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Abstract

Telepresence robots allow users to be spatially and socially present in remote
environments. Yet, it can be challenging to remotely operate telepresence robots,
especially in dense environments such as academic conferences or workplaces. In this
paper, we primarily focus on the effect that a speed control method, which
automatically slows the telepresence robot down when getting closer to obstacles, has
on user behaviors. In our first user study, participants drove the robot through a static
obstacle course with narrow sections. Results indicate that the automatic speed control
method significantly decreases the number of collisions. For the second study we
designed a more naturalistic, conference-like experimental environment with tasks that
require social interaction, and collected subjective responses from the participants when
they were asked to navigate through the environment. While about half of the
participants preferred automatic speed control because it allowed for smoother and safer
navigation, others did not want to be influenced by an automatic mechanism. Overall,
the results suggest that automatic speed control simplifies the user interface for
telepresence robots in static dense environments, but should be considered as optionally
available, especially in situations involving social interactions.

Introduction 1

Telepresence robots (TRs) are designed to allow a remote user to have a mobile 2

presence in a remote physical space. They consist of a video conferencing display and 3

series of cameras that are attached to a robotic ’body’ of some form with wheels to 4

support moving and remote driving. TRs have been used and tested in various 5

scenarios, including, but not limited to, working in remote office settings [1–5], 6

schooling for home-bound children [6, 7] and shopping [8]. All of these studies have 7

shown that TRs can increase social presence in remote environments [5, 8, 9]. However, 8

using a TR in a remote environment is not always easy. Navigation challenges can arise 9

due to the limited field of view of the TR’s camera [1], the limited resolution of the 10

camera images [1], the need to avoid both obstacles and people [2], and potentially 11

non-intuitive input methods for controlling the robot [8]. Many of these problems may 12

result in a limited situational awareness of the user. Yet, such awareness is normally 13
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required to effectively navigate around. As a result of these challenges, researchers have 14

called for additional control mechanisms or forms of feedback to aid TR drivers, such as 15

wider fields of view [10,11] and additional cameras [1]. 16

Inspired by work in Virtual Reality navigation, e.g., [12, 13], and in the automotive 17

sector, e.g., [14,15], we implemented a speed control (SC) method that uses sensory data 18

from ultrasonic range finders to automatically slow down the TR as it gets closer to 19

potential obstacles it might otherwise bump into, typically because the remote user 20

misjudged the speed and/or distance. Thus, the potential need for a support system, 21

such as SC, i.e., functionality that controls how fast the robot moves forward, is higher 22

when the user has to drive through a dense environment with narrow passages, such as 23

office environments with narrow corridors, a gathering of many people in a conference 24

hall, or other forms of social gatherings, where TR users interact with other people. 25

Previous work on speed control in industrial robotics had been reported in the 26

literature [16–18]. Recently, SC methods have been introduced to tele-robotics systems. 27

However, to our knowledge, the use of distance-based speed control algorithms has not 28

been studied for TRs in dense environments nor with tasks in a conference-like 29

environment. This motivated us to evaluate distance-based SC in such environments 30

and assess the change in navigation behaviours of users. 31

Our work builds on perceptual load theory: humans have limited attentional 32

resources, and as users driving TRs often exhibit higher cognitive load [17], we assume 33

that using an automatic SC algorithm for a TR could help people to free attention and 34

reduce cognitive load. This would reduce collisions and improve navigation behaviours, 35

spatial awareness, and presence. Hence, instead of taking over navigation, the system is 36

designed to support user interaction. We do so by adding a simple distance-based SC 37

algorithm to the TR platform, the (original) Beam+ by Suitable Technologies. 38

Based on this hardware platform, we present two major contributions. Our first 39

contribution is the evaluation of user navigation behaviours with a TR with 40

distance-based SC in dense environments. We evaluated these behaviours in our first 41

user study and showed that distance-based SC can improve navigation behaviour in 42

terms of reducing the number of collisions while not increasing task execution time. Our 43

second contribution concerns social interaction with SC assistance: TRs are designed to 44

enable social interaction with remote people. Thus, we designed a second study where 45

participants had to not only navigate in a dense environment but also socially interact 46

with people. While SC slightly reduced task completion time and number of collisions 47

here, participant preferences on the SC changed when they interacted socially. 48

These results suggest that SC algorithms may not improve TR navigation behaviour 49

in every case, especially in a social environment. Overall, our results show that SC 50

significantly improves TR navigation behaviours through a reduction in the number of 51

collisions in static dense environments, but not necessarily when interacting with people. 52

These findings suggest that methods for automatically adjusting TR speed based on 53

proximity to objects are promising, however, design work needs to carefully consider 54

that activation of SC should still be controlled by the user. 55

1 Previous work 56

The design and usage of TRs has been widely studied. Researchers have found that TRs 57

provide stronger feelings of presence in a variety of remote environments (e.g., 58

conferences, schools, hospitals) when compared to using video conferencing systems, due 59

to one’s ability to move around and have a physical body in the remote space [1, 2, 5–7]. 60

As a result, TRs have been shown to enhance relationships, including connections 61

between co-workers [5], school friends [6], and long-distance romantic partners [8, 19]. 62

They can support casual interactions and informal awareness in work environments 63
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because it is easy to notice a person’s whereabouts when they have a TR 64

embodiment [5]. In home settings, they can allow distance-separated family members to 65

share activities together [8]. Sometimes the ability to ’bump into’ objects has been 66

shown to be beneficial and a means to enhance one’s feeling of remote presence (such as 67

in a home environment) [8]; however, in many situations it can be highly problematic 68

and socially awkward to run into objects or people using a TR, such as in an academic 69

conference or work setting [1]. 70

Despite the benefits, TRs are subject to operational challenges, as robots are often 71

shared asynchronously amongst users in work and conference settings; thus, no one 72

individual owns the “embodiment” (the look and sound, e.g., [5, 20,21]) and remote 73

users are unable to customize the robot’s appearance unless physical items are attached 74

by a user who is local to the robot [22]. Privacy issues sometimes arise for TR users 75

because they must appropriate themselves for two different environments 76

simultaneously: their own local environment as well as the remote one [1, 22]. The 77

spatial relationship between the robot and the environment can also be difficult to 78

understand [1, 22]. This can be especially difficult when remotely operating TRs in 79

unknown spaces [1]. Next to the unknown spatial layout and one’s own position and 80

(spatial) orientation (as represented through the TR), the dynamic nature of an 81

environment can make navigating TRs even more challenging. For example, both the 82

movement of objects and their density in the environment, e.g., spaces crowded with 83

people, can make navigation difficult [2]. While researchers have focused on increasing 84

the user’s spatial orientation and awareness in the remote space, e.g., through wide 85

angle cameras [10,11] or the usage of sound feedback [11], navigation often is still 86

limited as the amount and kinds of feedback the users receive remain constrained when 87

compared to how we navigate as human’s in the real world. So, generally, the amount of 88

cues one receives may not be enough to maintain an adequate level of spatial awareness, 89

in order to interpret a situation and mentally project towards its future status [23] to 90

navigate around effectively. 91

There is a variety of research that explores feedback for teleoperation situations. For 92

example, researchers have looked into using haptic feedback to improve accuracy and 93

awareness [24] and navigation via collision avoidance [25,26]. Lee et al. [27] explored the 94

performance of haptic feedback on navigation performance with a mobile 95

(non-telepresence) robot and found benefits. Studies of self-motion have similarly 96

explored feedback in virtual reality settings. For example, visual cues [28], sound 97

cues [29], and foot steps [30] have been tested as forms of feedback and shown value. 98

Our approach, in contrast, does not rely on feedback per se, but instead modifies the 99

speed of the TR directly to avoid the need for such feedback. 100

Several methods for automatic SC have been developed in different fields, including 101

Virtual Reality and the automotive sector. To automatically control the speed of a 102

viewer in a virtual environment, Mackinlay et al. scaled the distance from the viewer to 103

a target to determine the movement speed [12]. Ware and Fleet developed this idea 104

further and presented a method that considers the distances to all visible points [13]. 105

They found that the minimum distance works best to determine the ideal speed, but 106

that the average was also competitive. The usage of sensor-data to control velocity is 107

widely used in commercial vehicles, and generally known under the name adaptive 108

cruise control. These systems often rely on some form of adaptive control system [14]. 109

Within the frame of these systems, research among others has focused on autonomous 110

throttle and brake actuation [31,32], break system modeling [33], stop-and-go 111

mechanisms [34] and distance control [15]. The control of autonomous vehicles shows 112

great resemblance with these systems, and is usually comprised of perception, decision, 113

and control components to drive a vehicle. The speed controller of an autonomous 114

vehicle thereby is often based on two control levels: the higher level that deals with 115
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acceleration, and the lower level that controls the throttle and brakes. Models that 116

drive the SC can be self-adaptive over time, based on learning methods [35,36]. DJI 117

Drones 1 include an automatic deceleration and stop feature when there is a obstacle in 118

front of them. Similarly, humanoid robots, such as the Pepper robot, have proximity 119

sensors which allows such robots to slow down and adjust the speed of the device based 120

on human interaction through a Gaussian Mixture Model [37]. The purpose of these 121

robots are different from TRs; TRs are designed to facilitate interaction with people, 122

with an aim to provide a remote presence with visual and auditory feedback to the 123

operator and the people they interact with. Hence, results from autonomous robot 124

control are not directly applicable to our experiment here, where the user interactively 125

controls the TR and interacts with other people. 126

Most recently, shared control algorithms were used as assistance systems to control 127

the speed of TRs [17,18]. Yet, the proposed methods increased the task execution time 128

and were not tested in dense and social environments. The SC system we implemented 129

resembles to a degree the SC methods used in autonomous vehicles, as we 130

semi-autonomously adjust speed based on the context around the TR. Yet, in contrast 131

to autonomous SC methods, our method has to take into account that the user 132

interactively navigates the TR. 133

In this study, we used a Beam+2 TR as in Figure 1. We also used an attached 134

Arduino Mega, a Raspberry Pi 3, and six out of twelve ultrasonic distance sensors on 135

the device, as illustrated in Figure 1. This apparatus had been designed and previously 136

used in different work [38] 3. In this previous work, authors used the distance sensor 137

ring to measure the distance around the TR to give haptic feedback to the users’ feet. 138

While this setup was designed for a different research purpose, we developed our system 139

based on the previously developed hardware. For our work, we altered the software 140

running on the Arduino and Pi to support a specific distance sampling schema that 141

suits the needs for SC algorithms. In this document, we still describe the hardware in 142

section 4, as it is directly relevant to our work. Yet, we explicitly state that the sensor 143

ring was not designed and built by us nor is a contribution of this work. 144

2 Motivation 145

As noted before, driving a TR can be challenging, which can be caused by a variety of 146

factors. For example, the cameras often restrict what can be seen around the TR, and 147

often causes distance estimation problems. As a result, especially in dense and 148

potentially highly dynamic scenes, it will be difficult to gather and maintain situational 149

awareness around the TR [39]. To alleviate driving challenges and inspired by 150

autonomous vehicle control paradigms that rely on multi-directional sensing capacities 151

that also sense in directions not directly covered in the camera view, we chose to explore 152

the use of TR driving aids. Yet, instead of fully autonomous control, we want to provide 153

users with a suitable level of control to not reduce their sense of control and agency, but 154

without needing to provide additional feedback through the UI. 155

2.1 Hypotheses 156

Our hypotheses are directly connected to previous work, which showed that 157

automatically adapting a TR’s speed lowers the operator’s cognitive load [16,17], helps 158

people to avoid obstacles [40], and decreases the number of collisions [16]. These studies 159

1https://www.dji.com
2https://www.suitabletech.com/products/beam
3The research topic, software, hypotheses, analyses, results, findings and contributions of our current

and the previous work, which introduced the apparatus, do not overlap.
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(a) (b)

Fig 1. (a) Beam TR used in the study, (b) additional hardware components mounted
on the base of the Beam.

neither tested SC algorithms in static dense environments nor focused on their effect 160

during social interaction. To assess the usefulness of the implemented distance-based SC 161

methods, we formulated the following hypotheses, which we investigated in two user 162

studies. 163

H1. Distance-based speed control improves TR navigation behaviour: 164

We predicted that automatically slowing down the TR as it moves closer to potential 165

obstacles and other objects would allow users to navigate more safely and avoid 166

collisions more effectively. Similar to other domains [12] and to autonomous assistance 167

research with TRs [16–18,40], we expect to see better performance with a SC algorithm. 168

H2. Distance-based speed control also increases the user’s spatial 169

presence in the remote environment: We hypothesized that automatic SC would 170

indirectly improve users’ sense of spatial presence and situational awareness of their 171

remote surroundings, by allowing them to focus less on the challenge of navigation, thus 172

freeing up mental resources to be more present and aware of their remote surroundings. 173

While assessing H1 and H2, we also explore user reactions to the automatic SC 174

algorithm, through interviews and questionnaires after the study tasks. Previous work 175

on TRs had shown that assistance through SC improves TR navigation behaviour in 176

term of number of collisions in static environments (at the cost of increased task 177

times) [17,18] and decreases cognitive load [17]. Yet, interestingly, SC algorithms have 178

not been evaluated in an environment where a user has to remotely interact socially, 179

which is a very common use case for TRs. 180

To test the effect of the distance-based SC method on TR navigation behaviour, we 181

evaluated it first in a tightly-controlled static environment with both narrow passages as 182

well as wide corridors (Study 1). To increase the ecological validity of our results, we 183

then investigated in Study 2 the user experience in a conference-like setting with social 184

interaction tasks. 185
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3 Telepresence Robot, Apparatus and Software 186

used in this study 187

3.1 Distance Sensors and Data Acquisition 188

In this study, we used hardware that had been designed for another research 189

project [38]. This approach allows us to demonstrate that SC can be applied to different 190

TRs, even if they cannot be modified or have been designed with SC in mind. Their 191

work mounted a ring of twelve ultrasonic distance sensors onto the “neck” of the Beam+ 192

TR. These equally-spaced 40 kHz ultrasound sensors were connected to the analog pins 193

of an Arduino Mega, and are able to reliably detect objects at distances between 2 and 194

120 cm in front of them. With this setup, obstacles around the TR could be located 195

within a 30° cone for each sensor. Here, to increase the data acquisition rate we did not 196

use all of the available sensors. Instead, and since we were only interested in forward 197

motions, we collected data from the sensors at the front of the ring, which corresponds 198

to a 180° field of “view”. To further increase the sampling frequency and to reduce the 199

interference between sensors, we collected data only from alternating sensors in the 200

sequence within any given sampling interval. In other words, we collected data in the 201

following order: the first, fourth, second, fifth, third, and sixth sensor, and we repeated 202

this sequence. As a result, we achieved a 40 Hz (25 ms) data process rate. This rate 203

proved to be sufficient for the implemented SC method within the environments used in 204

our user studies. 205

Since the Arduino Mega provides a sufficient number of input pins and provides 206

libraries to convert analog ultrasound distance readings to digital information, we use it 207

as a ‘bridge’ between the sensors and the Raspberry Pi. The software running on the 208

Arduino software thus only manages the analog sensor data acquisition and converts 209

this information to digital data that is sent to the Raspberry Pi through a serial link. 210

The data received by the serial link is forwarded to the desktop computer by the 211

Raspberry Pi through the OSC (Open Sound Control) library and User Datagram 212

Protocol (UDP) communication with Python 3.4 code. The Raspberry Pi was 213

connected to the university’s wireless network. 214

3.2 Desktop Computer 215

We used a PC with an Intel (R) Core (TM) i7-5890 CPU with 16 GB RAM and a 216

NVIDIA GeForce RTX2080 graphics card. A BenQ 27” HD HP desktop monitor and, 217

to control the Beam+, a Logitech keyboard as well as a Xbox One gamepad were 218

connected to the computer. 219

3.3 User Interface and User Interaction 220

For the GUI, participants interacted through the regular TR interface provided by the 221

Beam. We did not change or alter the features in this GUI, as such modifications are 222

not supported by the Beam manufacturer. A sample screenshot of the GUI is shown in 223

Figure 2. 224

The GUI of the Beam is designed to show two camera views: a forward-facing 225

camera view, which is mostly used to socially interact, and a downward facing camera, 226

which is mostly used to navigate in the environment. This GUI only allows users to 227

change the split of the (single) window between the downward-facing and forward-facing 228

camera video streams. There are no default dimensions: users can adjust the camera 229

view size based on their preference and the Beam software always stores and re-uses the 230

latest video size setting. For the first study, we wanted users to only focus on the 231

obstacles, so we enlarged the lower camera view to the maximum values allowed by the 232
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Beam GUI, which are 860 pixel x 650 pixel or 27 cm x 20 cm, as seen in Figure 2(a). In 233

the second study, we wanted users to use both, i.e., the downward camera to navigate 234

the obstacle course and the forward facing one to interact with other people. To allow 235

users to focus simultaneously on social interactions and navigation, we allocated 620 236

pixel x 465 pixels or 19 cm x 14.5 cm to the forward-facing camera, as in Figure 2(b). 237

In study 1, and since there were no actors interacting with the participant, the 238

participant’s self-view captured through the webcam of the computer was blocked with 239

a piece of paper. In study 2, participants saw their self-view within the GUI to help 240

them communicate with the actors. 241

(a) (b)

Fig 2. Beam GUI Layouts during the experiment. Layout for (a) User Study 1 and (b)
User Study 2. Parts of images blurred for anonymity.

We note that the optical flow in the camera due to the movement of a TR is already 242

a form of feedback for the user: drivers can easily perceive how fast or slow the robot is 243

moving by looking at the camera view(s). Thus, we did not provide any additional 244

feedback mechanism for the speed beyond the existing camera views of the remote 245

environment. 246

For the driving interaction, we used either a regular keyboard or a Xbox One 247

gamepad to control speed and direction. While participants were using the keyboard, 248

they pressed arrow keys with their dominant hand. In this condition, the SC is Boolean 249

(ON/OFF), i.e., the robot is either moving a constant speed forward or stops. More 250

specifically, the up/down arrow key corresponds to forward/backward movement at a 251

constant speed. When participants were using a gamepad, they operated the left 252

joystick with their thumb to control the TR device. In this condition, participants were 253

able to alter the speed of the TR continuously with the joystick. In either condition, 254

participants did not have to use other keys or buttons on the keyboard, respectively 255

gamepad. To be able to compare the TR navigation behaviour for the two input devices 256

objectively, we did not add any additional feedback to input devices, such as active 257

feedback through vibrating the gamepad with the motion of the joystick. 258

3.4 Distance-Based Speed Control 259

We implemented a SC algorithm with Python 3.4. The purpose of this software was to 260

receive the commands given by the user (originally destined to be sent directly) to the 261

Beam software and to alter them according to the distance between the TR and the 262

obstacle(s). For this we used pynput and the Python keyboard library to intercept 263

speed-related keyboard input events and altered these events as specified below, so that 264

the Beam software receives input that corresponds to the speed specified by the result 265

of the distance-based SC method. For the gamepad, we used the pyvjoy library which 266

maps all joystick input to the [0-1] range, with 0.5 corresponding to the neutral position. 267

The software was running in an infinite loop. In each iteration, we updated the 268

incoming distance data from sensors sent by Raspberry Pi, ran the distance-based speed 269
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algorithm, and sent commands to the TR to to modify its speed during steering. It took 270

about 23 ms (43 Hz) to run each loop. Thus, on average, the data for each of the 6 271

sensors was updated every 138 ms (≈ 7 Hz). This was not pre-chosen, but was the 272

highest average update rate we could reach with all hardware, software, and 273

networking-induced delays. Previous work on remote surgery studies had identified that 274

the average delay should be less than 700 ms in their application [41]. Our application 275

scenario does not have the same life-or-death criticality as surgery, nor does it have the 276

same millimeter-accuracy requirements. Since we cannot increase the data acquisition 277

rate, and this data rate is larger than required for precise tasks, we believe that our 278

update rate is acceptable. Moreover, we asked our participants after the studies if they 279

had observed any significant delays that might have affected their driving performance, 280

but no one made negative comments about the potential effects of delays. 281

While there are various possibilities for the SC methods, algorithms, and user 282

interfaces [16–18], we implemented a distance-based SC algorithm that works as a 283

middle-ware between the user and TR GUI. Since Beam+ is not an open system, we did 284

not, and in fact could not, change or alter the code or hardware of the Beam+. We also 285

did not include additional GUI elements, including visual and auditory feedback to the 286

user, since not all TR GUIs use the same interface. Moreover, we wanted this setup to 287

be applicable to other TR systems to improve generalizability of the results. 288

For the SC, we experimented with different distance/speed curves, such as a linear, 289

exponential, or logarithmic model. We also tried a PID (proportional, integral, 290

derivative) controller, which is commonly used in the control systems work [42,43]. In 291

our pilot trials, we observed that a PID controller did not work well, since the time 292

interval between two distance samples at full speed was too large. To improve data 293

acquisition, we used only half the available sensors, and, through various code 294

optimizations, such as using multi-threading maximized the sampling rate within the 295

given hardware platform. Yet, even this was not good enough to robustly drive the TR 296

with a PID controller or derivative algorithm, and we thus did not use this approach. 297

After optimizing the system as far as possible, the final update rate for our system was 298

≈ 7Hz for the distance sensors, which included all hardware, software, and networking 299

delays. Additionally, when a command was sent to the motors, there were delays due to 300

other factors, such as network ping. Yet, as mentioned above, we were limited to control 301

our system through manipulating the input stream of the commercial (closed) product, 302

which limited our technical options and the control frequency. 303

Before starting the experiments, we tested the SC algorithm in pilot studies with 2 304

experts with more than 2 years of TR driving experience and 5 non-expert users. None 305

of these individuals participated in the main experiments. To create a movable obstacle, 306

we used a chair with 4 legs on casters and put duct-tape at the height of the sensors. In 307

this pilot setup, if the SC algorithm failed, the TR hit the chair, and since the chair was 308

movable, the TR moved the chair around. This allowed pilot participants to try 309

different SC algorithms without causing damage. We did not observe a notable 310

performance difference between linear, exponential, and logarithmic models in this pilot. 311

Pilot participants also did not seem to notice differences between the algorithms. Given 312

that we did not observe big differences and pilot participants did not prefer a specific 313

SC algorithm, we chose a linear SC mapping for simplicity, i.e., SystemInput = 314

UserInput − distance ∗ 0.0025, as it was the most robust option and worked well with 315

our limited data acquisition rate. 316

We placed the sensors around the bottom of the “neck” of the TR, at 30 cm above 317

the ground, as shown in Figure 1. To deal with situations where the ultrasound sensors 318

did not yield sufficiently accurate information, e.g., when confronted with gaps between 319

chair legs or metal surfaces, we used duct tape to cover the corresponding space at the 320

level of the sensors. 321
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Fig 3. Distance-based speed control mapping for the speed of the TR.

The UserInput corresponds to the input speed value given by the user to the system. 322

For both gamepad and keyboard, the maximum input value was set to be 0.85 m/s 323

through the GUI of the Beam, which corresponds to a leisurely walking speed, similar 324

to how one would walk when engaged in a conversation. We checked this speed with the 325

distance sensors on the TR and approved it. We also tested this speed in other pilot 326

studies, where participants were walking next to the TR and subjects found this level of 327

speed adequate for the context. This method has been used in other walking speed and 328

TR research, e.g., [44, 45]. 329

As mentioned in the Apparatus section, there are six sensors facing forward on the 330

sensor ring, each of which covers a 30° cone. To compute the distance, we average the 331

distances from the front two sensors of the Beam+ as the forward distance. We then use 332

this value as SystemInput to control the speed of the TR (through the Beam software). 333

To achieve stable results, we only activated the SC algorithm at distances between 10 334

and 120 cm. The suggested highest distance to correctly measure distance with the used 335

ultrasonic sensors is 120 cm. Since the experiment aims to study TR navigation 336

behaviour in narrow and dense spaces, we did not modulate the speed in sections where 337

all obstacles are far away and 120 cm was enough for this purpose. Also, if the distance 338

between the sensor and any obstacle was less than 10 cm, the TR is either very close to 339

hitting an obstacle or has already hit it. Since we wanted the TR not to stop but only 340

to move slowly at distances less than than 10 cm, the control method shown in Figure 3 341

assisted users in moving the TR slowly when they were very close to obstacles, by 342

thresholding the movement speed to 0.17 m/s, which is the minimum value for the 343

motors of the used TR to move smoothly. At lower speeds, the TR jerks or does not 344

respond to commands correctly. 345

The resulting distance/speed curve of the overall system is shown as Figure 3. If the 346

TR gets close to objects, but the objects are to the side, we also reduce the speed of the 347

robot to 0.17 m/s based on the minimum distance received from the four side sensors. 348

This allows the user to maneuver in a dense environment in situations where there is no 349

obstacle in front of the TR. We also included a method to decrease jerky movements. 350

When the TR is commanded to change the speed, we did not immediately increase or 351

decrease the speed of the device, but did it in two steps to eliminate jerky movements. 352

For instance, while the TR was stationary, if the user gave the full speed command, we 353

first used an intermediate speed of 0.51 m/s and only sent the final speed of 0.85 m/s 354

after ≈ 138 ms. Similarly, when the device got suddenly closer to objects, e.g., when 355

rounding a corner or edge with obstacles immediately after, we did not decrease the 356

speed immediately, but averaged it with the previous input. This helped us to reduce 357

unexpected and unnatural sudden speed changes which can distort the equilibrium of 358

the device, i.e., can lead to jerky movements and forward/backward wobbling of the TR. 359
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With the graded transitions, this issue did not occur. 360

4 User Study 1 361

In this first study, we designed a static dense environment with milestones that 362

represent various challenges that could be found in dense environments and investigated 363

how user navigation behaviours and their experience are affected by the implemented 364

SC method in an obstacle course with different input devices. In our context, increased 365

density corresponds to a higher amount of objects with smaller distances between them 366

in the environment. 367

4.1 Experimental setup 368

To investigate the effectiveness of the SC algorithms in typical conference-like dense 369

situations where users have to navigate in narrow and wider areas, we created a dense 370

environment as shown in Figures 4 and 5 and asked users to drive through it while 371

avoiding collisions. 372

S1

S1

S2

S2

S3

S3
S7

S7

S6

S6

S4

S4S5

S5

S8

S8

Start/F
inish Line

Fig 4. Real world view of the obstacle course. This photo was taken from top of the
ladder as a panoramic picture. Distortions in the picture caused by the panoramic
stitching.

Figures 4 and 5 illustrate the same environment. The dark pink box (bottom right 373

corner in the photo) indicates the start and finish area for the experiment. We first 374

divided the obstacle course into 42 smaller milestones M1-M42, as shown in Figure 5. 375

Between every milestone, TR had to accomplish a specific small-task, such as turning 376

90° in a tunnel (e.g., M3-M4, M12-M13, M34-M34 and M23-M24), turning 90° in 377

open-space (e.g., M6-M7, M8-M9, M10-M11 and M36-M37), going underneath 378

the ladder (M19-M20 and M27-M28) or going straight in a tunnel (M11-M12 and 379

M35-M36). These milestones were used to collect data in detail. To ease the data 380

analysis, and based on the number of collision observations, we also divided the 381

movement of the TR into 8 different segments, labelled S1-S8 in both Figures 4 and 5. 382

When we were designing the obstacle course, we tried to include sections that 383

correspond to various real life cases. We used empty boxes and other non-critical 384

objects to create an obstacle course that was safe to drive through for both the TR and 385
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the environment. Since the motors of the Beam+ TR are fairly powerful, it was possible 386

to dislocate even heavy objects with it. Thus, we designed our obstacle course to make 387

it a safe environment and to avoid the potential for damaging the TR or other 388

equipment. We picked objects, such as carton boxes, that made it easy to reset any 389

portions of the obstacle course, if participants collided with and thus moved any of the 390

objects that comprised the obstacle course. We also taped such objects to fill gaps 391

between obstacles at the level of the sensors in the constrained path segments. Since the 392

ultrasound sensors can return different distance values for different materials, we also 393

used the tape as a uniform “reflector” material to address this issue for those objects 394

that had notably different reflective properties. During the experiment, the 395

experimenter fixed any re-located portions of the previous part of the obstacle course 396

when the TR reached the next milestone. 397

4.2 Participants 398

Twelve participants (10 female, average age of 21.9, SD 1.9) participated in our 399

experiment. All participants were right-handed and had never used a TR before. The 400

experiment was approved by the local ethics committee, [2015s0283], and participants 401

provided written informed consent before starting the experiment. 402

4.3 Procedure 403

Before starting the experiment, the experimenter explained the task and asked 404

participants to follow the experimenter in a physical walk-through of the obstacle 405

course, using the same path as for the TR. We did this to familiarize them with the 406

navigation task and spatial layout of the environment, and ensure that they knew the 407

correct path before starting the actual experiment. After pilot studies we decided on 408

this procedure as our main objective was to investigate participants’ TR maneuvering 409

behaviours and not their way-finding skills. 410

After walking the path, we asked participants to complete a demographic 411

questionnaire, to collect data about their age, gender, gaming experience, and if they 412

have a driver’s license. Then, we asked them to experiment with the TR in an open 413

space, so they would get used to the interface, until they got comfortable with driving 414

the TR. To make the driving task more realistic and to enable participants to focus on 415

driving in the experiment, participants were given a map of the obstacle course, so they 416

did not have to “search” for the path. They also completed a single iteration of the task 417

(see below) through the obstacle course, where they experienced the four different 418

conditions (keyboard or gamepad, with and without the SC for each input device), in 419

the four main sections of the course. This enabled them to learn the layout of the 420

environment. When the participants felt ready to start the experiment, we asked them 421

to move the TR to the start/finish area shown in Figure 5. Based on our observations, 422

participants took an average 5 minutes to complete the training phase. We saw no 423

notable differences in terms of learning between the different conditions, which is not 424

surprising given that our participants had not driven TRs before. 425

Before participants started to drive the TR through the obstacle course in the 426

evaluation session, we started the screen recording. We recorded the Beam GUI at 30 427

Hz to enable later analysis of the movement of the TR. Participants had to follow the 428

path segments from S1 to S8. A trial ended when the TR crossed the boundaries of the 429

finish line. To simulate a realistic telepresence setting, we blocked the participant’s view 430

of the obstacle course and the TR with large white large carton sheets so they never saw 431

the TR or obstacles course directly during the main study. 432

After the experiment, participants filled a questionnaire, where we asked participants 433

about their preferred driving method (with or without SC) and input method (gamepad 434
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or keyboard). We also asked them open-ended questions, such as, the reasons behind 435

their preference of driving method and other comments. Further, we used 7-point Likert 436

questions to investigate the ease of interaction of each condition, i.e., with and without 437

the SC driving method, with the keyboard or the gamepad. We also asked if they 438

thought that SC improved their TR navigation behaviour in terms of task completion 439

time, hitting objects, and finally their physical and mental fatigue after the experiment. 440

During each task, an experimenter was in the obstacle course, and fixed any 441

re-located or hit objects/boxes after the TR passed them. To enable this, we marked all 442

object positions with black tape on the ground. Since the TR had to drive through each 443

path segment in both directions, there was a need to fix the boxes as soon as possible 444

(before the TR traversed the same segment again in the other direction). The 445

experimenter also assisted participants through voice feedback if they got confused or 446

deviated from the designated path. The logged data for any such episodes was manually 447

removed before the main analysis process. 448

4.4 Experimental design 449

Each of the 12 participants performed 4 trials total, consisting of a factorial 450

combination of two Input Devices (ID2: Keyboard and Gamepad) × two Speed 451

Control conditions (SC2: ON and OFF). The order of trials was counterbalanced 452

across conditions using a two-dimensional Latin Square design to avoid potential 453

learning effects. In total, the experiment took about 40 minutes for each participant. 454

By using the video recorded off the Beam GUI, we were able to collect timing data 455

(in seconds) for each instance when the TR passed each milestone in Figure 5. We also 456

counted the number of hits that occurred on both the front and the back of the TR as 457

Collision Side (CS2: Front or Back). We further divided these hits into two different 458

collision categories: while looking at the the video, if the TR physically “bumped” 459

into an object but did not dislocate it, we classified this as a “touch”. If the TR bumped 460

an object hard enough to dislocate it, we recorded this as a “hit” (CC2: Hit and Touch). 461

4.5 Data Analysis 462

The data were analyzed using 2ID × 2SC repeated measures (RM) ANOVAs for the 463

independent variables Input Device and Speed Control, with α = 0.05 in SPSS 24. We 464

used the Sidak method for post-hoc analyses. For non-normal distributions we used the 465

ART method [46]. All detailed results, such as tables and figures for each dependent 466

variable, can be found in the appendix. Fisher’s test results for study 1 are shown in 467

Table 1. Means (M), Standard Deviations (SD), Standard Error of Means (SEM), 95% 468

Confidence Intervals (CI) vales are shown in Table 3. We also included the results for 469

task completion time in Figure 8, average number of collision in Figure 9, average 470

number of front touch in Figure 10, average number of back touch in Figure 11, average 471

number of front hit results in Figure 12, and average number of back hit in Figure 13. 472

4.5.1 Task completion time 473

Completion time was normal after a logarithmic transformation (Shapiro-Wilk test 474

result was W (48) = 0.982, n.s., Skewness = 0.249, Kurtosis = -0.422). The RM ANOVA 475

results showed no significant main effects of SC or input device conditions, nor any 476

significant interactions. Detailed results are shown in Figure 8, Table 1 and Table 3. 477

Results suggest that subjects might be faster with a gamepad when SC was turned off, 478

but we could not identify any significant differences. 479

October 22, 2020 13/47



4.5.2 Collisions 480

Collision dependent variable was normal after a logarithmic transformation 481

(Shapiro-Wilk test result was W (48) = 0.962, n.s., Skewness = -0.22, Kurtosis = -0.85). 482

As illustrated in Figure 9(c) and Figure 9(d), adding SC reduced the average number of 483

collisions from M = 6.36, 95%-CI [5.52, 7.20] to M = 3.69, 95%-CI [3.01, 4.37] 484

(F (1, 11) = 36.75, p < 0.001, η2 = 0.77). We were not able to identify any significant 485

main effect of input device, or any interactions with SC. The results suggest that 486

participants collided less with a gamepad, but the difference was not significant. 487

Detailed results are shown in Figure 9, Table 1 and Table 3. 488

4.5.3 Detailed collision analysis 489

Only the Front Touch collision dependent variable was normal after log transformation 490

(Shapiro-Wilk test result was W (48) = 0.953, Skewness = 0.55, Kurtosis = -0.31). 491

According to the results for front side touches (Figure 10(c) and Figure 10(d)), SC 492

significantly reduced the number of such collision (F(1,11)= 21.782, p¡0.001, η2 = 0.664) 493

from M = 8.62, 95%-CI [10.08, 7.16] to M = 5.83, 95%-CI [4.67, 6.99]. Moreover, SC 494

significantly reduced the number of hits with the front side of the TR (F(1,11)= 23.318, 495

p¡0.001, η2 = 0.679) from M = 5.62, 95%-CI [3.78, 7.46] to M = 1.041, 95%-CI 496

[0.41, 1.67] as shown in Figure 12(c) and Figure 12(d). Even though we did not acquire 497

distance data at the back part of the TR and thus our system could not avoid hits that 498

might occur at the back of the TR, SC significantly reduced the number of hits with 499

back part of the device from (F(1,11)= 19.062, p¡0.001, η2 = 0.634) M = 3.45, 95%-CI 500

[2.42, 4.49] to M = 1.66, 95%-CI [0.88, 2.45] in Figure 13(c) and Figure 13(d). 501

4.5.4 Detailed analysis of segments and milestones 502

In this study, we recorded 966 collision points. Only a total of 60 collisions by 12 503

participants occurred in S2, S4, S6, and S8. When we analyzed the data for these 504

segments, we did not find any significant quantitative results to report. However, we 505

observed that when the SC algorithm was activated in S8, between M39-M40 where 506

the tunnel gets narrower, participants adjusted their steering to avoid collisions with 507

obstacles. The SC was not actively reducing the number of collision, but it was also 508

acting as a warning mechanism by providing (indirect) visual feedback through the 509

slowdown of the TR. According to the analysis of the time spent in individual 510

milestones, subjects were significantly slower in milestones M1-M2, M2-M3, 511

M25-M26, and M26-M7, see Figure 14(a). Interestingly, they also hit obstacles less 512

often in these same milestones with the front side as visible in Figure 14(b), except for 513

M2-M3. In M2-M3, SC decreased the number of hits, but we were not able to 514

measure an effect. The milestones M1-M2, M2-M3, M25-M26, and M26-M7 515

belong to segments where the path is strongly curved, as shown in Figures 4 and 5. The 516

detailed milestone analysis results show that SC helped subjects to avoid hitting 517

obstacles in tight, curved path segments, which took longer to navigate. However, in 518

other milestones, such as M16-M17 and M0-M1 in Figure 14(b), M32-M33 in 519

Figure 15(b) and Figure 15(c), and M16-M17 in Figure 15(d), SC decreased the 520

number of collision while not increasing the navigation time. The remainder of the 521

results for the milestone analysis can be found in Figure 15. 522

4.5.5 Subjective Measurements 523

At the end of the experiment, we asked participants to fill a short questionnaire about 524

their experience, thoughts, and insights. We asked participants as to which driving 525

method was preferred, with or without SC. All participants preferred SC over the 526

October 22, 2020 14/47



condition without SC. They commented on the SC in various ways, including that “they 527

felt more safe”, “less confusing”, “easy to use” and “gave more time to control the 528

device”. We also used a 7-point Likert scale to evaluate user perceptions for the SC 529

algorithm and input methods and analyzed the results to investigate subjective 530

measures. None of the participants thought that it was difficult to drive the TR (1-easy, 531

7-difficult, Mean (M)=2.42, Standard Deviation (SD)=0.89). Only one participant 532

reported that it was “somewhat difficult” to use the gamepad and the rest thought it 533

was easy (1-easy, 7-difficult, M=2.92, SD=1.14). Only two participants thought that SC 534

was “somewhat unlikely” to have improved their performance in terms of time (1-very 535

likely, 7-very unlikely, M=2.67, SD=1.04) and none of them thought that SC worsened 536

their performance in terms of number of collisions (1-very likely, 7-very unlikely, 537

M=2.58, SD=1.55). Half of the participants preferred the keyboard and the other half 538

the gamepad. Participants also reported that they only felt moderate physical and 539

mental fatigue after the experiment (1-I feel very rested, 7-I feel very tired, for physical 540

and mental fatigue of M=3.25, SD=1.09 and M=3, SD=1, respectively). 541

4.6 Discussion of User Study 1 542

Study 1 results suggest that adding automatic SC reduced the overall number of 543

collisions when driving a TR, irrespective of whether the TR was controlled by gamepad 544

or keyboard. These results also support our hypothesis, H1, that distance-based SC 545

improves TR navigation behaviour in dense environments. The reduced number of 546

collision also matches findings of previous TR studies. Yet, unlike previous work, SC 547

did not decrease the task execution time [16–18,40]. 548

In the detailed analysis of segments and milestones, we observed that touches and 549

hits occur less frequently when the SC is enabled. M3-M4 and M25-M26 involve a 550

curved path that requires slow movements to traverse without hitting objects. This part 551

of the maze also forces users to adapt to the speed-accuracy trade-off. Because the TR 552

slowed down with SC, participants did not hit objects as frequently and thus got less 553

upset when hitting objects (H1) or spent less time correcting their driving (H2), which 554

might explain the lack of a time difference between the SC conditions. It also supports 555

H2 since the number of collision decreased with SC and users preferred the SC 556

condition. Yet, we did not observe any speed-accuracy trade-off for individuals, see 557

Figure 18. 558

Note, however, that automatic SC did not improve task completion time, even 559

though all participants stated that they preferred driving the TR with added SC, 560

mentioning amongst other factors the increased safety and ease of use. We speculate 561

that this could be a positive side effect of hitting fewer objects in the maze. Instead of 562

getting faster, subjects spent their time to carefully steer the TR through the maze so 563

as not to hit objects. Since the task instructions mentioned both not hitting the objects 564

and to finish the course as fast as possible, they perceived this as an positive outcome. 565

Moreover, previous work showed that using SC, i.e., reducing the speed of the TR, also 566

increased task completion time [17, 18]. Yet, the SC algorithm used in this work did not 567

significantly increase the task execution time, which we see as a positive indication. 568

The hits and touches that occurred at the front of the TR significantly decreased 569

when the SC is enabled. Moreover, even though we did not collect and use the distance 570

data from the back part of the TR, the number of hits on objects in the obstacle course 571

with the back part of the TR significantly decreased. While we did not see such a 572

difference for the touches at the front of the TR, a 360 ° distance range sensor with a 573

higher data rate could increase reduce the number of touches with the front of the 574

device, relative to what was observed with the limited-range ultrasound distance sensors 575

we had at our disposal. 576

Through our interviews and questionnaire, we also learned that all the subjects 577
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preferred SC while they navigate in a static dense environment. We believe that 578

continuously steering the TR in this static dense environment did require constant 579

mental effort for navigation. As explained above, the SC algorithm helped subjects to 580

reduce the number of collision by reducing the speed of the device automatically, which 581

supports previous findings [17,18]. Thus, participants had to worry less about hitting 582

objects, which is the likely reason for all subjects preferring SC in Study 1. 583

Within this study, we analyzed how user behaviours changed with a SC algorithm 584

and demonstrated that participants collide less with SC in static dense environment, as 585

they can focus more on the challenges of navigating the robot along the path. We also 586

demonstrated that it is possible to implement a SC method without having to alter the 587

software or hardware of the TR itself. 588

5 User Study 2 589

While the first study was designed to investigate user’s maneuvering performance in 590

dense static environments, it did not include any interaction with people, thus it is 591

unclear how it might generalize to more typical conference-style situations and “live” 592

remote environments. Moreover, participants navigated segments that were reasonably 593

easy to memorize in a static dense environment, where they could benefit from SC. 594

Towards environments that are more typical for TR operation, we designed a more 595

ecologically valid conference-like environment as shown in Figures 6 and 7 using the 596

same TR and software for Study 2. With this study, we aimed to investigate how user 597

behaviours and their experience changes with a task requires social interaction with SC. 598

Fig 6. View of the experimental setup for user study 2 for presentation. Posters are
blanked to preserve anonymity. The blurred area is associated with another research
project irrelevant to this work.

5.1 Experimental Setup 599

As the user study 1, we divided our experimental environment into eleven milestones 600

that the user had to follow in the task. Since the experimental setup involves fewer 601

sub-tasks, we only matched segments and milestones in this study. We also placed tape 602

at the level of the sensors between chair/desk legs to ensure that the TR was able to 603

reliably detect its distance to the chairs and desks. To provide a more realistic 604

conference- or workspace-style setting, we used four actors/actresses in the environment 605

while a participant was performing the tasks. These actors are shown as A1, A2, A3 606

and A4 in the Figure 7. 607
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5.2 Participants 608

Twelve participants (9 female), with an average age of 27.6 with standard deviation of 609

4.8, participated our experiment. One participant was left-handed and all participants 610

had never used a TR before. The experiment was approved by the local ethics 611

committee, [2015s0283], and participants provided written informed consent before 612

starting the experiment. 613

5.3 Experimental Design 614

Each of the 12 participants performed the experiment once. We divided the experiment 615

into two sessions, without breaks. In the first session, participant started from M0 and 616

ended at M5, and in the second session they started from M6 and ended at M11, as 617

illustrated in Figure 7. Each of these two sessions started either with or without 618

automatic SC, in counterbalanced order. Participants were informed if SC was turned 619

on or off at the beginning of each session, i.e., at M0 and M6. We again measured time 620

and number of collisions in this study. 621

5.4 Procedure 622

After filling out the demographic questionnaire, participants were encouraged to get 623

used to driving the TR until they felt comfortable. After that, the experimenter gave 624

them a simplified diagram of the obstacle course, similar to Figure 7 but without the 625

actor directions, milestones, and TR segments, and a sheet with tasks they had to 626

follow. After participants read the instructions for the tasks on the sheet, the 627

experimenter also verbally explained what participants had to do. In the first study, 628

even though we were not able to identify any significant difference, gamepad slightly 629

decreased task execution time and the number of collisions compared to the keyboard. 630

Thus, we asked participants to use the gamepad in Study 2 to control the TR, as it 631

allowed for continuous SC. Participants wore a headset with a microphone to talk to 632

actors/actresses in the scene. A webcam on top of the desktop screen was used to show 633
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the face of the participant to the remote persons (in this case our actors). In other 634

words, all interaction between the participant and actors/actresses throughout the 635

experiment was through the TR system, as in Figure 7. 636

In segment S1, participants started the experiment from the entrance (1) and went 637

to the Registration Desk (2). There was a queue for people to register at the conference, 638

and participants had pass to the left of them and come close to Actor A1, who placed a 639

badge onto the TR. In S2, participants had to navigate the TR through the people in 640

the registration queue in front of the registration desk. Actors were positioned 50 cm 641

away from each other and instructed not to automatically let the TR to go between 642

them, such that participants had to interact with people in the queue. In S3, the TR 643

had to drive between two chairs placed at 45°. One actor/actress (A1) sat next to a 644

laptop bag positioned on the floor as an obstacle, while another one (A4) sat on the 645

other chair, in front of a green bag. When A4 was sitting, there was insufficient space 646

for the TR to pass by, so participants had to interact with the actors/actress to either 647

move the bag or ask for A4 to move their feet. In S4, the TR had to enter a “poster 648

presentation area” and participant had to find answers for specific questions about the 649

poster content. As a first task, participant had to find the correct poster, which 650

required the participant to talk with the actors/actress (either A3 or A4). After finding 651

the correct poster, participants had to respond to three questions: to count the number 652

of figures in the results section, to read and write down a part of the sentence, and 653

select a figure that stood out in terms of formatting. After S4, participants have to find 654

the signboard in S5 and find directions to five different locations. For these signs, we 655

used names from a language unfamiliar to participants, which uses Latin letters 656

(Hawaiian). Thus, participants had to ask for places with unfamiliar names. Three of 657

these locations were indicated on the signboard and participants had to ask the student 658

volunteer actor (A1) next to the signboard for directions to two of them. After 659

recording the answers to the questions, participants drove the TR to the square which 660

was designated as an “elevator”, see Figure 7. At the end of S5, we finished data 661

collection for the first SC condition. Without any breaks, we continued the experiment 662

with the second SC condition. Before starting the experiment, subjects were informed if 663

the SC algorithm was turned on or off. 664

When the participants started at S6, they first had to stop by the signboard and 665

again respond to five questions on the task sheet in front of them, for a different set of 666

destinations. They had to, again, fill the questionnaire and ask for directions to rooms 667

and places in the Hawaii Convention Center. Again, two locations required 668

communicating with the student volunteer next to signboard. After the signboard, 669

participants went back to the poster presentation area in S7 and had to answer 670

questions about the second poster. These question forced participants to interact with 671

actor/actress A4. Participants had to write down the author names of the poster, which 672

were not visible to the camera of the TR. They also had to navigate closer to the poster 673

to see small details in the poster, such as the number of colored points in a graph and to 674

count the number of experimental conditions. After S7, participants continued to S8 675

and had to traverse between the same group of chairs as in S3, but in the opposite 676

direction. Similarly, participants had to go through the line of people in segment S9. 677

Again, none of the actors/actresses allowed the TR to pass through the line on their 678

first attempt, such that participants were forced to interact with the actors in the line. 679

At the end of S9, TR were asked to get close to A1’s position such that A1 could 680

retrieve the badge from the TR. At the end, participants drove back to the starting 681

point, S10 and finished the experiment. 682

In the two sessions of the experiment, i.e. session 1 starting from M0 to M5 and 683

session 2 between M6 and M11, we kept tasks very similar to each other. In other 684

words, these sessions were symmetrical with small changes, i.e., in M0, participant had 685
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to take the badge and in M11 gave the badge back to the actor. To counterbalance the 686

conditions in our experiment, half of the participants started the experiment with the 687

SC condition and the other half without automatic SC. 688

After the user study, participants filled a questionnaire about their preferences and 689

insights. These questions were similar to Study 1, except that we omitted the questions 690

around input devices. 691

We again used the video recordings of the Beam GUI to collect time data for each 692

milestone indicated in Figure 7. We also counted the number of collisions in the video 693

recordings. 694

5.5 Results 695

The 2SC Speed Control data was analyzed using repeated measures (RM) ANOVAs for 696

the independent variables, with α = 0.05 in SPSS 24. 697

5.5.1 Navigation Behavioral Data 698

Completion time was normal after a logarithmic transformation (Shapiro-Wilk test 699

result was W (24) = 0.982, n.s., Skewness = 0.566, Kurtosis = -0.422). The RM ANOVA 700

results showed no significant main effects of SC (F(1,11)=2.492, p=0.143, η2=0.185; 701

with SC M=325.5 seconds, SD=84.2, SEM=24.3, 95% CI [271.95, 379.04] and without 702

SC M=372.8 seconds, SD=106.5, SEM=30.7, 95% CI [305.01, 440.04]. Similarly, the 703

number of collisions was not affected by the SC (F(1,11)=0.647, p=0.438, η2=0.056). 704

This might be related to the overall low number of collisions in study 2 (with SC 705

M=0.333, SD=0.49, SEM=0.14, 95% CI [0.02 0.64] and without SC M=0.5, SD=0.67, 706

SEM=0.19, 95% CI [0.07, 0.92]), likely a consequence of the more open areas compared 707

to the environment in Study 1. Since we observed only a total of 10 collisions in this 708

whole study, we only assessed the average number of collisions and did not analyze these 709

hits in detail. We also did not see any clear evidence for a speed-accuracy trade-off in 710

our results, as illustrated in Figure 19. The RM ANOVA results and statistical measures 711

for Study 2 are shown in Table 2 and Figure 16. The detailed milestone analysis is 712

shown in Figure 17. However, even though results were not significantly different, SC 713

reduced the task completion time and number of hits, as shown in Figure 16. 714

5.5.2 Subjective Measurements 715

In the post-experimental questionnaire, participants were asked the preferred driving 716

method, with or without SC. After that, they were asked 7-point Likert scale to 717

evaluate user perceptions for the SC algorithm. 718

5 participant preferred driving with SC, the other 7 participant preferred driving 719

without SC. Participants who preferred SC commented such as “[speed control] prevents 720

me from hitting the obstacles”, “[the TR] was more controlled, and it felt comfortable”, 721

“The method with speed control seemed to give more agency over the control of the 722

robot. Without the speed-control method I found it more difficult to move around the 723

space without hitting objects. The speed-control method also had smoother operation 724

compared to the without speed control method.”, “In my opinion it helps me have 725

better control on my driving” or “it seemed smoother with speed control.” 726

None of the twelve participants thought that it was difficult to drive the TR (1-easy, 727

7-difficult, the average result was 2.8). All twelve participants thought SC improved 728

their performance in terms of task completion time (1-very likely, 7-very unlikely, 729

M=2.6, SD=0.84) and none of them thought that SC worsened their performance in 730

terms of the number of collisions (1-very likely, 7-very unlikely, M=1.2, SD=1.4). 731

Participants also reported that they only felt moderate physical and mental fatigue after 732
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the experiment (1-I feel very rested, 7-I feel very tired, averages for physical and mental 733

fatigue of M=4, SD=0.63 and M=4.4, SD=0.49 respectively). 734

Participants who did not prefer SC commented on their preference as follows: “I feel 735

like the SC was going against my intention of wanting to get a closer look at 736

something”, “I felt more free to move. I didn’t feel restricted”, “I feel free to stop, move 737

at my own will and gives me a more relaxed experience”, “it felt more fluid”, “less 738

controls to worry about, especially when coming into this task with little experience 739

using a game controller”, “[without SC] was faster, get things done faster. I could steer 740

around people faster in conference hall” or “made me think I had stumbled whereas I 741

might just have been too close. This raises more question about personal space, but the 742

lack of speed-control felt more organic and also provided an opportunity to learn how 743

far I could go”. None of the participants who preferred the condition without speed 744

control thought that it was difficult to drive the TR (1-easy, 7-difficult, M=2.28, 745

SD=0.89). Only a participant thought that SC was “somewhat unlikely” to have 746

improved their performance in terms of task completion time (1-very likely, 7-very 747

unlikely, M=4.42, SD=1.17) and none of them thought that SC worsened their 748

performance in terms of number of collisions (1-very likely, 7-very unlikely, M=1.91, 749

SD=1.1). Participants also reported that they only felt moderate physical and mental 750

fatigue after the experiment (1-I feel very rested, 7-I feel very tired, for physical and 751

mental fatigue of M=3.28, SD=1.33 and M=3.71, SD=1.56 respectively). 752

5.6 Study 2 Discussion 753

In the second study, we investigated SC method in a conference-like environment where 754

participant had to communicate with other people within a less dense environment 755

compared to first study, while an automatic SC algorithm could be in effect. 756

Even though the TR slowed down with SC (though not significantly so) and SC 757

slightly decreased the task completion time and the number of collisions, there were no 758

significant differences on task completion time nor the number of collisions. Overall, 759

study 2 did not show a significant improvement in terms of TR navigation behaviour 760

when distance-based automatic SC was added, even though the device speed was 761

reduced and number of collision decreased, thus not supporting H1. However, since 762

subjects were socially interacting with other people, there are too many variables that 763

might have influenced the outcome. Moreover, the open areas in study 2 did not allow 764

us to investigate H2. 765

The observed split between participants who preferred to drive with or without SC 766

suggests that people have different driving preferences [47]. Participants for whom full 767

control, speed, and agency over the TR is important did prefer to have no automatic SC 768

or at least the option to switch it off when desired, especially in low density 769

spaces [16,40]. 770

In the first study, half of the participants had a valid driver’s license. Three of them 771

were driving once or twice a week and one of them was driving every day. Two 772

participants with driver’s licenses had been driving a car once or twice in six months. 773

Also, half of the participants reported that they played car driving games regularly, the 774

other half did not. In the second study, eleven participants had a valid driver’s license. 775

Three of them were were driving everyday, two of them were driving once or twice a 776

week, two of them were driving once or twice a month, three of them were driving once 777

or twice in six months, and one of them was driving once or twice a year. Two 778

participants reported that they do play car driving games and the rest reported that 779

they do not. Interestingly, all the participants who preferred to drive the TR without 780

automatic SC had a valid drivers’ license. Thus, one potential explanation of our results 781

is that real-world car driving knowledge might affect participants desire for SC. 782

However, there are other potential explanations, such as game car driving experience, 783
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cultural differences, or the influence of social interaction on driving, which could be 784

investigated in future work. 785

One possible explanation of the results is the hardware design of the distance sensors. 786

In our TR setup, we used sensors placed approximately 30 cm above the ground and 787

they were measuring distance at this height. Objects (much) lower and higher than this 788

height were not detected. For instance, while it was possible to measure the distance 789

between the TR and the leg of an actor, the shoe of the actor was not detected. Yet, a 790

(technically naive) end-user would likely expect the system to detect objects on the floor. 791

When such obstacles were not detected, user had to manually control the TR (even 792

though SC was enabled), which might have increased the frustration of the users and 793

which could explain the outcome. We discuss the limitations of the current setup 794

further below. We also speculate that different preferred social distances across cultures 795

might have affected our results in here [48]. Our subjects had a culturally very diverse 796

background, from all around the world. In some cultures, people prefer to get closer to 797

each other to communicate. Thus, the SC algorithm could have negatively affected 798

communication behaviours for different participants. We did not collect any data to 799

assess this effect, but as this is also a potential explanation for our results it warrants 800

further investigation. Another potential explanation of the results are environmental 801

factors, such as noise, which can be found also during regular TR navigation. In the 802

first study, subjects had to focus only on driving with visual feedback. In the second 803

study, subjects had to interact with people through spoken communication. The noise 804

in the environment or the incoming voice sound level might have had an effect on the 805

users’ preference to come closer to the actors, which might also have affected the results 806

of our study in terms of preference for or against SC. 807

Beyond our actors answering questions, we did not observe other substantial social 808

interaction between the participants and our actors, which is not that surprising 809

considering that participants were typically trying to minimize their time. We were also 810

unable to identify notable changes in terms of SC, i.e., slowing down near our actors. 811

However, we did observe that one participant (S5) moved the TR around the line of 812

waiting actors in S1, while the others went between the actors in the line. Among these 813

participants, three of them (P7, P8 and P11) did not ask actors to move so that the TR 814

could easily pass through the line of participants. In S3, one participant (P3) asked 815

actor A4 to move their feet and one participant drove over the feet of A4 (P2), while 816

the rest of the participants asked actors to move the bag in front of A4. In S8, the 817

participant (P3) who asked A4 to move their feet in S3, went between the bag and A4 818

without informing A4. Lastly, in S9, two participants (P5 and P8) moved around the 819

queue of waiting actors and two participants (P3 and P9) did not ask actors to move, 820

but went through the line. The rest of the participants asked actors’ permission to pass 821

between them in the waiting line. We believe that these behavioural differences might 822

be either due to varying cultural backgrounds or due to personality factors of the 823

participants. 824

6 General Discussion 825

In this work, we focused on changes in navigation user behaviors as an effect of using a 826

speed control method. As a basis for this work, we implemented a SC method that uses 827

the distance to objects in front of the TR to modulate the speed for dense environments, 828

without modifications to the existing Beam+ TR nor its GUI. We then conducted a 829

first user study in a static dense environment and demonstrated that such a SC method 830

can improve user navigation behaviours in terms of fewer collisions, especially in tight 831

sections with high curvatures in static dense environments. With the SC method 832

participants felt safer to drive the TR and perceived an increased the ease of use. This 833
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result also supports our hypothesis H1, i.e., that distance-based SC improves TR 834

navigation behaviour. Even though we did not acquire data nor designed our system to 835

reduce the number of collision at the back of the TR, we found that collisions of the 836

back of the robot decreased with the SC method. We believe that this result supports 837

our H2, in that SC increased users’ spatial presence in the maze. Since subjects were 838

more able to pay attention to the environment, they also did not hit objects with the 839

back of the TR in the maze. These two hypothesis also supports the findings of 840

previous work on SC [40,49]. 841

In our second study we evaluated TR navigation behaviour with SC in an 842

environment similar to an academic conference . In contrast to the first one, this study 843

had larger open areas and subjects had to interact with real humans. We saw a trend 844

towards a decrease in task completion time, but this was not significant, so our H1 was 845

not fully supported. Moreover, the large open areas in Study 2 did not allow us to 846

further investigate our H2 on spatial navigation. 847

With Study 1, we tested a distance-based SC method in static dense 848

environments and showed that it is beneficial for optimizing navigation 849

behaviours in such settings. All the subjects preferred SC in the first study, where 850

they did not have to interact with people. Study 2 revealed approximately binary 851

responses with respect to the sense of agency that users felt with respect to the two 852

different SC methods. While about half of the participants preferred automatic SC 853

because it allowed for smoother and safer navigation, the remainder preferred to have 854

full control over the speed as this gave them more agency and allowed for faster travel 855

even when close to obstacles. This result also supports the finding of previous studies 856

on individual driving preferences with vehicles [47]. While previous SC work 857

highlighted the importance and the application of SC [16,40,49], our study 858

revealed that always-on SC does not improve TR navigation behaviour 859

across all environments, such as when users had to interact socially. Still, 860

the automatic SC method implemented in this work improved TR navigation behaviour 861

in static dense environments for all users without increasing the task execution time 862

compared to previous methods [17,18]. 863

Through our interviews, we learned that agency and control can play an important 864

role in whether people prefer automatic SC or not. This outcome of Study 2 show 865

similarity with other research in the field on TR navigation. Basu et al. [50] showed 866

that participants’ vehicle driving styles vary, yet all their participants preferred driving 867

styles safer than to their own. This motivates us to believe that driving style affects 868

user experience and the participants’ desire for SC. Based on previous work [17], we 869

speculate that adding automatic SC would reduce the user’s perceived cognitive load 870

when the TR comes closer to objects. In such situations the user does not have to 871

divide their attention between the steering and the speed of the TR. Automatic SC 872

frees up the mental resources of the user, as they do not have to focus on the speed of 873

the TR and thus can focus on better navigation [17, 18]. Such limits to mental capacity 874

have also been observed in other fields. For example, in pedestrian traffic research, it 875

has been shown that there is a relation between walking speed, traffic density and the 876

capacity of the environment [51]. When there are physical limitations in the 877

environment, such as counter flow [52,53] or obstacles, including stairs [54], human 878

walking speed decreases in that particular environment to navigate more safely. 879

Study 2 results highlight the importance of giving users control, so they 880

can chose when they would like to have SC assistance or not, which 881

presents guidance for the design of future TR systems with 882

automation-on-demand [51]. Other TR research on user driving skills also supports 883

our conclusion; low-skill users benefit more from a TR assistance system designed to 884

help users to avoid hitting obstacles than skilled users, i.e., the assistance system was 885
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not uniformly helpful to all user levels [18]. In the automotive domain, automatic SC 886

assistance has been studied and results show that drivers prefer to take control of such 887

systems in situations when the driver sees that the system is taking an action that is 888

not desired [55, 56, 56] Users could activate such features as desired or systems could be 889

designed to detect the type of environment and adjust the degree of automation. 890

The finding from subjective results also suggest that user preference 891

needs to be taken into account when designing assistive features on TRs – 892

even though adding automatic SC showed a clear benefit by reducing collisions in Study 893

1, this did not generalize into an overall preference for it in Study 2 which involved 894

social interaction and used a more naturalistic conference-style setting, which mixes 895

tight passages with open areas, which were explored in previous work [16,40]. Social 896

interaction is an important aspect of TRs, but most work on assistance algorithms, such 897

as [16–18,40,43,57–61], did not test their algorithms in realistic environment with social 898

interaction. User preference on TR SC can change when users interact 899

socially with other people in realistic environment. It is also likely that because 900

participants were in a more realistic environment in Study 2 and they interacted socially, 901

a larger variety of factors, compared to Study 1, may have influenced their thought 902

processes when driving . When in a natural environment, users of TRs must consider 903

obstacles in addition to their desired interpersonal distances from others, which may 904

change depending on the people who are around. Obstacles and people move around, so 905

the dynamic nature of the environment could further affect people’s preferences and the 906

usability of the design. There are likely a host of ways that algorithms and systems 907

could be designed beyond what we have discussed here. Regardless of the specific design 908

solution, researchers and designers will need to consider such factors. 909

As stated above, we do not focus on the path-finding aspects for TR control. In our 910

experiments, when the user lost their way, the experimenter helped participant to 911

navigate back to the maze. This only occurred when the subject were in an open space, 912

such as between M5-M6. In such instances, the TR could not hit or touch any objects. 913

We also manually deleted all the data for intervals where the the user was trying to go 914

back to the maze. This helped us to only focus our analysis on how collisions occurred 915

in the dense environments. Further, we did not assess our SC results for certain steering 916

conditions, such as in curved segments. These topics are already well-studied [62–65]. In 917

this work, we focused our analysis on different segments and milestones to investigate if 918

automatic SC shows any detrimental effects in various situations that could be found in 919

social gatherings. Yet we were unable to identify any such negative effects. 920

Several measures of navigation performance had been previously used to assess the 921

performance of machine-learning-based methods for social navigation behaviours in 922

autonomous robots [66–72]. However, these studies focused on algorithms that 923

automatically plan a socially acceptable path without involvement of a human operator. 924

These approaches build on Proxemics theory [73] and use variables, such as distances 925

between robot and person or path and trajectory length. In dense environments the 926

path is typically so constrained, that path length(s) is not an appropriate measure to 927

assess human-driven TR navigation (as path length is not a sufficiently sensitive 928

measure in such environments). Also, in our study the tasks required TRs to get 929

relatively close to actors and poster boards, much closer than what is typically 930

considered desirable for autonomous navigation methods. Thus, we did not investigate 931

navigation performance measures designed for autonomous robots in our studies. 932

Navigation along narrow paths and in dense environments was also investigated within 933

autonomous robotics, e.g., [74–76], but this research again did not involve human 934

operators nor TRs. 935

The results of our work also suggest that the evaluated SC algorithm 936

can be used for static dense environments with narrow paths. When the 937
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user navigates into more open environments or interacts with people, the 938

activation of the algorithm should be left to the user. For instance, if there is a 939

single object close to the side of the TR in a open space, or a single person in an open 940

area, our algorithm would decrease the speed of the device automatically, which might 941

not lead to the ideal driving experience. As future studies, additional features, different 942

algorithms such as Conventional Neural Networks [77] or automatic way-point 943

approaches can be used to investigate user experience in such cases. Furthermore, as 944

discussed in study 2, since this distance sensors used in this study work at a horizontal 945

level, i.e., they only measure the distance at their installation height, objects out of view, 946

i.e., sufficiently below or above this height, will not be detected, which might increase 947

user frustration as they may not understand why the device did not “see” an obstacle. 948

7 Limitations 949

Even though our system was designed to investigate TR navigation in dense 950

environments, our prototype still suffers from software and hardware limitations. Here, 951

we acknowledge these limitation. 952

7.1 Sensor Ring & Distance measurements 953

In this study we used the six forward-facing ultrasound sensors attached to the TR 954

based on existing hardware [38]. Yet, an increase in this number of sensors might also 955

increase the accuracy of data acquisition. However, since we used an already existing 956

setup, we were limited to use six sensors to achieve a sufficiently high update rate. Still, 957

considering the size of the sensors and their view overlap, six seems to be a reasonable 958

number. Also, the update rate of the system was dependent on several variables, such as 959

the the speed of wireless connection and the processing rate of the computing hardware 960

used in this experiment. While additional computing power might help, this will incur 961

other issues, such as a need for more battery power. Although ultrasonic sensor rings 962

have been used in previous TR studies for obstacle avoidance [59,60] and navigation [58], 963

the above-mentioned issue with not being able to detect the actors’ feet also points out 964

that a simple, horizontal ring of ultrasound sensors might not be entirely sufficient for 965

collision avoidance nor automatic SC on a TR designed for conference-like environments. 966

To ensure that the distance sensors reliably detected all obstacles, we used duct tape 967

to cover all open spaces, such as the space between the legs of chairs and open spaces 968

between boxes in the first user study. We also taped all surfaces that were not reliably 969

detected by the range sensors, such as metallic objects or small gaps in the “walls”. 970

However, a more precise system with a higher refresh rate, such as a LiDAR sensor or a 971

millimeter cloud radar, could improve the rate and quality of the distance data 972

acquisition, which then would also increase the performance of the SC algorithm. Yet, 973

such systems are still prone to errors caused by reflective surfaces. Further, we 974

acknowledge that is very challenging to measure the absolute position and/or speed of 975

the TR reliably with the sensors we used, and thus we could not rely on these measures 976

to improve the SC algorithm. Yet, the findings of our first study show that adding even 977

our simple form of SC to a TR can improve the navigation behaviour and experience, 978

especially in dense static environments, such as sections of a factory floor, where there 979

are few people. In our second study, our results suggest that the SC algorithm could 980

decrease task completion time and number of collisions, but we were unable to identify 981

corresponding significant differences since subjects performed tasks with social 982

interaction in a realistic environment. Overall, we believe that a SC method can be 983

useful for TR applications. 984
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7.2 Speed Control Algorithm 985

It is not feasible to replicate all potential social and static scenarios and study various 986

UIs, GUIs, and SC algorithms. We designed a SC algorithm that controls the speed of 987

the device specified through the GUI and assessed TR navigation behaviour in a static 988

and a social environment to identify when automatic SC improves the user experience, 989

so that we do not need to use additional feedback to the user. For instance, notifying 990

the user about an upcoming obstacle or making recommendations would not work well 991

in the scenario for user Study 1, since all objects are close to the TR. This would lead 992

to constant notifications, which would diminish the effect of the feedback and could be 993

frustrating for participants. The movement speed of the TR is already visible through 994

the optical flow in the camera feed: drivers can easily see how fast or slow the robot is 995

moving by looking at the camera views. As such, we did not provide any additional 996

feedback mechanism beyond the existing camera views of the remote environment. 997

Considering such limitations, we implemented an unobtrusive TR SC algorithm and 998

evaluated navigation behaviour in dense environments. Within the given software and 999

hardware limitations, we were unable to identify or implement a notably better SC 1000

algorithm. Given that we have shown the benefits of a SC algorithm with Study 1, we 1001

consider a detailed comparison of the efficiency of different SC algorithms in various 1002

environments with different UIs to be out of the scope of this manuscript. 1003

7.3 Telepresence robot 1004

The TR we used in this work is designed for indoor environments, which is the reason 1005

why we limited it to a human’s walking speed and designed the SC algorithm 1006

correspondingly. This also means that the outcomes of this work might need to be 1007

further investigated for outdoor scenarios, including, e.g., urban search and rescue 1008

robotic applications. While the top speed for our TR is in the range of speeds used in 1009

previous studies, such as [45,53,78,79], we acknowledge that individual walking speed 1010

can vary with age, gender, and weight [79, 80] and we did not account for this variation 1011

in individual speeds in our study. 1012

Similarly, the TR we used is a commercially available teleconference product, which 1013

was used in previous work [1, 8, 9]. Other TR systems with additional features, such as 1014

automatically adjusting to the user’s head height [81], or with stereo displays with 1015

higher quality video transmission rate [82] exist. Moreover, unlike other telepresence 1016

work [43,57,61], we controlled the speed of the TR only through the user interface of 1017

the system, but not directly in the TR. In contrast, previous work that had full access 1018

to all components of the TR and where the feedback loop was running on a 1019

microcontroller, was able to use PID controllers [43,57]. We believe that our system 1020

might perform even better with such a hardware platform. 1021

7.4 Participants 1022

We also collected data for 12 subjects in both studies. Although we used only a limited 1023

number of participants, we found clear differences, as also illustrated through overall 1024

high effect sizes (0.63 to 0.77). Even though the participants were different in both 1025

studies, a larger sample size could increase the depth of insights on the SC method in 1026

TR, especially for user study 2. 1027

We also collected data from university students who had no previous experience with 1028

navigating a TR. Even though subjects were allowed to practice both with and without 1029

SC until they felt confident, a longer learning period or an expert user might experience 1030

different results [18]. Also, we had predominantly female participants in our studies, 1031

which is not representative of all target contexts. 1032
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7.5 Experimental Environment 1033

In both studies actors and obstacles were fixed. In a dynamic environment, such as a 1034

conference or a bustling workplace, people move around, also when they interact with 1035

the TR. Since it is difficult to replicate a real environment that constantly changes 1036

while maintaining the repeatability of the experiment, we decided to focus on static 1037

environments and obstacles. In a conference or work environment, the audio noise level 1038

would also be much higher than in our experiments. 1039

7.6 GUI 1040

In study 1, subjects did not need to interact socially, and pilot participants preferred a 1041

minimized forward-facing camera view. Thus, we increased the size of the downward 1042

camera view to its’ maximum size for this study. Since the Beam GUI shows both views 1043

in a single window and does not allow one to split the camera views into different 1044

windows, that enlargement meant that the forward view automatically became as small 1045

as possible (350 pixel x 260 pixel or 11 cm x 8 cm). Still, this size was sufficient to 1046

enable participants to see where they were driving in free space and it also helped them 1047

to pass under the ladder (part of the obstacle course). In the second study, we changed 1048

the size of the both views to allow participants to experience reasonable views for both 1049

navigation in the environment and social interactions. Thus we gave similar amount of 1050

space to both camera views, 19 x 14.5 cm or 620 pixel x 465 pixel for the forward-facing 1051

camera and 18.5 x 14 cm or 595 pixel x 445 pixel for the downward-facing one. This is 1052

also shown in Figure 2. Thus, while we were carefully set the size of the camera views, 1053

these sizes (and the much larger than normal forward-facing camera view) should be 1054

taken into account when considering our results. To avoid a potential confound, we did 1055

not allow participants to individually vary the size of the camera views. These 1056

dimensions clearly depend on the size of the computer screen, which is another 1057

limitation of our work. 1058

8 Conclusion and Future Work 1059

In this paper, we assessed an automatic speed control method designed for telepresence 1060

robot navigation in dense environments. Our results showed that speed control can 1061

significantly improve TR navigation behaviour during telepresence robot navigation in 1062

static dense environments. Moreover, we also identified that in environments that 1063

require social interaction, the benefits of automatic speed control are reduced. Our 1064

findings also suggest that when the user had to interact within a social environment, 1065

some users could feel limited by automatic speed control, but for others the use of a 1066

speed control algorithm decreased cognitive load and improved spatial presence. Thus, 1067

we suggest that users should have an on/off option for automatic speed control 1068

algorithms. Moreover, researchers should test their developed algorithms with tasks 1069

that require social interaction. Researchers and designers of navigation and driving 1070

systems for telepresence robots should consider the design features we presented and 1071

explore how user preference, driving experience, environment, and desires for certain 1072

interpersonal distances from others can be accommodated in such systems. 1073

In the future, we are planing to extend our studies to more complicated 1074

environments, such as where people are walking or passing in front of the telepresence 1075

robot as well as outdoor environments, where spaces may have differing types of 1076

obstacles, or uneven terrain with additional metrics, such as the NASA TLX. Another 1077

environment to study is areas where more people are present than what we have already 1078

studied, with various environmental conditions, such as different levels of noise. 1079
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Moreover, we want to further investigate how previous driving experience affects 1080

telepresence robot navigation with a speed control algorithm. 1081

Appendix 1082

Tables 1083

Table 1. Fisher’s test results for study 1

Dependent
Variable

Speed Control Input Device
Input Device

x
Speed Control

Task Completion
Time

F(1,11)=4.126, p=0.067
η2 = 0.27

F(1,11)=0.647, p=0.438
η2 = 0.056

F(11,1)=0.201, p=0.66
η2 = 0.018

Total Number
of

Collisions

F(1,11)=36.75, p<0.001
η2 = 0.77

F(1,11)=1.986, p=0.186
η2 = 0.153

F(1,11)=0.011, p=0.92
η2 = 0.001

Front Touch
F(1,11)=21.78, p<0.001

η2 = 0.66
F(1,11)=0.152, p=0.698

η2 = 0.014
F(1,11)=0.31, p=0.594

η2 = 0.27

Back Touch
F(1,11)=3.160, p=0.103,

η2 = 0.233
F(1,11)=2.708, p=0.128,

η2 = 0.198
F(1,11)=0.062, p=0.807,

η2 = 0.006

Front Hit
F(1,11)=23.32, p<0.001

η2 = 0.014
F(1,11)=0.244, p=0.631,

η2 = 0.022
F(1,11)=1.15, p=0.25,

η2 = 0.118

Back Hit
F(1,11)=19.062,p<0.001

η2 = 0.634
F(1,11)=2.518, p=0.141,

η2 = 0.186
F(1,11)=0.012, p=0.913,

η2 = 0.001

Table 2. Study 2 ANOVA results and statistical measures
Dependent
Variable

Statistical Analysis Speed Control ON Speed Control OFF

Task Completion
Time

F(1,11)=2.492, p=0.143
η2 = 0.185

M= 325.5, SD=84.2, SEM= 30.7,
95% CI [271.95, 379.04]

M=372.8, SD=106.5, SEM=30.7,
95% CI [305.01, 440.04]

Total Number
of

Collisions

F(1,11)=0.647, p=0.438
η2=0.056

M=0.333, SD=0.49, SEM=0.14,
95% CI [0.02 0.64]

M=0.5, SD=0.67, SEM=0.19,
95% CI [0.07, 0.92]
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Figures 1084

(a) (b)

(c) (d)

(e) (f)

Fig 8. Task completion time means and standard error of means for (a) input device,
(c) speed control, (e) input device and speed control interaction. Task completion time
means and 95% confidence intervals for (b) input device, (d) speed control, (f) input
device and speed control interaction.
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(a) (b)

(c) (d)

(e) (f)

Fig 9. Means and standard error of means for average number of collisions for (a)
input device, (c) speed control, (e) input device and speed control interaction. Means
and 95% confidence intervals for number of collisions for (b) input device, (d) speed
control, (f) input device and speed control interaction.
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(a) (b)

(c) (d)

(e) (f)

Fig 10. Means and standard error of means for number of touches from the front side
for (a) input device, (c) speed control, (e) input device and speed control interaction.
Means and 95% confidence intervals for number of touches from the front side for (b)
input device, (d) speed control, (f) input device and speed control interaction.
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(a) (b)

(c) (d)

(e) (f)

Fig 11. Means and standard error of means for number of touches from the back side
for (a) input device, (c) speed control, (e) input device and speed control interaction.
Means and 95% confidence intervals for number of touches from the back side for (b)
input device, (d) speed control, (f) input device and speed control interaction.
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(a) (b)

(c) (d)

(e) (f)

Fig 12. Average number of hits from the front side and standard error of means for (a)
input device, (c) speed control, (e) input device and speed control interaction. Means
and %95 confidence intervals for number of hits from the front side for (b) input device,
(d) speed control, (f) input device and speed control interaction.
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(a) (b)

(c) (d)

(e) (f)

Fig 13. Means and standard error of means for number of hits from the front side for
(a) input device, (c) speed control, (e) input device and speed control interaction.
Means and %95 confidence intervals for number of hits from the front side for (b) input
device, (d) speed control, (f) input device and speed control interaction.
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(a)

(b)

Fig 14. Detailed milestone analysis for (a) time and (b) average number of hits from
the front side. Only path segments with significant differences in at least one of the
measures are shown.
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(a)

(b)

(c)

(d)

Fig 15. Detailed milestone analysis for average number of (a) collisions, (b) front
touch, (c) back touch and (d) back hit. Detailed time and front hit analysis per
milestone is shown in Figure 14.
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(a) (b) (c) (d)

Fig 16. Study 2 SC task completion time (a) means and standard error of means, and
(b) means and confidence intervals. Study 2 SC average number of collision for (c)
means and standard error of means, and (d) means and confidence intervals.

(a)

(b)

Fig 17. Study 2 detailed milestone analysis for (a) task completion time and (b)
average number of collision.
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(a)

(b)

Fig 18. Study 1 participant results (a) total task completion time and (b) total
number of collision.
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(a)

(b)

Fig 19. Study 2 participant results (a) total task completion time and (b) total
number of collision.

October 22, 2020 39/47



Supporting information

S1 Video. The video of the submission.
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