 Phrase Set
We used 30 phrases randomly selected from the Enron MobileEmail phrase set [53]. We removed
any non-alphabetic characters, including punctuation, and made sure that the selected phrases

1https://en.wiktionary.org/wiki/Wiktionary:Frequency_lists
2https://github.com/Ohoudalharbi/custom_prediction_panel
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Fig. 1. The webpage that participants saw during the experiment with our custom prediction panel.

contained at least three words. The phrases in the set (774 sentences) were generally short to
medium length, average 6.1 words (SD 1.68, ranging from 3 to 12), and contained on average 29.9
characters (SD 10.13, ranging from 14 to 67). The set has diverse sentences with a relatively low
Out-Of-Vocabulary (OOV) rate of 1.4% with respect to the most frequent 64,000 words in the Wall
Street Journal (WSJ0) corpus [53].

4.5 Task Restrictions Based on Pilots
We ran 6 pilots (lab and crowd-sourced) with a total of 112 participants. Based on observations from
these pilots, we iteratively adjusted our system and instructions to account for several potentially
problematic behaviors, such as the use of system-based prediction and autocorrection mechanisms
mentioned above. We iteratively refined our word prediction algorithm as well as the tagging,
detection, and warning mechanisms to ensure that our recorded data is as clean as possible. For
example, we disabled the copy and paste feature for the field to prevent direct copying of phrases.
To prevent blatant disregard of the instructions, we prevent participants from skipping phrases or
sloppy writing by triggering a warning for higher than 50% average error rate.
The results of a lab pilot confirmed that the system logs all the events correctly, i.e., exactly

as they appeared to participants. No noticeable delays in the appearance of word predictions or
autocorrection during text entry were apparent or noticed. All editing episodes were recorded and
the system also logged the time for correcting mistakes through backspace and cursor movements.
The custom prediction panel integrated visually into the participants’ keyboard regardless of their
own keyboard outline. Our mechanism for disabling predictive features correctly worked well and

Proceedings of the ACM on Human-Computer Interaction, Vol. 4, No. ISS, Article 183. Publication date: November 2020.



The Effects of Predictive Features of Mobile Keyboards on Text Entry Speed and Errors 183:7

Table 1. Demographic Data

Factor Result
Gender Male → 56%; Female → 42%, Others→ 2%

Handedness Right → 93%; Left → 6%; Ambidextrous → 1%
Countries India → 47%; USA→ 37%; UK→ 9%; Others → 7%
Typing Both hands→ 70%; Right hand→ 26%; Left hand→ 4%
Age [25-34] → 54%; [18-24]→ 22%; [35-44]→ 23%; [45-54]→ 1%

even “caught” several participants who started typing without manually disabling these features
in their settings. At least three participants said during the study that “the prediction here works
better than on my phone,”, likely because they were using an older phone. In this pilot, 44% of our
participants used Android version 9, 23% version 8 and the remaining 33% version 7 or below.
For the last pilot study where all features were enabled, we recruited 89 participants through

Amazon Mechanical Turk (MTurk). Relative to what we observed in the previous pilots, some
participants adjusted their behaviors and the rate of incorrect submissions, i.e., where undesirable
behaviours were observed, dropped to 22%, which corresponds to 19 participants.

5 EXPERIMENT
We used our web-based system to run the main, crowd-sourced study to analyze keyboard usage
and user behaviors with autocorrection and prediction. We recruited 170 participants via Amazon
Mechanical Turk (MTurk). Their task was to copy 30 phrases randomly chosen from our phrase set.
Participants also answered short demographic questions before the main task. The average time
to complete the experiment was 9 min (SD 33 sec). We paid $1 for each Human Intelligence Task
(HIT).

5.1 Restrictions on Participation
To increase the validity of the data, we used several strategies. Following advice from previous
work, we recruited people with higher than 95% approved HITs [20]. To reduce the chances that
our task had been completed by bots, we used reCAPTCHAs.
Each participant received a unique code based also on the time stamp when they started the

experiment, which was only shown to the user after completing the task. We then paid all par-
ticipants who provided us with a correct code and who had followed the instructions, i.e., who
had turned off their own autocorrection and prediction system (and thus had not triggered the
corresponding error message).

5.2 Results
We removed all incomplete, inaccurate, or corrupted data. Here, we also excluded data from
participants who experienced technical problems, e.g., caused by an unreliable internet connection,
or cases where participants got distracted during a sentence, i.e., phrases where we observed pauses
that resulted in an unusually low typing speed, lower than 10 WPM within a phrase.

5.2.1 Demographic. We initially recruited 170 participants. After removing participants with
incorrect codes and those who did not follow the instructions, data for 150 participants remained
for analysis. Table 1 summarizes the demographic background of these participants. According to
our logs, 8% of our participants used Android version 10, 46% used version 9, 31% used version 8,
and the remaining 15% version 7 or below.
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Fig. 2. Distribution of English proficiency.

After they completed our study, we asked participants about their text entry behavior during the
task. A majority, 60%, indicated that they typed as fast as possible (which might have compromised
their accuracy), while the remaining 40% reported that they were as careful as possible (which
might have compromised their speed).

We asked how often they used letters from the Latin alphabet, e.g., the modern English alphabet,
in their mobile communication, and provided a corresponding image for additional clarification.
28% reported using it constantly during the day (at least once every 10 minutes), 23% more than
once an hour, 24% more than once per day, 17% a few times per week, and 8% rarely (less than once
a week).
Even though our task does not require high English proficiency, we asked participants to rate

their English proficiency on a scale: no knowledge, basic communication skills, good knowledge,
very good knowledge, excellent knowledge/highly proficient, near native/fluent, and native speaker.
Figure 2 shows the distribution of the reported English proficiency. For objective analysis, we
created an English grammar quiz using test questions from http://iteslj.org, by selecting six question:
two easy, two medium, and two hard for our quiz. We then defined the “overall success rate” as
the percentage of correct answers that participants achieved in that quiz. Results show that the
overall success rate for the English proficiency quiz was 80.5% (SD=23.4), which corresponds to a
reasonably high English proficiency.

5.2.2 Dataset Overview. Overall, through our monitoring of text field content changes, we logged
207,962 actions for all 150 participants, as well as 1,238 autocorrection events generated by our
implementation, for a total of 209,200 events. Of these, 2,956 (1%) were user interactions with our
custom prediction panel, 769 (.4%) cursor movements, and 13,870 (7%) backspaces.
Overall, participants inputted 4,500 phrases, of which 99% were inputted in portrait mode. The

average number of input actions per word was 5.35 (SD=1.32), including picks from the prediction
panel. The average number of backspaces per word was .34 (SD=.54). The average number of
keystrokes per character (KSPC) was 1.14 (SD=0.23).

5.2.3 Typing Speed and Accuracy. We measured typing speed through the words per minute
(WPM) metric and accuracy through the error rate (ER) of the submitted text. ER was computed
through the minimum string distance error rate (MSD ER) [5]. The average speed of participants was
32.96 WPM (SD=13.37). The average MSD error rate across the whole dataset was 1.02% (SD=.48).
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(a) (b)

Fig. 3. Regression analysis of a) WPM, and b) ER, across the throughput.

We also measured the verification time, i.e., the time spent to review the phrase, to be 1.25 seconds
(SD=1.71) per phrase, measured from the last keystroke until the participant progressed to the next
phrase [1, 4].

Recently, a throughput measure for text entry had been introduced, which was designed to reflect
the efficiency of a text entry method [61]. It is defined as the amount of information transferred via
a text entry method per unit time. We calculated the throughput using Zhang et al.’s method3 [61].
The average throughput across the whole dataset was 10.1 bits/second (SD=3.45) per phrase. Then
we performed a regression analysis and found a strong correlation between throughput and WPM
(r=0.94), but no correlation with error rate (r=.024), see Figure 3.

5.2.4 Prediction Panel Use. The target word appeared 94% (SD=12) of the time in the prediction
panel. The total amount of words picked from the prediction panel was 2,956. Users entered on
average 2.48 (SD=6.06) characters of a word before a prediction pick event. The average number of
words per phrase picked from the prediction panel was 0.66 (SD=1.69). The participants picked the
word in the center of prediction panel (the most probable one) 63% of the time, the word on the
right (the second most probable one) in 23% of all cases, and the left one (the third most probable
one or the originally inputted word) 14% of the time (Figure 1). In total, the number of predicted
characters was 15,382, i.e., participants saved an average of 3.43 (SD=8.01) characters per phrase by
using the prediction. The average time participants spent between the last keystroke and picking a
word from the prediction panel was .97 seconds (SD=1.06). The overall average time to type a word
was 4.98 (SD=2.10) seconds, but the average time spent for words picked from the prediction panel
was longer, 7.07 seconds (SD=2.36), for a difference of 2.09 seconds (SD=1.87). Participants used
the prediction mostly for slightly longer words, as the average length of predicted words was 7
characters (SD=2.34). To examine word complexity objectively, we used the “count words worth”
website 4 and found that the complexity of words picked from the prediction panel was average in
terms of syllables and readability. The average number of syllables for the predicted words was
1.75 (SD=.76), which matches the average for all English words. According to the Flesch–Kincaid

3https://github.com/DrustZ/Throughputrepository
4https://countwordsworth.com
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method [46] the readability of the words was 81.85, which corresponds to easy-to-read words for
conversational English use.

5.2.5 Autocorrection. Overall, we recorded 1,238 occurrences of autocorrection. The average
number of autocorrections per phrase was .28 (SD=.62), which corresponds to 3% (SD=.07) of
the words in the transcribed text. The most frequent mistake that autocorrect addressed were
misspellings of the word “you”. Participants usually typed it missing one letter (“yo”, “yu”) or using
incorrect characters like “ypu”. The second most frequently corrected word was “the”, where users
often typed “tge” or “tye”, most likely due to finger touches on an adjacent letter. Examples of other
frequent mistakes are “calander, probleme, shoud, hav”. Of all autocorrections, 93% (M=.26, SD=.56)
were successful, but 7% (M=.02, SD=.21) were wrong. For wrong autocorrections, the string distance
between the autocorrected and presented word was on average 1.85 characters (SD=1.55) but the
average distance between the typed and presented word was only 1.54 characters (SD=1.53).

5.2.6 Cost of Error Correction. The average number of words with writing mistakes during
typing was .82 (SD=1.63) per phrase, however the average number of words with mistakes after
submitting the phrase was only .30 (SD=.92) per phrase. This means that most of the time users
went back and fixed their mistakes. In the following, we define the correction time to be the time
difference between when the user starting an editing episode, using either backspace or a cursor
movement, until the time user entered new text.
Less than half, 42%, of the inputted phrases had one or more error correction events. Among

these phrases, the average time participants took to correct their errors per phrase (excluding
autocorrections or word predictions) was 2.72 (SD=2.09) seconds.

The average time to edit a wrong autocorrection was 5.50 (SD=6.36) seconds. For wrong autocor-
rections, the presented word is typically closer to the original word that participants typed in 52% of
the instances. The remaining instances are either closer to the wrong autocorrection, in 21% of cases,
or equally close to both 27%. Most of these cases concerned names, of people or companies, such as
Socal, Dowd, Diane, Whitt, Lara, Gallup, Omaha, Stan, and Doyle. In addition, participants entered
unrecognized words due to spelling or typing mistakes, such as “sholid”, which was autocorrected
to “solid”. Yet, the target sentence contained the word “should”. The misprediction was sometimes
due to the prediction adding additional characters, for example “ma” being autocorrected to “man”.
Yet, in this case the correct word was supposed to be “am”. In 36% of these instances, users did not
notice the changes in the text or did not care to fix the wrong autocorrection. Yet, in 30% of the
cases, they noticed the issue immediately and corrected it through an undo of the autocorrection
(through backspacing on the autocorrected word). An additional 8% of errors were corrected by
moving the cursor during the (final) verification time and 4% directly after autocorrection by adding
or editing one letter. 12% were corrected through using backspace after entering one more word,
8% immediately after the autocorrection occurred, and only 2% through backspaces after typing
more than one word.
In 48 instances, participants picked a word from the prediction panel and then went back to

change or add to this word. The average time participants took to edit a word previously chosen
from the prediction panel, 8.03 (SD=12.45) seconds, was long and varied a lot. In (only) four of
these instances participants adjusted the word-ending of a “close enough” prediction, which took
on average only .69 seconds (SD=.27).

We compared phraseswith error correction events and thosewithout them through an independent-
samples t-test. We found the error correction events significantly decreased speed, t(4488)=24.38,
p<.0005, with an absolute difference of 2.49 seconds.

Similarly, we compared phrases with andwithout word prediction events through an independent-
samples t-test. We found that the use of word prediction significantly decreased the text entry
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(a) (b)

Fig. 4. Comparison of text input speed for phrases with and without a) word prediction and b) autocorrection
events.

speed, t(4488)=13.99, p<.0005, see Figure 4. This indicates that word prediction slows down text
entry.
We also separated phrases with and without autocorrections events and conducted again an

independent-samples t-test. We found that autocorrection did not have a statistically significant
effect on text entry speed, t(4488)=5.15, p=.61, see Figure 4.

6 DISCUSSION
Recently, several mobile typing studies had been conducted outside the lab to observe more realistic
user behaviors, e.g., [9, 37]. Similarly, we also employed an online crowd-sourcing approach to
reach a larger group of more diverse participants. We used a transcription typing to objectively
measure participants’ typing speed and error rate without introducing the overhead associated
with creating compositions [54].

To assess the correctness of predictions and auto-corrections we used a combination of our
own predictive system and a controlled transcription task. We also chose this approach due to
potential privacy concerns, as using participants’ own predictions might reveal personal details.
Yet, as mentioned above, our word prediction feature matched the one in Android 9 fairly closely.
The target word appeared 94% (SD=12) of the time in the prediction panel (see section 4.2).

One of the main outcomes of our work is that we identified that choosing words from the
prediction panel can compromise text entry speed and too frequent use of the prediction panel can
decrease text entry speed. Our results show that typing a word is faster than picking that word
from prediction panel, with a difference of an average of 2.09 seconds per word. Based on our data,
participants took on average of .97 seconds before choosing a word from the prediction panel,
which includes the (non-negligible) overhead of switching attention, as explored in previous work,
e.g., [13, 51]. A potential reason behind this relatively long time is that users need to read the three
entries within the prediction panel to make a choice which one to select, and then carry out that
selection.
Almost two-thirds of the time (63%) users chose the most probable word in the center of the

prediction panel (Figure 1). That fact could motivate new interactions around the most probable
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choice that makes this word stand out more and/or further decreases finger travel time between
the keys and the prediction panel, e.g., [39]. The costs associated with using autocorrection and
word prediction mechanisms could also justify research to re-imagine text entry interfaces more
radically, e.g., by leveraging information beyond the keystrokes, such as pressure [56] or gestures
[2], allowing new forms of interactions with the entered text [60], or by moving completely away
from keyboard-centric input, e.g., by using (vocal or silent) speech, handwriting, or airwriting.
Our 1,238 recorded autocorrections correspond to .6% of all events (see section 5.2.2), which

matches the .7% reported by Buschek et al. [9] in their “in the wild” study reasonably well. Our
results also identify that about half the time functionality to undo an autocorrection is beneficial
when the autocorrection method failed, since about 52% of the time the entered word is closer
to the presented/target word. These words became unrecognizable to the autocorrection method
due to a combination of instances where the user typed an adjacent key and also made spelling
mistakes. The rest of the time the distance is either equal or closer to the autocorrected word.

In terms of average typing speeds, our result (32.96WPM) matches comparable work, both “in the
wild”, e.g., 32.1 WPM [9], and controlled lab studies, e.g., 31.1 WPM [17]. A recent study reported
a somewhat higher speed of 36.17 WPM [37], which might be understandable since this study
used a speed-test game. To our knowledge, we are the first large-scale study to use the new text
entry throughput metric [61]. We performed a regression analysis and found a strong correlation
between the new throughput metric and WPM (r=0.94) but not with error rate (r=.024), see Figure
3. In contrast to what the work that introduced text entry throughput claims [61], this metric
failed to adequately account for varying error rates. That makes us believe that the throughput
metric calculation based on approximations [61], which we used, is not yet method-independent.
That means that for each application or keyboard layout, one would need to calculate the exact
probability for each error instance to get the full benefit of this throughput measure.
To get externally valid insights from the study, we chose crowd-sourcing to examine the effect

within a larger population. Since our participants were representative of a reasonably wide range
of English proficiency, demographics, geographic distribution, and typing behaviors (in terms of
speed/accuracy emphasis), the results of our crowd-sourced study can thus potentially generalize
to an even larger audience. Our typing task setting imposes a more controlled environment relative
to “in the wild” studies. We asked participants to use their own keyboard because we wanted to
avoid the overhead associated with learning a potentially new layout. Most of our participants from
around the world had good English-language knowledge. Due to regional linguistic diversity, many
countries, e.g., India, use English for communication, both internationally and domestically. We
verified this objectively through the English test and subjectively with the self-reports. More than a
third of our population indicated that they are native speakers. Previous studies, e.g, [37], targeted
experienced participants, mostly from the USA, which does not necessarily correspond well to a
larger population. Due to globalization, many non-native English speakers still communicate in
English. Thus, results for native speakers may not be representative of the majority of global users.

East Asian languages such as Chinese and Japanese use ideograms in writing. In such languages
every morpheme (the smallest unit carrying meaning) corresponds to a distinct character, thus
the number of characters in the language is large. In both Chinese and Japanese, the standard
character set includes more than 6,000 characters [49]. When computers were introduced, the
greatest challenge for users of these languages was how to enter such a large number of characters
- with keyboards designed for European languages[30]. Most Chinese or Japanese users enter text
using predictive methods [49]. The prediction systems for East Asian languages rely either on a
phonetically- or a shape-based approach [29, 35]. Users enter a sequence of phonograms or Latin
alphabetic transcriptions, then the system sorts the candidates in a relevant order, and displays
them for the user, who chooses their preferred target among the candidates. Compared to English,
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such text entry methods use fundamentally different methods to process the language and generate
predictions. Thus, we believe that our results are not directly generalizable to such languages.
Current touchscreen keyboards depend on language models and dictionaries to provide word

predictions, to correct touch-location errors, to autocomplete words, and to predict what the user
will type next [15]. A language model can be word-based, sentence-based, or both. It can adapt to
the user by utilizing the users’ writing history. Adaptive models are able to better reflect a user’s
usage of language. The best prediction methods are the ones that combine both word-based and
sentence-based prediction and the ones that utilize the users’ written history [23, 58]. That said,
because these innovations are only available with the newest operating system version(s), most
text input systems that are used today on a daily basis around the world use simpler word-based
prediction and autocorrection methods.

Thus, a limitation of our study is that the latest mobile devices offer more advanced algorithms
relative to what we used in this experiment. However, our international participant pool exhibited
a mixture of Android versions. Thus, participants were, on average, using an older version of
Android’s autocorrect and prediction methods, which do not support the features that are reported
in the most recent text entry literature. As mentioned above, the system we used here matches
the behaviour of a slightly out-of-date Android device quite well. We re-emphasize here that the
main focus of our study was to identify user behaviors around autocorrect and prediction errors,
regardless of the specifics of the predictive algorithm. Still, in our pilot studies, where we asked
participants directly about this, all participants replied that they had not noticed differences with
the prediction and autocorrect methods that they were familiar with. Another potential limitation
of our work is that our data collection system is web-based, which might have delayed some system
responses slightly, e.g., when skipping to the next phrase and logging the episode string into the
corresponding log file. Yet, according to our observations this did not introduce any noticeable
effects.

7 CONCLUSION
We investigated behaviors that people exhibit around predictions and autocorrections in text entry.
We collected a comprehensive dataset using a novel data collection system that observes user
behaviors through a crowd-sourcing platform. While our results identify that autocorrection does
not have an effect on text entry speed, we found that choosing words from the prediction panel can
compromise text entry speed and too frequent use of the prediction panel can even decrease text
entry speed. Participants paused on average about one second before choosing a word from the
prediction panel, which is likely due to the overhead of an attention switch. Our results also identify
that functionality to undo autocorrection, i.e., to revert back to the original input, is beneficial
in about half of all wrong autocorrect episodes, since users entered unrecognizable words, often
through tapping on adjacent keys in combination with spelling mistakes.

7.1 Future Work
In future studies we are considering to investigate user behaviors with autocorrection and predictive
systems using a sentence-based approach and to cover other languages besides English. We are
also planning to investigate new interaction methods for the most probable word to minimize the
overhead for switching attention.
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