

On- and Off-Line User Interfaces for
Collaborative Cloud Services

Abstract
We describe a vision for user interfaces of cloud-based
systems that permit seamless collaboration and provide
also on- and off-line access to data. All individual
components of this vision are currently available in
various systems, but the sum of the components will
satisfy user needs much more comprehensively.

Keywords
Cloud services, synchronization, collaboration

ACM Classification Keywords
H.5.2. User Interfaces, C.2.4 Distributed Systems.

General Terms
Cloud services, synchronization, collaboration

Introduction
Cloud-based systems offer a wide variety of services to
the user, such as publishing pictures, checking email,
collaborative scheduling, editing an encyclopedia,
storing information, tracking issues in a large open
source project, and sharing files. One notable
advantage of such systems is that users can access
them at (almost) any time, on (almost) all platforms,
and at (almost) all locations. Many of these services
also permit collaboration with other users.

Copyright is held by the author/owner(s).

CHI 2011, May 7–12, 2011, Vancouver, BC, Canada.

ACM 978-1-4503-0268-5/11/05.

Wolfgang Stuerzlinger
York University, Dept of Computer Science & Engineering
4700 Keele Street
Toronto, Canada
http://www.cse.yorku.ca/~wolfgang

 2

This document discusses a vision of better user
interfaces for cloud-based systems1. It is based on user
needs that are not satisfied in many current services.
In particular, we focus on collaboration facilities
combined with support for off-line interaction, as both
of these issues are highly interlinked, both from the
perspective of the user as well as in terms of technical
issues. We discuss our vision for collaborative facilities
and off-line interaction in the following sections.

A small-scale example that realizes this vision
reasonably well is the calendaring system in iPhones. A
highly relevant, large-scale example is the collaborative
editing support in Google Documents. This feature was
received very positively. With the eagerly awaited re-
introduction of off-line editing this will fully realize the
vision presented here in a cloud-based system.

The technical issues associated with implementing the
methods discussed here are considered outside the
scope of this document. It suffices to point out that
practically all mentioned techniques are already
available in current systems, except that very few
implement all of them. Also, we do not distinguish
between traditional applications and those based on
browser platforms. For further technical details, we
point the reader to the documentation of HTML5,
Google Documents blog, smart-phone application
guidelines, and the research literature.

Improved Collaboration in Cloud Services
Collaborative systems often provide facilities for easy
information sharing, but also need to support

1 This document presents an updated version of content

presented at a workshop at IBM’s CASCON 2007.

awareness and coordination, both of the past, present,
and the future. The World Wide Web (WWW) has made
it easy to share information with others, just by
publishing information as a Web page. A lot of systems
allow users to edit the information on a Web page, too.

However, information sharing is only a small part of
supporting collaboration. Tracking and coordination of
changes is critical for any collaborative system. This is
well known from research into Computer Supported
Collaborative Work (CSCW) and we refer the reader to
this body of literature for more information.

Consider the example of Wikipedia, which features two
simple mechanisms for coordinating the past and the
future. Via the “History” tab everybody can see what
was edited on a page and who did it. For coordinating
the future, there are discussion facilities. However,
there is no direct support for coordinating concurrent
activities. One desirable improvement to the History tab
in Wikipedia would be to provide a view similar to the
“Track Changes” feature in Word, which shows the
changes directly in the context of a page. The value to
the user is that changes can be seen directly in the
text, which makes it much easier to understand a
particular edit. Yet and with an increasing amount of
changes, this feature does not scale up. One solution is
to permit the explicit creation of versions after a set of
changes has been accepted. This then necessitates user
interface facilities that permit users to access old
versions. Various on-line file sharing services, such as
Dropbox, and editing services, such as Google Docs,
already support versions in a variety of ways.

However, versioning is not just a mechanism to detect
who did what, it also aids in comparisons between past

 3

versions, permits reviewing, and helps undo accidental
changes. Given that users rely on the cloud to keep
their data safe (and in fact cannot be expected to keep
a local copy as it is often unnecessarily hard to export
data out of current cloud-based systems!), frequent
and reliable backups are a must for any cloud-based
system. Overlaying versions on top of that is not
difficult. Another alternative to handling versions is to
design new mechanism to visualize large amounts of
changes in documents containing text, such as [1], or
diagrams, such as [2,3]. However, these methods often
require very high bandwidth, and are hence likely not
yet directly applicable to cloud-based systems.

Coordination of the future is often best served by
providing some form of discussion forum, usually with
granularity proportional to some reasonable “chunk” of
information, such as a Wikipedia page.

The coordination of the present, i.e. support for
awareness of (potentially conflicting) changes by others
is currently only rarely available in cloud-based
systems. Yet, awareness of the actions of others helps
to avoid conflicts. Google Documents, which permits
simultaneous collaborative editing is a notable example.
Another well-known user interface that enhances
awareness of the actions of others is messaging
systems, where “<user> is typing …” appears,
whenever another user starts entering a message. This
last idea can be expanded significantly. For example, if
a collaborative system displays messages such as “Jill
is currently adding a calendar entry on Oct 24 at 2pm”,
“John is currently adding content to his Facebook
page”, or “Joan started editing the Future plans section
on the current page at 3pm”, it becomes much easier
to coordinate actions with other users.

A Note on Privacy
All data in the local cache and during transmission
should be adequately encrypted to preserve privacy.
However, also motivated by privacy reasons it is
reasonable to permit the permanent deletion of content
in the presence of versions. However, and to guard
against accidental deletion of content, this should
involve a multi-modal two-part process, such as a
“Captcha” type of verification followed by an e-mail
with a verification link.

Off-line Cloud-based Services
One of the main deficiencies of most current cloud-
based services is that they do not provide for off-line
operation. There are many situations where no network
connectivity exists and this will not change substantially
in the foreseeable future. Consider inside locations such
elevators, subterranean tunnels, and rooms deep inside
buildings. Outside this can happen in network blind
spots, e.g. between buildings, in the mountains, in
large nature parks, in airplanes and trains, and
generally in areas where few people live. One may also
not be able to access data services in foreign locations.
Another issue is that the data fee structure of some
providers is too expensive for casual use. Finally, one
may not want to use available networks in insecure
environments, such as a competitor’s building.

Another perspective is that off-line operation is still one
of the major distinguishing features between traditional
applications and cloud-based services. While users like
cloud-based services in general, they want to be able to
access their data even when there is no network
connection is available. Adding this feature will
accelerate the gradual migration towards clouds.

 4

Yet another issue is that more and more people are
using mobile computing devices such as smartphones
or multi-touch tablets. Some users are using their
mobile devices now more frequently than their
desktops. On such platforms the underlying file system
is often hidden from users, which notably simplifies the
user interface. This makes it infeasible to apply
conventional file-based solutions. Consequently, people
come up with awkward workarounds, such as using e-
mail attachments as a form of temporary data storage
on these platforms.

The main problem in this context is that the typical
client software for cloud-based services does not offer
any form of persistency. However, and especially on
mobile devices, it is currently not feasible to keep a
complete local copy of all data and databases that a
user can access. Hence, off-line cloud-based systems
should employ a form of cache, which keeps a local
copy of recently used data, sometimes complemented
with additional “pushed” important content.

The general idea with such caches is that the
application first checks if the network is available. If it
is, everything proceeds as usual, but data transferred is
cached. If the network is not available, viewing of
cached data is possible. Then, once the user connects
again to the network, the cache is updated with the
most current version of the data from the cloud.

However, this limits the user to pure viewing, which is
seen as unnecessarily restrictive. Also, users often need
to enter important information while they are away
from their usual network. Hence, there needs to be
support for off-line additions, changes and deletions.

A few important applications already provide for off-line
addition or changes to data. Email on smartphones is
one good example, as practically every smartphone
platform caches newly created e-mails locally until
network connectivity is restored, when those e-mails
are sent. Another example is a calendar client, which
caches a partial copy of the schedule (usually only a
limited amount of the past and all future events). Once
network connectivity is re-established, the changes to
the schedule are uploaded to the main database and
recent additions by others are downloaded. However,
there is always the potential for conflicts in these sets
of changes, which is why some form of data
synchronization is necessary for such systems.

Finally, note that many users cannot predict reliably in
advance when they are going to be off-line. Hence, it is
appropriate to always cache information. Naturally, the
amount that can be cached is limited by the storage
available locally. However, it is generally not considered
appropriate if a single application “takes over” a mobile
device completely by consuming all free space.

Data Synchronization & Conflict Resolution
Whenever data is synchronized between devices where
changes can occur concurrently, there is a potential for
conflicts, which have to be resolved. If only one side
updated the information since the last synchronization,
change propagation is sufficient. However, with the
potential for multiple updates on different sides,
conflicts are possible. Thus, conflict resolution is a
necessary feature for cloud-based services. Such
conflicts can happen at different time scales in clouds.
Consider e.g. a system that allows real-time
collaboration, where multiple users can add entries or
change a particular piece of information. Then add

 5

users that work off-line and upload their changes in
batches. While different technical mechanisms may be
necessary to handle both types of changes, it is best if
the user interface does not distinguish between them.
However, due to the asynchronous nature of cloud-
based services, it is anyways essential that the system
can handle updates that occur on different time scales.

Yet, the type of synchronization required depends also
on the granularity of the database and the type of data.
E.g. calendar or address book entries may be atomic,
which means that time stamping of changes is
sufficient to identify who changed a particular entry
last. This kind of synchronization can even be applied at
levels finer than a single database entry. Consider e.g.
two changes to an address book entry, one of which
updates only the title of the person, whereas the other
changes the address for that person. In this situation
there is no conflict between those changes.

Other types of data require different synchronization
strategies. E.g. a text document typically requires an
identification of who changed what part when, typically
at the character or word level. This then requires each
text document having revision information directly
embedded into the document. Similarly, collaborative
spreadsheets require tracking of changes to each cell.
If there are strong dependencies between changes, e.g.
linked updates to multiple accounts in money transfers,
transactions are the appropriate mechanism.

User Interfaces for Synchronization
Many users see a user interface for data
synchronization service as a hindrance. After all, they
are often not aware that other people may have
changed data independently. One solution is to provide

some form of awareness for changes by others.
However, this should not take the form of an email for
each single change at the word level.

The ideal user interface for synchronization is that there
is some form of indicator whenever synchronization is
occurring, while the user can still use the system to
view the information and even add to and update it, as
necessary. This synchronization should always happen
whenever a network connection is available at start up
of the client and then at appropriate times, such as
whenever the user has made a change to a record, or
entered a non-trivial amount of text. Periodic
synchronization, similar to the auto-save functionality
in desktop applications, is often also desirable.

Note that network problems may occur during any
synchronization attempt. Some feedback for the
corresponding aborted synchronization attempt needs
to be given to the user. It is also noteworthy that
additional changes can occur (on multiple sides) while
synchronization is running. However, the best user
interface is still a simple status indicator, while the
system maintains the integrity of the local cache so
that future synchronization attempts can succeed.

User Interfaces for Conflict Resolution
Whenever conflicts occur, the best strategy is to
resolve such conflicts as automatically as possible. The
main reason for this is that change merging interfaces
are often very attention demanding. Hence, a dialog
asking the user which of two versions is the right one
makes only sense whenever the user is in a state
where they have the time to handle such requests.
Also, the small screen sizes of mobile platforms
generally make such interfaces (too) challenging.

 6

Hence, the general guideline is that user interfaces for
change resolution should be avoided as far as possible
by making data synchronization as automatic as
feasible. In cases where this is not possible, such as a
long text document, an appropriate solution is to add
versioning information to the document that effectively
stores all changes and permits the user to see the
history of changes and act on them directly. This again
makes the user interface for change resolution as
seamless as possible. Interestingly enough, the
capability to access old versions is already an important
requirement for collaborative systems. Given that many
cloud-based services are targeted at collaboration,
these history mechanisms can also be used to handle
data synchronization.

Handling the Evolution of Services
One of the main features of cloud-based services is that
the service can be updated at any given time. While
programmers have realized the downsides of this due
to the potential of breaking things globally and thus
leaving all users without access to their data, it is
nevertheless a great feature as it permits for rapid
deployment of new or updated features. When clients
may go off-line for substantial amounts of time, it
becomes essential that the service can handle “old”
clients and their “old” data caches correctly.

External Integration
Import of data is a mechanism that helps users migrate
to the new system and often considered essential.
However, history has shown that users strongly prefer
not to have their data be locked in completely into a
technical system. One sign of this is that the plethora of
“hacks” and “workarounds” for systems that do not
feature reasonably facilities for data export, yet have

outlived their usefulness, do not support current user
devices well, or are not competitive anymore.

Hence, bi-directional data exchange of data can be
considered a strongly desirable feature for any cloud-
based system. Provided that the cloud-based system
fulfills user needs well, users will value the option to be
able to transition, but will not leave due to the effort
required in any migration of data. Hence, support for
data export serves as a reassurance factor for users,
which often leads to greater adoption rates.
Interestingly enough, data export is also a prerequisite
for users being able to keep a backup of all data stored
in the cloud.

Conclusion
Many parts of the vision about collaboration via cloud-
based systems and the support for both on-line and off-
line access described here already exist in various
implementations systems or have been demonstrated
in the past. Here, we have described how such systems
should work from the view of end users. The challenge
for the technical community is to realize this vision in a
easy-to-use manner.

References
[1] F. Chevalier, P. Dragicevic, A. Bezerianos, J.D.
Fekete, Using Text Animated Transitions to Support
Navigation in Document Histories, CHI 2010, 683-692.

[2] D. Dadgari, W. Stuerzlinger, Novel User Interfaces
for Diagram Versioning and Differencing, British HCI
2010.

[3] L. Zaman, W. Stuerzlinger, The Effect of Animation,
Dual View, Difference Layers and Relative Re-Layout in
Hierarchical Diagram Differencing, in submission.

