

DARLS: Differencing and Merging
Diagrams Using Dual View, Animation,
Re-Layout, Layers and a Storyboard

Abstract
We present a new system for visualizing and merging
differences in diagrams. It uses animation, dual views,
a storyboard, relative re-layout, and layering to
visualize differences. The system is also capable of
differencing UML class diagrams. An evaluation
produced positive results for animation and dual views
with difference layer.

Keywords
Versioning, Differencing, Diagrams, Animation, UML

ACM Classification Keywords
H.5.2 User Interfaces [Graphical user interfaces (GUI)]

General Terms
Design, Human Factors

Introduction
Computer-supported version differencing and merging
of text documents has been used at least since the
introduction of the Unix diff tool. Modern version
control tools for text have become much more user-
friendly by incorporating visual interfaces that facilitate
differencing and merging. Examples are the use of text
highlighting and context sensitive menus. Another,
more recent example is the use of animation [4].

Copyright is held by the author/owner(s).

CHI 2011, May 7–12, 2011, Vancouver, BC, Canada.

ACM 978-1-4503-0268-5/11/05.

Loutfouz Zaman
Department of Computer Science
 and Engineering
York University
Toronto, Ontario M3J 1P3 Canada
zaman@cse.yorku.ca

Ashish Kalra
Information Technology
 Department
NIT Kurukshetra, India
ashishorkalra@gmail.com

Wolfgang Stuerzlinger
Department of Computer Science
 and Engineering
York University
Toronto, Ontario M3J 1P3 Canada
wolfgang@cse.yorku.ca

Many interaction techniques have been proposed for
dynamic graph visualization. Recently user studies
evaluated some of them [1, 2]. The studies focused on
generic graphs where node and edge attributes are
irrelevant. Very little work deals with diagrams where
nodes in the graph are identified by name [10]. Also,
this research primarily targets differencing, and to our
knowledge, no quantitative research exists on
visualizations that support diagram version merging.

To address these shortcomings, we introduce a new
system for differencing and merging diagrams that
makes use of various user interface techniques, such as
Dual View, Animation, Re-Layout, Layers and a

Storyboard, short “DARLS”. It is targeted at diagrams
where node and edge attributes are as important as the
graph structure itself. One example is vector graphics
diagrams in Wikipedia. Diagrams are used frequently in
architecture, design, information and concept
visualization, and in software engineering as software
documents, e.g. UML. Also, more and more diagrams
that change over time appear today in electronic form.
Diagram versioning also greatly facilitates collaboration
around diagrams.

Related Work

Our work builds on difference maps, mental maps,
animation and small multiples in the context of dynamic
graph drawing, side-by-side views for visual
comparison, the use of storyboards for non-linear
access, and text and UML diagrams versioning.

Su [11] introduced a new interaction metaphor and
visualization for the operation history of 2D
illustrations. The user accesses history via graphical
depictions on top of the document. “Small multiples” is
a related concept in dynamic graph drawing, which
displays dynamically evolving data in a matrix of
images. Each image is a timeslice [1]. We chose to use
a storyboard in our system, because it provides a good
overview of all versions in a graphical form that
facilities access, yet uses only limited space. A list of
version names is less user friendly in comparison.

As it’s hard to trace diagram evolution in unenhanced
visualizations we employ a number of techniques that
aid the user. Our new layering technique is related to
the concept of a difference map in dynamic graph
drawing. It presents the union of nodes and edges in

figure 1. DARLS showing two versions of a diagram, which visualizes course pre-requisites. The
visualization shows a difference layer and uses the relative optimal re-layout.

the two graphs for two different timeslices [1, 2].
Unified views were used by Ohst et al. [9] in a unified
document, which highlights the common and specific
parts of two UML diagrams. Mehra et al. [8] described
another set of difference visualizations, which were
liked by users. No quantitative user studies were
conducted. Generic diagram unification for comparing
documents was studied by Dadgari and Stuerzlinger
[5]. They compared multiple graph differencing
methods and merging techniques in a qualitative user
study. Participants preferred a translucent view that
overlaid the versions. Our unified view shows diagram
objects that do not belong to current version in the
background to reduce visual clutter. Combined with
side-by-side views this yields a better visualization.

Side-by-side views have been used for visual
comparisons long before computers were invented. One
modern adaptation is a side-by-side view for comparing
texts and other text-based documents and there are
many publicly available tools. However, and to our
knowledge, there are no publicly available tools for
diagram comparison. Förtsch et al. [7] presented a
survey on differencing and merging of software
diagrams and listed requirements for UML diagram
versioning tools. One of the main requirements is a
user-friendly representation. The authors also point out
that it is desirable for diagrams to be displayed side-by-
side with differences marked graphically.

Animation has been used for visualizing dynamically
evolving data in graphs, e.g. [3, 12]. A number of user
studies explored the effects of difference maps, small
multiples, slide shows and mental map preservation,
e.g. [1, 2], with positive results for small multiples and
animation. A recent study [4] showed that animation
facilitates the comparison of texts, and permits users to
better identify changes that occurred between versions.
We also use animation to show the evolution of
changes in the diagrams more clearly.

Incremental layouts aim to preserve the user’s
mental map, which refers to the structural cognitive
information a user creates internally when observing
the layout of the graph [6]. It facilitates navigation in
the graph or comparison of it and other graphs. The
benefits of mental map preservation have been studied
in the past by Purchase et al. [10]. In our system we
also manipulate the diagram layout in the side-by-side
views to facilitate comprehension of diagram evolution.

figure 2. Differencing UML Class Diagrams.

The DARLS System

We developed a new system for visualizing differences
between diagrams and versioning of diagrams. Nodes
and edges are disambiguated with unique identifiers.
The system supports differencing and merging of
generic and UML class diagrams. The system is based
on the yFiles Graph Visualization Library1. To illustrate
the system, we use two versions of a course
prerequisite diagram from two years. See Figure 1.

The system features side-by-side views of two versions
of a diagram, with synchronized zooming with the
mouse wheel and panning with the scroll bars. Buttons
allow toggling between editing and selection modes.
Diagram repositories are accessed through the file
menu. Both graphs can be edited and committed back
into the repository. The user can directly access ten
versions of the diagram in the scrolling storyboard.

The differences between the two diagrams in the side-
by-side views are visualized using a transparent
underlay pane in the background of either view, which
contains the other diagram. We call this a difference
layer. This is different from Pounamu [8], where only a
single merged view is used and the objects common to
both compared diagrams are not shown. It is also
different from difference maps, as it displays the
common nodes and edges between two versions even if
a node was moved. The rationale is to enable
accept/reject of node movements. A configuration
dialog accommodates different color schemes.

By default, all missing nodes and edges for a diagram
are shown in a neutral transparent gray in the

1 http://www.yworks.com

difference layer. See e.g., COMP 3212 in the right view
in Figure 1. Nodes that are shifted, resized, or morphed
but common to both diagrams are visualized with the
same colors but with reduced transparency, e.g. MAST
2090. This implicitly visualizes all differences between
the diagrams, as deleted nodes are shown semi-
transparent on the right and the shifted/morphed or
resized nodes are visualized with reduced transparency.

If the user selects, for example, a node in the right
view, the corresponding node in the left view is
highlighted with a selection box as well (with different
styles, depending if the node exists in the other
diagram) and vice versa. The user can customize this,
so that either the node on the foreground and the
difference layer are selected, or only the node on the
foreground of the left view is selected. Nodes in the
difference layer in the right view also can be selected
by clicking. This is used for version merging, see the
next section. Also, all this applies to edges as well.

The ability to accept and reject graph edits was
previously presented [8]. In our system, a context-
sensitive right-click menu provides easy access to this
functionality. See the popup next to COMP 3211 in
Figure 1. A reject operation can undo the creation or
deletion of nodes and/or edges, shifting and
morph/resize operations on nodes. For example, if the
user “rejects” the change in Figure 1, node COMP 3211
and its adjacent edge connecting to node COMP 2021
will be re-instantiated in version 14. As other nodes are
also selected, COMP 3213 will be deleted and MAST
2090 will be shifted down.

When the play/pause button in the top panel is pressed
the differences between the diagrams in the two views

are animated in three phases. First, removed objects
fade out, then moved objects are shifted from the old
to their new locations and changes in shape and color
are morphed, and finally new nodes and edges fade in.
The sequence and concurrency of these animations can
be customized. An additional option gives access to an
animation where new nodes and edges blink in a
distinct color (red by default), once the first animation
ends. Also the system can highlight new nodes and
edges with another distinct color (blue by default), once
all animations end, to assist the user in identifying
changes. Nodes that changed labels, such as
COMP 3201/ENGR 3201, use a call-out visualization.

As more nodes and edges are added to later versions of
a diagram it may get difficult to differentiate and merge
different versions, even if the user has access to all
features that we provide, as the layout of the graph has
changed (too) much. Therefore, we added functionality
to interactively re-layout one diagram relative to
another minimizing visual differences. We implemented
two relative re-layout algorithms: incremental, which
preserves the locations of nodes, and, optimal, which
rearranges nodes to better use screen space. Both
layout methods keep the positions of nodes and edges
common to both diagrams stable and thus preserve a
mental map. We based our implementation on the
yFiles Hierarchic and Incremental Hierarchic Layouters.

By default, we re-layout the left diagram relative to the
right because we assume the diagram in the right is the
latest version. The incremental re-layout algorithm first
adds all nodes from the left graph that are missing in
the right graph, to that right graph to generate a
composite graph. It then partitions space into
horizontal lanes and fixes the positions of the common

and newly added nodes. The remaining nodes are
assigned to these lanes so that the number of edges
pointing downward is minimized, while keeping the
edge length short. Then these nodes are arranged
within their lanes so that the number of edge crossing
is minimized, and finally, they are arranged to minimize
edge bends. Then, the layout of the composite graph is
copied to the left and right graphs, but only for those
nodes and edges that “belong” to the respective graph.
The optimal re-layout algorithm is similar to the one
described above but with two differences: nodes are
not fixed in place and node and edge placement
heuristics can be specified through a menu. Figure 1
demonstrates two diagrams where optimal re-layout
was performed. Please note that COMP 2012 and MAST
2090 were manually raised higher after the re-layout.

Our system also allows UML class diagrams
differencing. Here we used text differencing techniques
(strikethrough and underline) as well. Changes in
association type, such as from aggregation to
composition, are visualized by highlighting edges in a
different color. Classes common to two diagrams are
shown in one color, newly added ones – in another.
Colors can be customized and changes can again be
animated. Deleted classes are displayed in the
difference layer with reduced transparency. New
attributes and methods are highlighted in red and
underlined. Deleted ones are crossed out. The user can
customize the differences to be displayed in either view
or both. Figure 2 demonstrates differences displayed in
the right view. Currently our system can visualize class
diagrams generated from any Java application, with the
help of a freely available UML diagram extractor.

User Studies

We ran two user studies investigating the benefits of
the system for generic (non-UML) diagrams2. The first
user study compared single view with animation or
toggling between versions, as well as dual view with
and without a difference layer on diagrams with
matching node positions. We found the unenhanced
dual view to be a bad choice. The difference layer had
the least amount of errors and participants liked it best.
The second study compared the difference layer,
animation, and their combination for diagrams with
non-matching node positions. Although the difference
layer had the longest completion times compared to
both animation and the combined technique, it was still
found useful. Participant ranked the combined
technique best.

Conclusion and Future Work

We presented a new system for diagram difference
visualization and merging. It uses animation, dual
views, a storyboard, relative re-layout, and difference
layers. The system is also capable of differencing UML
class diagrams. We are planning to run more studies,
which target the layout techniques and animation in
detail. We also did not pay attention to the storyboard
and plan to investigate it in the future, e.g. if it can be
directly used for difference visualization, similar to
small multiples. One idea is to use highlighting on the
small views in combination with difference layers in the
large ones. The UML aspects of our system have also
not been evaluated and we plan to run a study on the
benefits for refactoring UML diagrams and source code.

2 A paper describing the user studies is currently under review.

References
[1] Archambault, D., Purchase, H., Pinaud, B. Animation,
small multiples, and the effect of mental map preservation
in dynamic graphs. IEEE TVCG (99). 1-1.

[2] Archambault, D., Purchase, H., Pinaud, B. Difference
map readability for dynamic graphs, Symposium on Graph
Drawing 2011, To appear

[3] Bartram, L. and Ware, C. Filtering and brushing with
motion. Information Visualization, 1 (1). 66-79.

[4] Chevalier, F., Dragicevic, P., Bezerianos, A., Fekete,
J.-D., Using text animated transitions to support navigation
in document histories. CHI 2010, 683-692..

[5] Dadgari, D., Stuerzlinger, W., A novel user interface
for diagram versioning and differencing. British HCI 2010.

[6] Diehl, S., Görg, C. Graphs, they are changing -
dynamic graph drawing for a sequence of graphs, Graph
Drawing 2002, 23-30.

[7] Förtsch, S, Westfechtel, B, Differencing and merging of
software diagrams: State of the art and challenges, WS
Comparison and Versioning of Software Models 2008, 7-12.

[8] Mehra, A., Grundy, J., Hosking, J., A generic approach
to supporting diagram differencing and merging for
collaborative design. Conference on Automated software
engineering 2005, 204-213.

[9] Ohst, D., Welle, M., Kelter, U., Difference tools for
analysis and design documents. Conference on Software
Maintenance 2003, 13.

[10] Purchase, H., Hoggan, E., Gorg, C., How important is
the "mental map"?: An empirical investigation of a dynamic
graph layout algorithm. Graph drawing 2007, 184-195.

[11] Su, S. L., Visualizing, editing, and inferring structure in
2D graphics. Adjunct Proceedings UIST 2007, 29-32.

[12] Ware, C., Bobrow, R, Motion to support rapid
interactive queries on node-link diagrams. ACM Trans.
Appl. Percept., 1 (1). 3-18.

