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ABSTRACT
State-of-the-art auto-correction methods for predictive text entry
systems work reasonably well, but can never be perfect due to
the properties of human language. We present an approach for
the automatic detection of erroneous auto-corrections based on
brain activity and text-entry-based context features. We describe
an experiment and a new system for the classification of human
reactions to auto-correction errors. We show how auto-correction
errors can be detected with an average accuracy of 85%.
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Today, predictive text entry systems are omnipresent on mobile
phones and tablet computers. Those systems acknowledge that
typing on a small keyboard with limited tactile feedback results
in a higher error rate compared to typing on a physical computer
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keyboard. Thus, they provide auto-correction mechanisms to auto-
matically replace mistyped words. Auto-correction methods have
improved substantially over the last decade and nowadays can
even use large-scale machine learning approaches for further im-
provements. However, even sophisticated state-of-the-art auto-
correction approaches have error rates around 5% [11]. Given that
we must expect a substantial fraction of typed words to contain
at least one wrong letter1, we must assume a high prevalence of
auto-corrections – and therefore, auto-correction errors – during
most text entry situations. Anecdotally, the impact of such errors
is also documented by the existence of dedicated websites like
http://damnyouautocorrect.com which show that auto-correction
can still go wrong, generating unexpected results ranging from
hilarious to disastrous. The development of methods for the mit-
igation of auto-correction errors by commercial enterprises [19]
is another indicator for the necessity of handling such events in a
less intrusive and cognitively exhausting way.

In this paper, we propose a novel technology to enhance auto-
correction in a text entry system, which actively detects auto-
correction errors as soon as they are perceived by the user. This is
done by analyzing the user’s cognitive processing of a presented
“correction”, and the behavioral and linguistic context of the cor-
rection. To measure such cognitive processing, we exploit the fact
that a discrepancy between the expected and the observed system
behavior results in characteristic patterns of brain activity. This
pattern is called Error Potential (ErrP) and can be measured using
Electroencephalography (EEG) almost immediately after erroneous
system feedback is presented following a user action. A typical ErrP
can be measured at fronto-central positions and occurs in a window
of about 150ms to 600ms after a stimulus, i.e., the presentation of a
correction, with its most pronounced components being a negative
peak around 250ms and a positive peak around 350ms [10]. The
exact contour and latency of an ErrP varies with tasks and individ-
uals [20]. Work on “cortically-coupled computing” [13, 34] shows
that by online classification of EEG potentials, a system reaction
can precede a conscious human reaction to a target stimuli. Thus,

1we estimate this fraction as 23%, based on the the probability for mis-typing a single
letter of 5% [1] and an average word length in English of 5.

https://doi.org/10.1145/3136755.3136784
https://doi.org/10.1145/3136755.3136784
http://damnyouautocorrect.com


ICMI ’17, November 13–17, 2017, Glasgow, United Kingdom F. Putze et al.

identifying ErrPs enables the design of systems that actively re-
cover from errors. All this suggests that this technology is an ideal
candidate for dealing with erroneous auto-corrections.

The ability to detect errors of an auto-correction mechanism
would enable the possibility to automatically amend an initial auto-
correction, for example by replacing it with an alternative or by
providing additional ones. In this paper, we concentrate on the
detection of such errors of the auto-correction. For this purpose, we
use EEG features to capture occurring ErrPs in combination with
context information derived from the predictive text entry keyboard.
We demonstrate for the first time the feasibility of background
error correction through EEG and context information without
user involvement. For this purpose, we describe the recorded data
corpus, the developed classifiers, and the performed evaluation.

1 RELATEDWORK
1.1 Correction Approaches for Text Entry
In the HCI literature, different cues have been used to correct text
input errors for a variety of input methods, including language
models [16], keypress timing [6], hand postures [15], accelerometer
data for mobile text entry [14], uncertainties in terms of finger po-
sitions on a touch screen [40], gestures during eyes-free input [37],
geometric pattern matching [22], multi-modal input [36], as well
as a combination of spatial and language models [11]. Modern
approaches often support both word completion and typing correc-
tion [3]. While many of these techniques make use of automatic
approaches to correct errors, most related work focuses on the
reduction of of user errors during text entry. Little is known about
how users can recover from errors of the auto-correction and how
this can again be supported automatically.

1.2 ErrP detection for BCIs
Unsurprisingly, the idea to use ErrP detection for correcting errors
made by a text-entry system has been first introduced in the context
of Brain-Computer Interfaces (BCIs), as the necessary equipment
for EEG recordings is routinely used there. BCIs as input or control
device suffer from far-from-perfect recognition rates. A standard
technique to remedy this is to always repeat each input several
times. This increases robustness but leads to a low transfer rate [23].
The detection of ErrPs enables an increase in accuracy and therefore
the potential transfer rate. Combaz et al. [7] showed how they can
detect ErrPs during operation of a P300 speller BCI. They suggested
to use the second-best recognition result of the BCI in case of a
detected ErrP and showed through simulations how this would im-
prove performance. Spüler et al. [35] pursued a different approach
and deleted the previously given input in case an ErrP was detected.
They then prompted the user to repeat the input command. The
authors showed how they could use an online ErrP classifier to sig-
nificantly increase transfer rate. A similar approach was chosen by
Schmidt et al. [33], who showed that they could reliably detect ErrPs
online and demonstrated a significant increase of communication
speed for their gaze-independent “Center Speller” BCI. The work
by Margaux et al. [27] is a rare example of studies that do not only
investigate objective criteria but also subjective responses to error-
aware interfaces. For a P300 speller with second-best correction,
the authors showed that most participants “reported a preference

in favor of a spelling including automatic correction”. However,
the authors also noted large individual differences regarding the
subjective evaluation of their error-aware BCI. Llera et al. [26] used
ErrPs to adapt the weight parameters of a logistic regression model
for BCI operation to better represent the (assumingly) misclassi-
fied trial. They used simulation and offline analysis of data from
eight participants to show that this process improved classification
accuracy.

1.3 ErrP classification in general HCI
The number of studies which transfer ErrP detection to other in-
put modalities, such as gestures, is limited. Förster et al. [12] used
classification of ErrPs during operation of a gesture recognition
system to improve its performance by adaptation of the gesture
recognizer. However, their system did not immediately react to the
detected ErrPs by error correction. Instead, it focused on improv-
ing gesture recognition accuracy by selective online adaptation:
gesture trials which were classified correctly, i.e., did not result in
an ErrP, were added to the training data to train a personalized
gesture recognizer. This addressed a challenge for unsupervised
adaptation, namely that the addition of misclassified trials can re-
sult in performance degradation instead of improvement. Vi and
Subramanian [39] proposed an ErrP recognition system based on
a consumer-level EEG device. They performed person-dependent
ErrP classification, using a test set of 80 trials of Flanker Tasks and
achieved a classification accuracy of about 0.7. Using a simulation
of ErrP classification with different error rates, they also showed
that a non-perfect ErrP detection rate between 0.65 and 0.8 was
already beneficial for the enhancement of interactive systems for
detecting user errors in spatial selection with the Flick technique
on a touch surface. The authors analyzed accuracy improvements
by allowing manual corrections when an ErrP is detected, but did
not analyze costs or other usability aspects. Putze et al. [29, 30]
showed that ErrPs can be detected in gesture-based user interfaces
and used them to provide a self-correcting input mechanism. The
authors used a model-based simulation to investigate the effect of
different correction strategies and validated its predictions in a user
study.

This literature review shows that single-trial classification of
ErrPs from EEG is feasible in HCI contexts and can lead to measur-
able benefits for the user. However, applying ErrP classification for
the detection of auto-correction errors of a predictive text entry
method is challenging and it is unclear whether existing results can
be transferred. Several challenges are associated with ErrP classifi-
cation in the auto-correction context: 1) Auto-correction feedback
to the user is subtle and can easily be missed. 2) As an erroneous
auto-correction may only differ slightly from the intended word,
it may not always be obvious to the user if and when an error
occurred. 3) On the other hand, in some instances, users might
expect auto-correction errors prior to their actual occurrence, e.g.,
for known flaws of the correction dictionary. 4) Auto-correction
feedback perception overlaps with typing of the next word as users
usually type continuously. 5) The user is (typically) operating a
mobile device with manual commands, generating a lot of motion
artifacts in the EEG signal. For those reasons, it is important to
investigate whether ErrP classification is still possible under these
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Figure 1: Screenshot of the custom keyboard. The notifica-
tion (on the last pressed button and the space bar) indicates
that a typed word was just replaced by an auto-correction.

challenging conditions and how the integration of context informa-
tion can help in this context.

The rest of this paper is organized as follows: In the next three
sections, we describe how we collected a set of EEG data from
participants while they used a virtual keyboard with (sometimes
incorrect) auto-corrections, we describe the classifier which we
designed to detect auto-correction errors from this data, and we
analyze the performance of the classification of auto-correction
errors. The final section discusses the results and concludes the
paper.

2 EXPERIMENTAL SETUP
2.1 Text Entry System
For collecting a data corpus of EEG data during text entry auto-
correction, we designed and conducted an experiment. During
the experiment, participants were asked to type short sentences
presented to them on a virtual keyboard of a tablet computer. The
keyboard contained a simple auto-correction mechanism which
replaced erroneous, i.e., non-dictionary, words that the users typed
with similar words from the dictionary. Brain activity during and
after the presentation of those responses was recorded using EEG.

To present the target phrases, we used a slightly updated version
of the TEMA software [4] on a Google Nexus 10 device running An-
droid 6 as operating system. To ensure that participants generated
and perceived an appropriate number of correct and wrong auto-
corrections within a limited timeframe, we implemented a custom
keyboard (based on the default Android keyboard layout) which
was “rigged”, in that it replaced typed letters with neighboring keys
on the keyboard with a probability of 5%. The probability was cho-
sen to mirror a typical typing error rate on soft keyboards [1]. This
way, we could expect to record more data of correct and wrong auto-
corrections within the allocated time, and gather sufficient data for
training and testing of a classifier for auto-correction-associated
ErrPs.

The implemented keyboard employs a simple correction mecha-
nism: Corrections are restricted to full words after the participant

pressed the space key or the enter key at the end of a sentence.
Any entered non-dictionary word is replaced by a randomly chosen
word from the set of dictionary entries with the lowest Levenshtein
distance to the entered word. Such corrections do not trigger a
suggestion, but an immediate replacement of the originally typed
word. Due to ambiguity of the possible suggestions derived with
this method, these replacements will contain errors. We extract EEG
data and context information following each correction attempt
and classify it to identify ErrPs indicating wrong corrections. It is
important to differentiate between ErrPs resulting on the one hand
from user errors (or errors induced by the rigged keyboard) and
system errors resulting from the correction mechanism on the other
hand. In the chosen design, each correction attempt is due to an
(potentially rigged) entry error, as corrections are only performed
for words which are not contained in the dictionary.

An important aspect of analyzing ErrPs is to ensure that the stim-
uli triggering the ErrP are regularly perceived. To maximize the
probability of participants perceiving performed auto-corrections,
the keyboard used four mechanisms: First, the target phrase to type
was removed after the participant started typing to prevent partici-
pants from gazing at the text presentation and thus not be able to
see potential corrections. Second, the word was replaced within
the text field. Third, a sound was played and the tablet vibrated
briefly for each correction. Fourth, the replacement was shown as
a notification on the keyboard over the letter which was pressed
last, as well as the space bar (see Figure 1). The last mechanism was
introduced to make sure users noticed auto-corrections even when
they focused their gaze on the keyboard instead of the typed text.
The notification was displayed at multiple locations to maximize
the probability that it appeared at a location at which the user is
already looking. In contrast to a solution with notifications in a
fixed location, e.g., in the center of the screen, our design allows
users to naturally control their gaze. When evaluating ErrPs, we
are only using EEG data from a segment following this notification,
i.e., we do not expect many eye movement related artifacts to be
superimposed on neural activity.

2.2 Data Collection
The phrase list from which phrases were presented randomly to the
participants was extracted from the German OpenSubtitles phrase
set [32]. We used only sentences without umlauts, converted text to
lower case and removed all punctuation marks to avoid switching
between different keyboard modes. Participants were asked to not
use the backspace button to avoid interference between retroactive
user activity and true correction events. Participants were told to
write the sentences as fast and accurately as possible (favoring
speed over accuracy if necessary). Furthermore, we instructed the
participants to pay close attention to the performed corrections,
allegedly because we were interested in their opinion on the cor-
rection quality.

In total, 12 university students and research assistants (seven
female) participated in this experiment. Participants were aged
between 19 and 36 years (average 26.0, standard deviation 5.1). All
participants were informed about the nature of experiment and
gave their written consent of participation. Participants received
monetary compensation for their participation (10 Euro). Each
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Figure 2: Photo of the experimental setup. Participant is
wearing an EEG cap while typing on the table. Note that in
the actual experiment, the participant could not see the EEG
signal.

participant was given 15 training sentences to get accustomed to
the keyboard, the implemented auto-correction and the overall
flow of the experiment. After that, they typed 120 sentences. On
average, this took 23.4 minutes (with a standard deviation of 4.8
minutes). After the experiment, participants were asked to fill a
short questionnaire with 5-point Likert-scale items to assess how
they judged their own performance and the performance of the
system.

During the experiment, participants were equipped with an
BrainProducts actiCAP with 32 active EEG electrodes. The elec-
trodes were organized in a standard 32 channel actiCAP layout
following the international 10-20 system. Pz was used as refer-
ence electrode. Impedance was kept below 16kΩ. Two electrodes
were placed below and right to the right eye as EOG electrodes to
capture ocular activity. The measurements were amplified by the
actiCHamp amplifier and recorded via the PyCorder software. To
synchronize the correction events with the EEG signal, the key-
board provided a color-switching box to which a light sensor of the
recording setup was attached. Figure 3 shows a participant wearing
the EEG headset while operating the virtual keyboard on the tablet.

3 DETECTION OF AUTO-CORRECTION
ERRORS

We treat the task of detecting incorrect auto-corrections as a two-
class classification problem. We extract EEG windows aligned to
the presentation of the correction in the user interface, following
the implicit assumption that the correction is perceived within a
reasonably stable time frame after presentation. The noError class

is assigned to windows with corrections which yielded the expected
word, while the error class is assigned to windows corresponding
to wrong corrections.

3.1 EEG and Context Features
For classification of ErrPs induced by incorrect first-order correc-
tions, we combine features extracted from the EEG segment corre-
sponding to the cognitive processing of the correction with context
features derived from the correction procedure. Each window is
baseline-corrected by subtracting the mean of the signal 200ms
before the window. Then, for each window and electrode posi-
tion, we calculate two types of features: time-domain based and
frequency-based ones. To calculate time-domain features, we par-
titioned each data window into smaller segments of 50ms length.
We then used the signal mean of the segment, calculated on the
band-pass filtered signal, with cutoff frequencies at 4 and 13Hz
(i.e. θ− and α−bands). For the frequency-based features, we calcu-
lated the frequency power spectrum between 4 and 13Hz of the
window, using Welch’s method [41]. Those cutoff frequencies for
filtering and frequency feature extraction were chosen because
ErrPs are known to occur especially in the θ -band (see for example
Cavanagh [5]); however, as frequency band borders are known to
be person-dependent [9], we chose to include the α-band as well. As
ErrPs can be expected to be most prominent at central-midline elec-
trode positions, we restrict our feature extraction to the electrode
positions Fz, Cz, and Pz. All features calculated on one window
were stacked to form the tentative feature vector corresponding to
that window.

In addition to the EEG features, we also derive several context
features associated with each window. Those features encode in-
formation about the likelihood of a wrong correction and other
parameters which might influence the generated EEG. The context
features are as follows:

C1 Typing speed for replaced word relative to average typing
speed

C2 Length of the replaced word (in number of characters)
C3 Time before user continues typing during evaluated EEG

window (in ms)
C4 1/N , where N = number of candidate words of minimal

Levenshtein distance to typed word
Feature C2 and C4 encode information about the likelihood of a

wrong correction, based on the assumption that such an event is
more likely when more words for replacement are plausible, which
can be directly measured by the number of replacement candidates
and indirectly measured by the length of the word. Features C1 and
C3 encode information about the likelihood to actually notice the
wrong replacement. We expect participants who type very switftly
and do not pause after a correction has occured, to more likely miss
such an event.

Depending on the selection of tuning parameters, the described
process generates thousands of features per window. As the re-
sulting feature-space is large compared to the number of available
training windows, we performed a feature selection using the Fisher
ratio as selection criterion. The number k of selected features, i.e.,
those which exhibit the highest Fisher ratio, was a tuning parameter
in the range between 5 and 50.



Classification of Auto-correction Errors Based on EEG and Context ICMI ’17, November 13–17, 2017, Glasgow, United Kingdom

3.2 Classification of Imbalanced Data
For classification, we employed a Linear Discriminant Analysis
(LDA) with co-variance shrinkage as regularization method. The
shrinkage parameter was automatically determined using the ana-
lytic method by Ledoid-Wolf [24]. The LDA is trained in a person-
dependent way, i.e., a new classification model is trained for each
participant from his or her data.

A highly imbalanced class distribution as present in the PTE
classification task may lead to degenerate classifiers with a strong
bias towards the majority class (the noError class in our case) [2].
To cope with this challenge during training, we combine oversam-
pling of the minority class with undersampling of the majority class.
This processing chain is inspired by Putze et al.’s approach [31]. For
oversampling, we employ the ADASYN algorithm [18]. ADASYN
generates artificial samples by creating random interpolates be-
tween data points of the minority class. During this process, the
algorithm generates most new samples from data points of the
minority class which lie close to data points of the majority class,
i.e. in regions which are critical for classification. We use ADASYN
to generate additional training data for the error class. For under-
sampling of the majority class, we use a simple bagging approach
in which we train several classifiers on randomly selected subsets
of the majority class data (and all data of the minority class). Sam-
pling is performed without replacement and set to a target class
ratio of 0.7. ADASYN then generates synthetic samples to achieve
a balanced class distribution in each training set. For each window,
we perform a voting between all trained classifiers in the ensemble
and assign the label error when the number of classifiers voting
for this class exceeds a threshold. The number of weak classifiers
within the ensemble is fixed to 100 in our setup.

The full classification pipeline is implemented in Python. For EEG
processing, we use the MNE toolbox [17]. For machine learning and
evaluation algorithms, we use scikit [28] and custom routines build
on numpy and scipy. The methods for over- and undersampling are
taken from the imbalanced-learn toolbox [25].

4 EVALUATION
4.1 Feature Analysis
Using the described experimental setup, we collected a total of
12 data sets. Each data set contained 120 sentences with a mean
total number of 474.25 words (standard deviation of 6.3). Before
the analysis, we excluded sentences in which the number of typed
words did not match the number of expected words, i.e., with extra
or omitted white space. This was done to avoid ambiguity about
the alignment of the EEG window and the calculation of context
features. Of all typed words, 25.85% were corrected (standard de-
viation of 3.7%). Of those corrections, 74.15% yielded the correct
word (standard deviation of 13.1%). This indicates that the system
must deal with an imbalanced classification problem, in which the
error class is the minority class.

We analyze the responses to the post-experiment questionnaire
to study typing behavior and possible implications. Table 2 shows
the averaged agreement scores for all questions. Participants re-
sponded that they mostly looked at the keyboard during the ex-
periment (agreement of 4.4 on a 5-point Likert scale with 5 corre-
sponding to full agreement), which underlines the importance of

Table 1: Mean and standard deviation (in parentheses) for
the context features, separated for error and noError class.
Feature C1 is normalized by average typing speed.

noError error

C1 -2.8 (121.6) -29.9 (128.1)
C2 5.5 (1.6) 4.1 (1.9)
C3 1646.8 (1525.7) 1875.1 (2960.0)
C4 0.9 (0.2) 0.4 (0.3)

correction feedback on the last-pressed key. Participants also re-
ported that the given sentences were easy to memorize (agreement
of 4.7), making it likely that auto-corrections could be checked
for correctness. However, there was only medium agreement to
the statement that the participant consistently perceived the cor-
rectness of the replacements (agreement of 3.7). This shows the
challenging nature of classification of auto-correction errors as
we can expect to encounter substantial label noise in cases where
participants missed a wrong correction and did not experience an
ErrP.

Figure 4 exemplarily shows a Grand Average plot of the recorded
EEG data for one participant, presenting the mean difference in
signal amplitude for classes error and noError. We see that the
EEG signal indeed reacts differently to stimuli of both classes, ex-
hibiting strong deviations between 500ms and 900ms. We note that
in comparison to more controlled recordings of ErrPs, the latency
of the neural response in relation to the stimulus onset is larger. We
explain this by considerable delay in stimulus perception, which
requires the participant to note the correction attempt, process the
result of the correction attempt, and detect the mismatch to expec-
tation. This explanation is also consistent with the considerable
delay until the next word is typed after a correction, see Table 1.

Table 1 summarizes statistics for the context features for classes
error and noError. We see that these features exhibit significant
differences in mean for the two classes, which makes them promis-
ing candidates for classification. For example, as expected, errors
were more likely for shorter words (C2) and when fewer strong al-
ternative corrections were available (C4). We also see that in case of
an auto-correction error, users type slower (C1) and make slightly
larger pauses afterwards (C4). However, considering the standard
deviation in relation to the means (consider for example feature C1
– typing speed – from which a number of extreme outliers were
already removed to calculate the mean in Table 1), we should expect
substantial variation on a single-trial level, meaning that relying
only on context features is likely not robust enough.

4.2 Classifier Evaluation
The classifier is evaluated in a 10-fold cross-validation. As evalu-
ation metrics, we report classification accuracy, precision, recall,
and F1-score (of the error class). Classification is performed for
each participant individually and results for all participants are
averaged. In Table 3, we summarize the results of the classifier
of auto-correction errors. Furthermore, we report baseline results
for the accuracy and F1-score metric. Baseline accuracy was de-
termined as the relative frequency of the majority class (noError),
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Figure 3: Schematic of the over- and undersampling approach for classification of auto-correction errors.

Figure 4: GrandAverage (error-noError) of EEGdata of a par-
ticipant at electrode position Fz.

Table 2: Mean and standard deviation for the questionnaire
results on text entry setup (AC = auto-correction). I. . .

Mean Std. Dev.

. . .made many mistakes 3.25 0.87

. . .wrote fluently 3.33 1.15

. . . noticed keyboard errors 3.25 1.71

. . .memorized prompts easily 4.67 0.49

. . . noticed whether AC correct 3.67 1.07

. . . expected occurence of AC 3.92 0.90

. . . looked at keyboard 4.42 0.67

. . . ignored AC 2.67 1.44

. . . noticed rigged letters 3.92 1.68

. . . found AC sometimes inexplicable 3.42 1.00

. . . could guess correctness of AC 2.5 1.00

while baseline F1-score was determined assuming a classifier which
consistently predicts the target class (error), resulting in an as-
sumed recall of 1.0 and an assumed precion equal to the relative
frequency of the target class. This approach maximizes the baseline
scores to which we compare to. As multiple components of the
classification setup rely on non-deterministic processes, i.e., both
over- and undersampling, we repeated the analysis for each par-
ticipant 10 times and report results averaged across all repetitions.
Table 3 shows that all performance metrics of the classifier indicate
reasonable classification performance. Indeed, a paired, one-sided
t-tests performed on the participant-wise F1-scores and accuracies
shows that the classifier exhibits a performance which is signifi-
cantly better than the respective baseline score (p < 0.05). This
indicates that auto-correction error classification is feasible despite
the challenging conditions. Our results indicate that the classifier as
implemented is tuned more towards a high precision than towards
high recall. For text entry applications, this is a desirable result
as false positive results will yield distracting system actions when
undoing correct auto-corrections. In contrast, false negatives will
require the user to manually override the auto-correction, which
is needed in current predictive text entry systems anyway. For
other application scenarios, a different trade-off between precision
and recall can be achieved through adjusting the parameters of
the over- and undersampling procedure. We also employed paired,
one-sided t-tests to show that the fusion classifier combining EEG
and context features results performs significantly better than the
two individual ones (p < 0.05 in both cases).

4.3 Feature Selection
The analysis of selected features gives us the opportunity to investi-
gate feature stability both for individual and across sessions. Feature
stability is an indicator of how robust the resulting classifiers are
against variations in training and testing data. For individual ses-
sions, we measure feature stability by counting the occurrence of
features across cross-validation folds and bagging instances. As in
each fold and for each bagging instance the training data is dif-
ferent, features which are selected consistently are robust against
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Table 3: Classification auto-correction error results. We
present mean and standard deviation for different feature
combinations.

Accuracy Precision Recall F1 Score

a) Baseline Mean 0.76 - - 0.38

b) EEG Mean 0.69 0.25 0.38 0.30
Std. Dev. 0.08 0.10 0.13 0.07

c) Context Mean 0.81 0.40 0.70 0.49
Std. Dev. 0.03 0.19 0.25 0.18

d) Combined Mean 0.85 0.82 0.65 0.72
Std. Dev. 0.03 0.05 0.11 0.08

variations in the data. This analysis of feature counts reveals that av-
eraged across all participants, 6.1 features are selected in more than
75% of all instances. This indicates the availability of a relatively
stable feature set for each participant. We can also average feature
counts across participants to analyze inter-personal stability. In this
analysis, we see that 16 features were selected in more than 40% of
instances (see Table 4 for the ten most frequently selected features).
These results show a reasonable agreement across participants. As
one would expect, cross-participant agreement on features is less
than within-participant agreement due to individual differences in
neural responses.

To understand which features are most relevant for the classi-
fication, we also look at which features were selected most often.
Table 4 gives a summary of the ten most frequently selected features
across all participants. We see that both spectral and time-domain
features contribute to the selection. From the three employed elec-
trodes, Fz and Cz dominate the selection, while Pz plays a minor
role, as expected from the fronto-central localization of error poten-
tials. To test if classification performance was due to task-related
ocular artifacts in the EEG signal, we repeated the classification
with added features from the EOG electrodes, which most clearly
capture ocular activity. As the addition of these features did not
improve classification accuracy, we conclude that the developed
classification model does not rely on ocular artifacts.

5 DISCUSSION & CONCLUSION
In this paper, we described an experiment for collecting EEG data
on auto-correction errors and showed that, despite challenging
conditions, classification of auto-correction errors from EEG signals
and context features is feasible and yields classification performance
significantly better than the baseline. The combination of both types
of features yielded a significant improvement over using any single
one of the two feature types. While the EEG features alone were
not discriminative enough, adding the context features allowed the
classifier to pre-filter likely auto-correction errors. Furthermore, we
analyzed themost frequently selected features and showed that both
context features and a consistent set of EEG features contributed to
the result. The benefit of the EEG features is significant but modest
in effect size compared to the system only using context features.
The improvement by EEG features also varied between participants,
between 7% and 30% absolute. This shows that valuable information

Table 4: Relative frequency of the ten most frequently se-
lected EEG features, indicating electrode positions and fea-
ture characteristic (central frequency for spectral features,
segment center for time domain features).

Position Feature Rel. frequency

Cz 11.7Hz 56.6%
Cz 0 s 49.5%
Fz 3.9Hz 48.7%
Cz 9.7Hz 48.2%
Cz 0.75 s 47.8%
Cz 0.25 s 47.0%
Cz 0.85 s 44.4%
Pz 0.45 s 44.3%
Cz 0.55 s 44.2%
Pz 11.7Hz 44.1%

is encoded in the EEG data but that context information is necessary
to uncover it.

5.1 Limitations
As one of the first studies on the detection auto-correction errors,
we purposefully limited the ecologically validity of the experimen-
tal design in exchange for increased controllability of recorded data.
In future studies, ecologically validity of the employed experimen-
tal paradigm can be increased in several ways: First, while not all
auto-corrections shown to the participants where induced by the
rigged keyboard, the majority (90%) of them was. Errors induced by
actual user errors are likely different from keyboard-induced errors.
For example, while asking users to type predefined, memorized
phrases is an established paradigm in text entry research [38], this
potentially limits the validity of the presented results in comparison
to unrestricted text entry of own text. The same holds for the restric-
tion not to correct typing errors. While allowing such unrestricted
text entry would diversify the types of auto-correction errors and
their distribution (e.g., we would see repeated errors for out-of-
dictionary words which are always “corrected” to a wrong word),
it would also provide additional context features for classification
(e.g., by taking usage of backspace into account).

We see a lot of potential for improving the EEG-based auto-
correction error detection in future work. While the classifier used
context features, it was based on a simple auto-correction mecha-
nism based on much less information compared to what is available
to more sophisticated auto-correction methods. Additionally, apart
from standard signal processing, we did not use any techniques
to remove artifacts or other confounding influences from the EEG
signals. As participants moved while typing, the generated artifacts
likely influenced the performance of the classifier in a negative
manner. Identifying or removing such artifacts could improve clas-
sification accuracy. This would be especially relevant if we further
consider truly mobile usage. De Vos et al. [8] showed that while
performance of a BCI during outdoor walking decreases compared
to a desktop situation, it still provides useful results without recali-
bration.
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From an HCI perspective, it is clear that users in many text entry
scenarios will not tolerate wearing an EEG cap for an improvement
in auto-correction accuracy. However, the last decade has seen a
rise of alternative EEG devices beyond traditional caps, either with
the goal of providing off-the-shelf EEG acquisition (such as the
emotiv Epoc or the NeuroSky headset) or with the goal to provide
flexible, unobtrusive EEG acquisition for researchers or hackers
(such as cEEGrid or OpenBCI). Dry electrodes which do not require
electrode gel are available from several manufacturers. While these
devices do not yet provide the signal quality of traditional cap
systems, they are portable, comfortable, and affordable. The first
applications which may benefit from the presented detection of
auto-correction errors are in the domain of professional text entry,
where errors are costly or even dangerous.

5.2 Future Work
To further improve the classification performance, we will extend
the available feature set in future studies. For this purpose, we will
add more context features, such as dynamic typing speed measures,
or n-gram statistics of replacement candidates. Furthermore, we
will extend the available information sources with eye tracking data
which will allow us to achieve a better alignment of classification
windows and provide features which encode eye gaze fixations on
displayed auto-corrections.

We are also planning to integrate the detection of auto-correction
errors in text entry applications. The main application we envision
is the implementation of second-order correction approaches which
actively recover from detected auto-correction errors by suggesting
alternative corrections. A correction strategymight be to respond to
a detected auto-correction error depending on the confidence of the
original correction: If confidence is low, the original auto-correction
is automatically replaced by the second-best one; if confidence is
high (i.e., a false alarm is likely), a selection of alternatives is sug-
gested to the user. A first step towards an evaluation of such a
strategy will be the simulation of multiple strategies to estimate
the effect of different auto-correction contexts compared to manual
correction. Afterwards, an online system will be implemented to
perform actual user tests. The key challenge for an online system
is to reduce the amount of necessary calibration data per person.
The current system uses the full available data of each person (mi-
nus the testing data of the respective crossvalidation folds) for
person-dependent training. It should be noted that due to the un-
dersampling step of the balancing mechanism, not all of that data is
actually used for training, i.e., by enforcing an equal distribution of
the classes during training, the amount of training samples could
be reduced by 30%. Transfer learning approaches [21] could be used
to further reduce the number of required training episodes.

REFERENCES
[1] A. S. Arif and W. Stuerzlinger. 2009. Analysis of text entry performance metrics.

In Science and Technology for Humanity (TIC-STH), 2009 IEEE Toronto International
Conference. 100–105.

[2] Rukshan Batuwita and Vasile Palade. 2013. Class Imbalance Learning Methods
for Support Vector Machines. In Imbalanced Learning, Haibo He and Yunqian
(Eds.). John Wiley & Sons, Inc., 83–99.

[3] Xiaojun Bi, Tom Ouyang, and Shumin Zhai. 2014. Both Complete and Correct?:
Multi-objective Optimization of Touchscreen Keyboard. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems (CHI ’14). ACM, New
York, NY, USA, 2297–2306.

[4] Steven J. Castellucci and I. Scott MacKenzie. 2011. Gathering Text Entry Metrics
onAndroid Devices. InCHI ’11 Extended Abstracts on Human Factors in Computing
Systems (CHI EA ’11). ACM, New York, NY, USA, 1507–1512.

[5] James F Cavanagh, Michael J Frank, Theresa J Klein, and John JB Allen. 2010.
Frontal theta links prediction errors to behavioral adaptation in reinforcement
learning. Neuroimage 49, 4 (2010), 3198–3209.

[6] James Clawson, Kent Lyons, Alex Rudnick, Robert A. Iannucci, Jr., and Thad
Starner. 2008. Automatic Whiteout++: Correcting mini-QWERTY Typing Errors
Using Keypress Timing. In Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems (CHI ’08). ACM, New York, NY, USA, 573–582.

[7] Adrien Combaz, Nikolay Chumerin, Nikolay V. Manyakov, Arne Robben, Jo-
han A. K. Suykens, and Marie M. Van Hulle. 2012. Towards the detection
of error-related potentials and its integration in the context of a P300 speller
brain–computer interface. Neurocomputing 80 (2012), 73–82.

[8] Maarten De Vos, Katharina Gandras, and Stefan Debener. 2014-01-01. Towards
a truly mobile auditory brain–computer interface: Exploring the P300 to take
away. 91, 1 (2014-01-01), 46–53.

[9] Michael Doppelmayr, Wolfgang Klimesch, Th Pachinger, and B Ripper. 1998. In-
dividual differences in brain dynamics: important implications for the calculation
of event-related band power. Biological cybernetics 79, 1 (1998), 49–57.

[10] Pierre W. Ferrez and José del R. Millan. 2008. Error-Related EEG Potentials
Generated During Simulated Brain Computer Interaction. IEEE Transactions on
Biomedical Engineering 55, 3 (2008), 923–929.

[11] Andrew Fowler, Kurt Partridge, Ciprian Chelba, Xiaojun Bi, Tom Ouyang, and
Shumin Zhai. 2015. Effects of Language Modeling and Its Personalization on
Touchscreen Typing Performance. In Proceedings of the 33rd Annual ACM Con-
ference on Human Factors in Computing Systems (CHI ’15). ACM, New York, NY,
USA, 649–658.

[12] Kilian Förster, Andrea Biasiucci, Ricardo Chavarriaga, Jose del R Millan, Daniel
Roggen, and Gerhard Tröster. 2010. On the Use of Brain Decoded Signals for
Online User Adaptive Gesture Recognition Systems. In Pervasive Computing.
Number 6030 in Lecture Notes in Computer Science. Springer Berlin Heidelberg,
427–444.

[13] A.D. Gerson, L.C. Parra, and P. Sajda. 2006. Cortically coupled computer vision
for rapid image search. IEEE Transactions on Neural Systems and Rehabilitation
Engineering 14, 2 (June 2006), 174–179.

[14] Mayank Goel, Leah Findlater, and Jacob Wobbrock. 2012. WalkType: Using
Accelerometer Data to Accomodate Situational Impairments in Mobile Touch
Screen Text Entry. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems (CHI ’12). ACM, New York, NY, USA, 2687–2696.

[15] Mayank Goel, Alex Jansen, Travis Mandel, Shwetak N. Patel, and Jacob O. Wob-
brock. 2013. ContextType: Using Hand Posture Information to Improve Mobile
Touch Screen Text Entry. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI ’13). ACM, New York, NY, USA, 2795–2798.

[16] Joshua Goodman, Gina Venolia, Keith Steury, and Chauncey Parker. 2002. Lan-
guage Modeling for Soft Keyboards. In Proceedings of the 7th International Confer-
ence on Intelligent User Interfaces (IUI ’02). ACM, New York, NY, USA, 194–195.

[17] Alexandre Gramfort, Martin Luessi, Eric Larson, Denis A Engemann, Daniel
Strohmeier, Christian Brodbeck, Roman Goj, Mainak Jas, Teon Brooks, Lauri
Parkkonen, and others. 2013. MEG and EEG data analysis with MNE-Python.
Frontiers in neuroscience 7 (2013), 267.

[18] Haibo He, Yang Bai, E. A. Garcia, and Shutao Li. 2008. ADASYN: Adaptive
synthetic sampling approach for imbalanced learning. In 2008 IEEE International
Joint Conference on Neural Networks (IEEE World Congress on Computational
Intelligence). 1322–1328.

[19] Christopher J. Hynes. 2016. Device, Method, and Graphical User Interface for
Visible and Interactive Corrected Content. (April 2016).

[20] Inaki Iturrate, Ricardo Chavarriaga, Luis Montesano, Javier Minguez, and Jose
del R Millan. 2012. Latency correction of error potentials between different
experiments reduces calibration time for single-trial classification. Proceedings
of Annual International Conference of the Engineering in Medicine and Biology
Society. 2012 (2012), 3288–3291.

[21] Vinay Jayaram,Morteza Alamgir, YaseminAltun, Bernhard Scholkopf, andMoritz
Grosse-Wentrup. 2016. Transfer learning in brain-computer interfaces. 11, 1
(2016), 20–31.

[22] Per-Ola Kristensson and Shumin Zhai. 2005. Relaxing Stylus Typing Precision by
Geometric Pattern Matching. In Proceedings of the 10th International Conference
on Intelligent User Interfaces (IUI ’05). ACM, New York, NY, USA, 151–158.

[23] Dean J. Krusienski, Eric W. Sellers, Dennis J. McFarland, Theresa M. Vaughan,
and Jonathan R. Wolpaw. 2008. Toward enhanced P300 speller performance.
Journal of Neuroscience Methods 167, 1 (2008), 15–21.

[24] Olivier Ledoit and Michael Wolf. 2003. Honey, I Shrunk the Sample Covariance
Matrix. SSRN Scholarly Paper ID 433840. Social Science Research Network,
Rochester, NY.

[25] Guillaume Lemaître, Fernando Nogueira, and Christos K. Aridas. 2017.
Imbalanced-learn: A Python Toolbox to Tackle the Curse of Imbalanced Datasets
in Machine Learning. Journal of Machine Learning Research 18, 17 (2017), 1–5.



Classification of Auto-correction Errors Based on EEG and Context ICMI ’17, November 13–17, 2017, Glasgow, United Kingdom

[26] Andreas Llera, Marcel A. J. van Gerven, Victor M. Gómez, Ole K. Jensen, and
Hilbert J. Kappen. 2011. On the use of interaction error potentials for adaptive
brain computer interfaces. Neural Networks 24, 10 (2011), 1120–1127.

[27] Perrin Margaux, Maby Emmanuel, Daligault Sébastien, Bertrand Olivier, and
Mattout Jérémie. 2012. Objective and Subjective Evaluation of Online Error
Correction During P300-based Spelling. Adv. in Hum.-Comp. Int. 2012 (2012).

[28] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.
Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-
napeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn: Machine
Learning in Python. Journal of Machine Learning Research 12 (2011), 2825–2830.

[29] Felix Putze, Christoph Amma, and Tanja Schultz. 2015. Design and Evaluation
of a Self-Correcting Gesture Interface Based on Error Potentials from EEG. In
Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing
Systems (CHI ’15). ACM, New York, NY, USA, 3375–3384.

[30] Felix Putze, Dominic Heger, and Tanja Schultz. 2013. Reliable subject-adapted
recognition of EEG error potentials using limited calibration data. In 6th Interna-
tional Conference on Neural Engineering. San Diego, USA.

[31] Felix Putze, Johannes Popp, Jutta Hild, Jürgen Beyerer, and Tanja Schultz. 2016.
Intervention-free selection using EEG and eye tracking. In Proceedings of the
18th ACM International Conference on Multimodal Interaction. ACM, 153–160.

[32] Germán Sanchis-Trilles and Luis A. Leiva. 2014. A Systematic Comparison of
3 Phrase Sampling Methods for Text Entry Experiments in 10 Languages. In
Proceedings of the international conference on Human-computer interaction with
mobile devices and services (MobileHCI).

[33] Nico M. Schmidt, Benjamin Blankertz, and Matthias S. Treder. 2012. Online de-
tection of error-related potentials boosts the performance of mental typewriters.
BMC Neuroscience 13 (2012), 13–19.

[34] Pradeep Shenoy and Desney S. Tan. 2008. Human-aided Computing: Utilizing
Implicit Human Processing to Classify Images. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems (CHI ’08). ACM, New York,
NY, USA, 845–854.

[35] Martin Spüler, Michael Bensch, Sonja Kleih, Wolfgang Rosenstiel, Martin Bogdan,
and Andrea Kübler. 2012. Online use of error-related potentials in healthy users
and people with severe motor impairment increases performance of a P300-BCI.
Clinical neurophysiology: official journal of the International Federation of Clinical
Neurophysiology 123, 7 (2012), 1328–1337.

[36] Bernhard Suhm, BradMyers, and AlexWaibel. 2001. Multimodal Error Correction
for Speech User Interfaces. ACM Trans. Comput.-Hum. Interact. 8, 1 (March 2001),
60–98.

[37] Hussain Tinwala and I. Scott MacKenzie. 2010. Eyes-free Text Entry with Error
Correction on Touchscreen Mobile Devices. In Proceedings of the 6th Nordic
Conference on Human-Computer Interaction: Extending Boundaries (NordiCHI ’10).
ACM, New York, NY, USA, 511–520.

[38] Keith Vertanen and Per Ola Kristensson. 2014. Complementing text entry evalu-
ations with a composition task. 21, 2 (2014), 8.

[39] Chi Vi and Sriram Subramanian. 2012. Detecting error-related negativity for in-
teraction design. In Proceedings of the Conference on Human Factors in Computing
Systems. New York, USA.

[40] Daryl Weir, Henning Pohl, Simon Rogers, Keith Vertanen, and Per Ola Kristens-
son. 2014. Uncertain Text Entry on Mobile Devices. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems (CHI ’14). ACM, New York,
NY, USA, 2307–2316.

[41] Peter D.Welch. 1967. The use of fast Fourier transform for the estimation of power
spectra: A method based on time averaging over short, modified periodograms.
Transactions on Audio and Electroacoustics 15, 2 (1967), 70–73.


	Abstract
	1 Related Work
	1.1 Correction Approaches for Text Entry
	1.2 ErrP detection for BCIs
	1.3 ErrP classification in general HCI

	2 Experimental Setup
	2.1 Text Entry System
	2.2 Data Collection

	3 Detection of auto-correction errors
	3.1 EEG and Context Features
	3.2 Classification of Imbalanced Data

	4 Evaluation
	4.1 Feature Analysis
	4.2 Classifier Evaluation
	4.3 Feature Selection

	5 Discussion & Conclusion
	5.1 Limitations
	5.2 Future Work

	References

