
SHIFT-Sliding and DEPTH-POP for 3D Positioning
Junwei Sun, Wolfgang Stuerzlinger

School of Interactive Arts + Technology
Simon Fraser University, Vancouver, Canada
junweis@sfu.ca, http://ws.iat.sfu.ca

Dmitri Shuralyov
Department of EECS

York University, Toronto, Canada
shurcool@gmail.com

Figure 1.The left image rows illustrate SHIFT-Sliding. With this technique the user can lift an object off a surface to float (top row).
The object reverts to sliding upon collision. Alternatively, the user can push the object into another (bottom). The object “pops” to

the front to avoid being invisible. The middle image shows object height visualization during SHIFT-Sliding. The right image
illustrates DEPTH-POP, with a stationary cursor. We can place the object into all four positions using up/down mouse wheel actions.

ABSTRACT
Moving objects is an important task in 3D user interfaces. We
describe two new techniques for 3D positioning, designed for a
mouse, but usable with other input devices. The techniques enable
rapid, yet easy-to-use positioning of objects in 3D scenes. With
sliding, the object follows the cursor and moves on the surfaces of
the scene. Our techniques enable precise positioning of
constrained objects. Sliding assumes that by default objects stay in
contact with the scene’s front surfaces, are always at least partially
visible, and do not interpenetrate other objects. With our new
SHIFT-Sliding method the user can override these default
assumptions and lift objects into the air or make them collide with
other objects. SHIFT-Sliding uses the local coordinate system of
the surface that the object was last in contact with, which is a new
form of context-dependent manipulation. We also present DEPTH-
POP, which maps mouse wheel actions to all object positions along
the mouse ray, where the object meets the default assumptions for
sliding. For efficiency, both methods use frame buffer techniques.
Two user studies show that the new techniques significantly speed
up common 3D positioning tasks.

Keywords
3D object manipulation; constraints; frame buffer, layers.

1. INTRODUCTION
In 3D virtual environments, users often encounter the need to
arrange a scene with numerous objects. Here we only deal with the
3D manipulation of rigid objects. Posing a 3D rigid object, i.e.,
manipulating the position and orientation of an object, is a basic
task in 3D user interfaces. This task can be time-consuming as 6
degrees of freedom (6DOFs) have to be controlled: 3 DOFs for
translation along three axes and 3 DOFs for rotation around three
axes. Some techniques use 3- or 6DOF input devices for object
manipulation, based on a one-to-one mapping of input and object
movement. For such tasks, research has shown that 3DOF input
devices outperform 2D devices in some contexts [18][26]. Yet,
most users are more familiar with the mouse. Also, in some
contexts 2D input is the better choice [5]. As evident by its
pervasive use in 3D computer aided design (CAD) applications,
the mouse has proven to be a reliable and accurate input device,
despite the lack of the ability to directly manipulate a third DOF.

To compensate for this shortcoming, various mappings of 2D
mouse input to 3D operations have been proposed. CAD user
interfaces use a local coordinate system to assist object movement,
typically via 3D widgets [34] controlled with the mouse. However,
the orientation of this coordinate system is typically independent
of other objects. Still, if one moves objects in the real world, their
positions also depend on the surfaces of other objects. Sliding, e.g.,
[7][28], links mouse movement directly to object movement and
moves an object on the surface behind it, i.e., uses the contact of
the object with that surface. This effectively corresponds to
manipulation in a view coordinate system, independent of the
coordinate system of the object. Sliding typically assumes contact
and non-collision for manipulated objects. With our enhanced
SHIFT-Sliding method we break the contact/non-collision
limitation of basic sliding and map manipulation based on the
coordinate system of the surface that the object was last in contact
with, which forms a new form of context-dependent manipulation.

When multiple surfaces are visible in the same area of a scene,
there is an ambiguity in the mapping of 2D input to 3D position,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must be
honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from
permissions@acm.org.
SUI '16, October 15 - 16, 2016, Tokyo, Japan
Copyright is held by the owner/author(s). Publication rights licensed to
ACM.
ACM 978-1-4503-4068-7/16/10…$15.00
DOI: http://dx.doi.org/10.1145/2983310.2985748

2

e.g., as the manipulated object could be placed on the table or the
floor visible behind it. To address this ambiguity, we introduce a
new DEPTH-POP method, which enables efficient control of object
position in depth. For this, we map discrete mouse wheel actions
to object movement in depth, which puts the object at all those
positions along the mouse ray, where contact and non-collision
assumptions are met.

We first review relevant previous object manipulation work. Then
we discuss the overall design space and introduce our new
interaction methods. In the following, we present implementation
details and describe our user studies. Finally, we discuss the
results and mention potential future work.

2. RELATED WORK
There has been substantial research in the field of object
manipulation in 3D user interfaces.

Many mappings of 3- or 6DOF input device movements to object
manipulation have been proposed. Ware et al. [41] introduced the
bat, a 6DOF device with a natural one-to-one mapping. Hachet et
al. [12] introduced the 6DOF Control Action Table, designed for
immersive large display environments. The GlobeFish and
GlobeMouse techniques [9] used a 3DOF trackball for 3D
manipulation. Bérard et al. [5] compared the mouse with three
3DOF input devices in a 3D placement task and identified the
mouse superior for accurate placement. Vuibert et al. [40]
compared contactless mid-air manipulation with a Phantom and
found mid-air manipulation faster but less accurate. Masliah et al.
[25] studied the allocation of control in 6DOF docking and
identified that rotational and translational DOFs are controlled
separately. All techniques mentioned in this paragraph require 3D
input devices, which currently do not afford the level of accuracy
and precision of a modern mouse.

Many touch-based 3D manipulation techniques have been
developed. Hancock et al.’s [13] multi-touch techniques provide
3D interaction within limited depth. Rotate’ N Translate (RNT)
[22] offers integrated control of translation and rotation through a
single touch-point. Reisman et al. [30] presented a screen-space
method that provides direct 2D and 3D control. Martinet et al. [23]
proposed two multi-touch techniques. Users preferred the Z-
technique, which permits depth positioning. A later improvement
separated translation and rotation [24]. Herrlich et al. [16]
presented two techniques that integrate translation and rotation.
Au et al. [1] presented a set of multi-touch gestures for
constrained 3D manipulation. In general, the input mappings for
touch-based 3D methods require learning and do not support
accurate manipulation.

Another approach to 3D manipulation is based on widgets [8][34],
which encapsulate 3D geometry and behavior. Such widgets are
now prevalent in 3D CAD software. Mine et al. [27] presented
hand-held widgets, i.e., 3D objects with geometry and behavior
that appear in the user's virtual hand. Schmidt et al. [32] presented
a system that automatically aligned widgets to axes and planes
determined by a users’ stroke.

Some 3D manipulation systems use 2D input devices, typically the
mouse. Bier [6] proposed snap-dragging, which snaps the 3D
cursor to object features close to the cursor using a gravity
function. Van Emmerik [37] proposed a technique where the user
can perform 3D transformations in a local coordinate system
through control points. Venolia [38] presented “tail-dragging”,
where the user drags an object as it were attached to a rope. With a
“snap-to” functionality, other objects also attract the manipulated
object. Kitamura et al. [21] proposed a “magnetic metaphor” for

object manipulation, which aims to simulate physical behaviors,
including non-penetration. In most of these techniques, the local
coordinate system for object movement must be explicitly
controlled by the user.

Building on Object Associations [7], Oh et al. [28] presented a
sliding algorithm, where the object follows the cursor position
directly and slides on any surface behind it, i.e., the moving object
always stays attached to other objects. This form of sliding creates
associations automatically, and these associations are not limited
to predefined horizontally or vertically aligned surfaces.
Compared to click-to-place methods, e.g., [7], sliding provides
better visual feedback as the result of a (potential) placement is
continuously visible. For targets in contact, Oh et al. compared
sliding with axis-widgets and found that sliding is significantly
more efficient for novices. Yet, Oh et al.’s sliding method lacks
direct access to object movement in the third DOF. The authors
identified that for some tasks users have to slide an object on a
sequence of surfaces to reach a desired “layer” in depth, which is
not always easy to understand, see Figure 3.

2.1 Contributions
The main contributions we present here are:

• SHIFT-Sliding, which generalizes sliding to support
floating and interpenetrating objects.

• A new method to map 2D input to 3D object translation
based on the coordinate system of the surface that the
object was last in contact with.

• A new DEPTH-POP interaction method that addresses the
inherent depth ambiguity in sliding algorithms.

• Comparative evaluations of the new techniques.

3. SYSTEM AND INTERACTION DESIGN
In this section, we discuss the fundamental assumptions that our
new object manipulation techniques build on. We target novice
users without CAD knowledge. We focus on a desktop-based user
interface with a mouse and a keyboard, as this provides high
performance in both speed and accuracy. A mouse also helps to
keep our system easy to learn and use by novices, as many are
used to this interaction device. Yet, the interaction for DEPTH-POP
and SHIFT-Sliding is so simple and direct, that it could even be
applied to touchscreens, as mentioned in the discussion section.

3.1 Design Assumptions
We use a single perspective view, as this corresponds best to how
novices are usually presented with 3D content [42]. We do not use
stereo, as perspective and occlusion are usually sufficient to
accurately judge an object’s 3D position and visibility [39]. In our
system, we assume that objects are by default in contact with other
objects and do not interpenetrate them. Moreover, we choose not
to enable manipulation of objects when they are invisible. Here,
we detail the reasoning behind our design assumptions.

1) The manipulated object stays by default in contact with the rest
of the scene. As recognized by Teather et al. [36] and Stuerzlinger
et al. [35], floating objects are exceptional on our planet, as
(almost) all objects are in contact with other objects in the real
world. Also, the exact position of a floating object is harder to
perceive accurately, as there are fewer references to judge against.
Such objects are also harder to manipulate because more DOFs
need to be controlled [20]. In the default sliding mode of our
system, whenever an object would float, we automatically put the
object back into contact with the first surface behind it. With our
new SHIFT-Sliding method, we enable the user to override this.

3

When there is nothing behind an object, it will slide parallel to the
screen until something appears behind it.

2) The manipulated object does not interpenetrate the scene by
default. In the real world, objects do not interpenetrate each other
without explicit actions, such as drilling a hole. To avoid
unwanted collisions, we choose to avoid interpenetration by
default. When needed, we permit the user to force an object “into”
another with SHIFT-Sliding.
3) The manipulated object is always at least partially visible to the
user. Without other forms of feedback (such as haptics) an
invisible object cannot be manipulated with precision with normal
input devices. Moreover, a common issue in many 3D systems is
that an object can become “lost” behind or inside other objects,
which then forces the user to “find” it again through navigation. In
our system and whenever an object would become completely
invisible, we automatically bring the object to a position where it
is visible.

When the user selects an object and manipulates it with standard
sliding, the object will always remain in positions (and poses)
where all three assumptions are met. Beyond the three scene-
related assumptions above, we also assume that the scene is
rendered as filled polygons. A wireframe representation of objects
introduces ambiguities, as it does not explicitly define the
enclosed surfaces. This is often difficult to understand for novices.
Similarly, we also exclude volumetric content, such as a 3D brain
scan.

3.2 Basic Sliding
Sliding [28] maps object movement so that the manipulated object
moves along the surface behind it that it is currently in contact
with. We use the normal vector at the contact point to determine
the sliding plane. With this contact constraint, we can directly map
2D motions of the mouse cursor to 3D movement of the object.
Figure 2 illustrates sliding. When the user selects an object (at
position A), we record the intersection of the mouse ray on the
object as the start point. We identify the normal vector at the
contact point on surface 1 via the frame buffer. The start point and
the normal vector define the sliding plane. The intersection of a
new mouse ray and the sliding plane becomes the end point of the
object translation. By moving the mouse cursor, the user then
effectively translates the object parallel to the sliding plane. We
examine the situation with multiple contacts in different planes in
the discussion section.

When the user slides the object to position B in Figure 2, any
further upwards movement would cause the object to float. Here,
basic sliding snaps the object back to the next surface behind it, to
position C on surface 2, while keeping the object under the mouse
cursor. The new contact point provides a new normal vector for a
new sliding plane. Then the user can slide the object on surface 2,
to positions such as D. If the user now moves the mouse back
down, the object can reach position E, where it is still partially
visible from the camera. Yet, if the user slides the object from E
further downwards, the object would become invisible to the user.
Here, we “pop” the object to the front, i.e., bring it to a position
below (and a bit to the left of) B, in contact with surface 1. With
this method we keep the mouse cursor at the same point on the
object throughout, as an additional cue for object position, giving
the user also a better understanding of the 3D object movement.
To highlight the fact that the object is in contact, we render a
semi-transparent rectangle at the contact surface.

Figure 2. Illustration of sliding movements for an object across

the front surfaces of two objects with an upwards mouse
movement (positions A-D). The shaded part of surface 2 is

occluded by surface 1. Position E can only be reached from C
with a downwards mouse movement. Positions F and G cannot

be reached from the current viewpoint, see text.
When dragging an object along a surface nearly aligned with the
view direction close to the horizon, it can easily disappear into the
distance, since a small mouse movement can cause a dramatic
object movement in 3D. To deal with this, we perform an
occlusion test for every frame and bring the object to the front
whenever it becomes completely invisible — even if this causes
the object to slide on another surface. When there is no surface
behind the object, we keep the object sliding parallel to the screen
and inside the camera frustum (even if the projection of the object
is very small). With this, the user can never lose sight of the
moving object.

In our system, the user can slide objects on invisible surfaces, such
as a portion of the surface 2 in Figure 2 that is hidden by surface 1
(near E). To keep the interaction intuitive, we only permit sliding
on surfaces facing the user. If we were to enable sliding on back-
faces, this would create inappropriate mappings. Consider that the
user slides from A to B with an upwards movement of the cursor
along surface 1 in Figure 2. To reach position F, the cursor
movement would then need to be mapped to a downwards motion
of the mouse, which is indistinguishable from a movement back
towards A. Thus, a better option is to snap the object to a position
beyond surface 1 and slide the object on surface 2.

Object sliding maps mouse input to 3D object motions, which
automatically defines an appropriate local movement plane. This
also guarantees that the cursor and object always stay aligned,
regardless of the surface involved. The new SHIFT-Sliding
technique generalizes sliding to situations where objects float or
interpenetrate. Our new DEPTH-POP technique gives the user
discrete control over object depth relative to the camera with a
contact assumption.

4. SHIFT-SLIDING
Basic sliding keeps the object in contact with the scene and
automatically chooses the local sliding plane for the object. For
some use cases, such as 3D game design or animation, there are
scenarios where some objects are floating. Imagine a car in an
action sequence or a bouncing ball in a 3D game. Basic sliding
cannot deal with those situations effectively. With SHIFT-Sliding,
users can break the assumptions of contact or non-collision. We
still pop the object to front if it would become invisible to ensure
accurate manipulation and for consistency.

4

While manipulating an object, the user can move the object
orthogonal to the sliding plane by pressing the SHIFT key. If the
user then “pulls” the object away from the surface, this will cause
the object to float, see Figure 1. When the user releases the SHIFT
key (with the mouse button still held down), the object will then
keep sliding on a plane defined by the initial normal vector. In this
state, the floating check is temporarily disabled. To provide
feedback, we highlight the moving object in a different color in
SHIFT mode. When the floating object collides, we transition the
object back into sliding mode and start sliding on the collider
surface.

If the user lifts an object up and releases the mouse button, the
object floats and is highlighted accordingly. While the object is
still highlighted, the user can later “re-capture” the object with a
click, is then back in SHIFT-sliding mode, and can move the object
on the previous sliding plane. If a floating object is no longer
highlighted, it will snap back to a surface when clicked and then
start sliding. Alternatively, with another SHIFT-click, the user can
move the object up or down orthogonal to the sliding plane. This
is an improvement over Object Associations [7], where breaking
an association leads only to a three-axis manipulation mode.

If the user “pushes” the object into a surface while pressing the
SHIFT key, the object will interpenetrate that surface. When the
user releases the SHIFT key, the object will then keep sliding on
the plane defined by the original normal vector, inside the surface,
still maintaining the visibility assumption. We temporarily disable
the collision check for objects pushed into a surface.

Figure 3. With sliding one can move between the two object
positions by following one of the blue mouse paths. For the

right path in the left image, the object snaps to the wall when
leaving the table. With DEPTH-POP the user can directly

transition with a single mouse-wheel action, without moving
the cursor.

5. DEPTH-POP
Moving the object in the 3rd dimension with a 2D input device
involves indirect mappings. With sliding, previous work has
observed that users can move objects along the “shortest
continuous path across visible surfaces,” through long mouse
motions [28]. For example, in Figure 3 and to move an object
from the wall to the table top, novices will typically slide the
object along the wall, the table leg and then onto the table surface
[28]. With DEPTH-POP, the user can accomplish the same result
with a single mouse wheel action, which makes manipulation
more direct. To achieve the same result, Object Associations [7] or
other “click-to-place” algorithms require the user to first move the
object away and then into the right place, which requires a
minimum of two move operations.

Hinckley et al. [17] used discrete cycling to select multiple objects
along a mouse ray, but did not use this for positioning an object in
3D. LayerPaint [10] permits drawing continuous strokes even on
occluded regions in multi-layer scenes through automatic depth

determination. Igarashi et al. [19] presented layer swap, which
allows the user to directly modify the depth order of the top two
layers by clicking on a 3D layered object. They also presented
layer-aware dragging. While dragging an object, the user can
toggle between drag-over and drag-under modes with the SHIFT
key and the system will adjust the object’s depth automatically.
Extending these works, we map the choice of 3D object position
to scroll wheel actions, whenever the user is dragging/sliding an
object with the left button. More specifically, with each wheel
action our new DEPTH-POP technique selects the next, respectively
previous, element from the set of 3D positions along the mouse
ray that match our assumptions (contact, non-collision, visible).
We map front and back movement of the mouse wheel to “push-
to-back” respectively “pop-to-front”. Together with sliding, this
enables users to move objects in all three dimensions directly and
independently.

5.1 Push-to-Back/Pop-to-Front
Moving the mouse wheel away from/towards the user triggers a
push-to-back/pop-to-front event, e.g., between position B and C in
Figure 2. With push-to-back the object is moved to the next
possible position further away from the camera that satisfies all
three main design assumptions. For each pop-to-front event, the
object is moved to the next position closer to the camera again
maintaining the design assumptions. We also call pop-to-front
whenever the object becomes completely occluded, i.e., invisible.

5.2 Audio Feedback
For DEPTH-POP actions, we use different auditory cues to indicate
a successful DEPTH-POP or a failed attempt to give the user
feedback. Examples of infeasible actions are an object that is
already the foremost visible object and thus cannot be pulled
closer or an object to be pushed further away but with nothing
behind it.

5.3 Orthographic vs. Perspective Projection
We display the 3D scene in perspective and use that camera also
for visibility detection. After all, when all pixels of the selected
object are invisible, the user cannot see and manipulate it with
precision. If our system detects this situation, we call pop-to-front.

When we move the object along the mouse ray to bring an object
closer or further away we use an orthographic camera in the
DEPTH-POP algorithm. This design decision makes a functional
difference for the user, as it guarantees that the point on the
selected object remains stable underneath the mouse cursor at all
times, which yields a better interaction mapping. After all, if the
cursor position on the object shifts/changes during sliding, object
movement becomes less predictable, and thus less precise. See
Figure 4. The DEPTH-POP algorithm (see the appendix) computes a
distance in depth, which corresponds to the distance that the object
should move along the mouse ray. If we were to use a perspective
camera, the minimum difference in depth occurs along various
rays (a different one for each pixel), rather than a specific
direction. Thus the smallest perspective depth difference is
different from the mouse ray direction, which in turn would
violate the static cursor property. Orthographic projection does not
suffer from this ambiguity. Also, linear movements in
orthographic projection correspond better to how an object moves
in 3D. Thus, we set up an orthographic camera in the direction of
the mouse ray and use the frame buffer of this camera for all
computations and DEPTH-POP.

5

Figure 4. Perspective vs. orthographic projection. In

orthographic projection, an object at position A will be
popped to B where the minimum depth difference occurs (red

dashed line), keeping the cursor stable. In perspective, the
smallest depth difference (blue dashed line) would move the

object to C, violating the static cursor property.

6. IMPLEMENTATION
Here we discuss implementation details of our system. We built
our system in the Unity game engine. We use a desktop computer
with 3.5 GHz i7 processor, 16 GB of memory, and two NVIDIA
GeForce GTX 560 SLI graphics cards. We use a mouse and a
keyboard as input devices.

6.1 Frame Buffer vs. Geometry
We exploit the computing power of GPUs and use the frame
buffer for most of the computations. This also enables us to slide
objects on more complex “surfaces”, including even point clouds
with normal vectors. Geometry-based methods would suffer from
decreased performance with complex objects and surfaces. To
support non-convex geometries, we use depth peeling [4] to
compute all depth values for the hidden layers of the scene. With
depth peeling, each unique depth layer in the scene is extracted,
and the layers are enumerated in depth-sorted order. As in other
systems, a left mouse down selects the closest object along the
mouse ray. We highlight the selected object with a different color
during sliding.

6.2 Floating and Collision Checks
When the user selects an object that is not in contact with a
surface, or when an object slides off a surface, we need to push the
object back to force it into contact with the scene. When the object
collides with the scene, we pull the object front to resolve the
collision.

After floating and/or collision is resolved, we slide the object as
previously described. Our floating and collision checks guarantee
that the object is always in contact with the scene, and that the
sliding plane changes seamlessly.

Figure 5. During rotation, an object is always kept in contact
with the surface. To ensure contact, we move the object in the
direction of the (contact) normal vector to resolve floating and

collision situations.

6.3 Contact-Based Object Rotation
We map 3D rotation around the objects’ center to the right mouse
button with the two-axis valuator method [3] and wheel operation
in this state to rotation in the 3rd dimension [33]. If the object is in
contact at the start, we maintain all our design assumptions during
rotation. If the object rotates to a pose where it would float or
collide, we resolve it by moving the object in the direction of the
normal vector of the (last known) contact. See Figure 5.

7. EVALUATION
We first evaluated the technical performance of our system. The
system runs stably at 60 fps for scenes with almost a million
polygons. The user can slide objects on various surfaces, including
concave surfaces and point clouds. For the scenes shown on the
right in Figure 6, a single DEPTH-POP operation takes less than 20
ms. We conducted two user studies to evaluate our new techniques.

Figure 6. In the left image, the object slides on a point cloud.

On the right, the torus can be placed on or around any branch
of the tree (assuming enough space to avoid collisions).

7.1 Evaluation of SHIFT-Sliding
Oh et al. [28] had compared the Sliding algorithm against 3D
widgets in an assembly task for in-contact conditions and found
the sliding algorithm to be superior. Our new SHIFT-Sliding
method extends basic sliding to support floating and colliding
objects. We hypothesize that our new method will similarly
outperform widget-based techniques for tasks where objects float
or collide. To address a potential confound we disabled camera
navigation in our study. To ensure internal validity, we also
disabled object rotation and DEPTH-POP for this study.

In a pilot study we compared our sliding technique against widgets
in various conditions, including single and four-view presentation.
In the 3D widgets method, the user can drag either the three axes
manipulators or the corresponding plane manipulators to move the
object in one or two dimensions. For all situations where objects
were in contact, we observed that our results matched the outcome
of the previous evaluation of sliding [28]. Average sliding and
widget times were significantly different (F1,11 = 91.92, p <
0.001) with 6.05 seconds, respectively 30.70, which matches the
main result of Oh et al. [28]. Thus, we examine in our first user
study only the manipulation of objects not in contact with the
scene, i.e., floating objects.

7.2 User Study 1
For floating objects, widget-based manipulation is easier if the
local coordinate system of the object aligns with the world system.
This can affect performance substantially. Thus we investigate
coordinate system alignment through task subsets in our study.

7.2.1 Apparatus & Participants
We used the implementation described above to conduct this
experiment. We recruited 12 (5 female) undergraduate and

6

graduate students from the local university population. We did not
screen participants for 3D/gaming experience. Our participants
had varying game expertise, with 58% being regular gamers and
42% playing games only rarely. There was a 5-minute training
session before the study, which introduced participants to the
techniques in a playground environment, but did not include any
version of the experimental tasks.

Figure 7. Top: The SHS condition with four views. The one-
view condition uses only the bottom left view in full screen.
The transparently shown target pose is floating above the

floor. Bottom: The LCS condition with four views. The target
position is around the pillar.

7.2.2 Experiment Design
We designed a 3D object positioning experiment and asked
participants to move an object to a target position in various
scenes. When the user positioned the object in the target, we
measured the completion time and relative distance from the ideal
target position. We recorded all actions of each user. The
experiment had a 2 (techniques) x 2 (displays) x 2 (alignment)
design. The order of technique, display, and alignment conditions
was counter-balanced to avoid learning effects. The first technique
uses a 3-axis widget aligned to the local coordinate system of the
object. We call this technique LCS. With LCS, the user can drag
either the three axes or the corresponding planes to move the
object, as in most 3D editing software. The second technique is
our new SHIFT-Sliding algorithm. We call this technique SHS here
for brevity. The first display condition used four views (one
perspective and three orthogonal views), corresponding to the
standard user interface in 3D editing software. The second

condition uses only a single perspective view. Figure 7 top shows
the SHS condition with four views.

As discussed before, we designed our experiment to focus on
floating objects. To investigate the effect of object alignment with
the scene, the tasks were composed of two subsets, corresponding
to aligned or rotated poses relative to the world coordinate system.
The object orientations in the aligned condition were aligned with
the three axes in the world coordinate systems. In the rotated
condition, objects were rotated 45 degrees on all three axes
relative to the world coordinate system. The effect of such object
alignment had not been investigated in previous work. Each task
condition had 5 trials, with different objects and scenes. The target
positions were positioned so that movement along all three axes
was necessary. On average the movement distance along each axis
corresponded to a third of the viewport size (in the orthogonal
views). Each user performed all trials in both two task conditions
with all techniques and displays, corresponding to a total of 40
(5x2x4) trials for each user. We asked the participants to perform
the tasks as quickly and as accurately as possible.

7.2.3 User Study Results
We used linear mixed models (with repeated measures) to
incorporate subject variability. A critical value α = 0.05 was used
to assess significance. The results showed that SHS (M=33.31
seconds, SE=1.85) is significantly faster than the industry standard
LCS (M=38.56, SE=1.88), OneView (M=31.37, SE=1.55) is
significantly faster than FourView (M=40.50, SE=2.12), and the
aligned condition (M=31.99, SE=1.71) is significantly faster than
the rotated one (M=39.89, SE=2.00). See Table 1 and Figure 8.
In terms of completion time, all interactions were significant:
SHS-OneView is faster than SHS-FourView and LCS-OneView.
SHS-rotated and LCS-aligned are both faster than LCS-rotated.
FourView-aligned and OneView-rotated are both faster than
FourView-rotated.

A Tukey-Kramer’s test shows that for aligned targets, SHS-
OneView (M=25.58 seconds) is not significantly different from
LCS-FourView (M=23.80). For rotated targets, SHS-OneView is
significantly faster than all other combinations.

In terms of target distance, technique did not have a significant
effect. FourView (M=0.065, SE=0.007) had a significantly smaller
distance than OneView (M=0.220, SE=0.017). Alignment did not
have a significant effect. There were no significant interactions on
target distance.

Table 1. Linear mixed model analysis results for completion
time and distance for study 1.

Source c2(1) time Sig c2(1) distance Sig
Tech 4.73 * 0.30 ns
View 14.32 *** 19.24 *
Align 10.72 ** 0.56 ns
Tech*View 4.41 * 1.30 ns
Tech*Align 17.33 *** 0.01 ns
View*Align 6.44 * 1.25 ns
Tech*View*
Align 15.60 *** 0.11 ns

ns/ms = not/marginally sig., *,**,*** = p<0.05,0.01,0.001.

Nine of 12 participants found SHS easy to use. Eight participants
prefer the SHS technique over LCS. Additionally, we got very

7

positive feedback, see the discussion. Those who did not prefer
SHS stated that the need to hold SHIFT down makes coordination
slightly harder, but more practice might help.

Figure 8. Time and distance for study 1. Error bars show 95%

confidence intervals.

7.3 Evaluation of DEPTH-POP
We performed another pilot to compare basic sliding with DEPTH-
POP. Several participants aborted the study due to frustration with
basic sliding which made results hard to interpret. In scenes with
simple geometry, such as Figure 3, sliding “around” works
reasonably well, once users figure this out. Yet, in scenes with
small thin features such as Figure 6 right, moving the torus
between depth layers is challenging, as one cannot rely on the
object becoming invisible to pop the object to the front. One
viable strategy is to purposefully force a collision to pop the object
to the front; yet then it becomes impossible to place the torus
around the branch again. An alternative way for placing it around
the branch is to slide an object from the tip of a branch inwards,
but none of our participants were able to figure this out. Thus we
concluded that basic sliding is not suited for such scenes and did
not evaluate it.

7.4 User Study 2
In our second study we evaluated the DEPTH-POP algorithm in
isolation, for objects in contact with the scene. We hypothesize
that with DEPTH-POP users would be able to complete tasks
quicker than with a widget-based technique.

7.4.1 Apparatus & Participants
We evaluated our implementation of DEPTH-POP in this
experiment. We recruited 12 (5 female) different graduate and
undergraduate students from the local university population. We
did not screen participants for 3D/gaming experience. Our
participants had varying game expertise, with 42% being regular
gamers and 58% playing games only rarely. There was a five-
minute training session before the study, which introduced
participants to the techniques.

7.4.2 Experiment Design
Similar to the first study, the experiment had a 2 (techniques) x 2
(displays) x 2 (alignment) design. The order of technique, display,
and alignment conditions was counter-balanced to avoid learning
effects. We used LCS again as the first technique. The second
technique was SHIFT-Sliding with DEPTH-POP enabled, which we
call SDP here. The display conditions were again four views and a
single view. We also looked again at tasks with aligned and
rotated poses. All tasks involved only objects in contact and could
be achieved with basic sliding and DEPTH-POP, i.e., did not require
SHIFT-Sliding. Still, we did not disable SHIFT-Sliding, as some
tasks can indeed be completed with SHIFT-Sliding and the

automatic collision response of our system. We had again 5 trials
for each object alignment condition. Each user had to perform 40
(5x2x4) trials. Figure 7 bottom shows the LCS condition with four
views.

Table 2. Linear mixed model analysis results for completion
time and distance for study 2.

Source c2(1) time Sig c2(1) distance Sig
Tech 71.67 *** 8.80 **
View 7.37 ** 36.86 ***
Align 56.83 *** 0.58 ns
Tech*View 1.11 ns 9.55 **
Tech*Align 3.56 ms 0.03 ns
View*Align 13.16 *** 1.77 ns
Tech*View*
Align 7.68 ** 0.20 ns

ns/ms = not/marginally sig., *,**,*** = p<0.05,0.01,0.001.

7.4.3 User Study Results
The results of a linear mixed model (with repeated measures)
analysis showed that SDP (M=17.55 seconds, SE=1.18) is
significantly faster than LCS (M=31.85, SE=1.57), OneView
(M=22.41, SE=1.24) is significantly faster than FourView
(M=27.00, SE=1.64), and the aligned condition (M=18.33,
SE=0.97) is significantly faster than the rotated condition
(M=31.07, SE=1.73). In terms of completion time, the interaction
between views and rotation was significant: FourView-aligned and
OneView-rotated are both faster than FourView-rotated. See Table
2 and Figure 9.

In terms of target distance, SDP (M=0.057, SE=0.007) had a
significantly smaller distance than LCS (M=0.095, SE=0.012).
Moreover, FourView (M=0.037, SE=0.003) had significantly
smaller distance than OneView (M=0.115, SE=0.014). Alignment
did not have a significant effect. The interaction of technique and
view had a significant effect. Both LCS-FourView and SDP-
OneView had a significantly smaller distance than LCS-OneView.
The other interactions were not significant.

Seven participants found the SDP technique easy to use and relied
solely on DEPTH-POP to complete the tasks. A few participants
found it harder to understand when to use DEPTH-POP, so they
performed some of the trials with SHIFT-Sliding. They stated that
with more practice they would use it more frequently.

Figure 9. Time and distance for study 2. Error bars show 95%

confidence intervals.

8

7.5 Improvements to 3D Object Position
Visualization

Based on the feedback from the participants as well as our
observations, we added some visualizations to our system to
enhance the perception of 3D positions. Some users found it hard
to judge the sliding plane and movement relative to the lift
position in the floating state with SHIFT-Sliding. In DEPTH-POP,
some users had issues with the idea that object movement is along
the cursor ray. To address these issues, when an object is lifted up,
we now draw a line with markers equal to the bounding box size
(projected in the normal direction) to indicate height in SHIFT-
Sliding, see Figure 1. When the user slides an object away from
the initial lift position, we show additional lines in the local
coordinate system that connect the object’s current and lift
position, see Figure 7 top. This provides strong perspective cues,
which further help the user to better judge the object’s position in
3D. To clearly indicate that an object floats, we replace the semi-
transparent rectangle for contact visualization with a small circle.
Unlike interactive shadows [15], this circle is not interactive. For
push-to-back DEPTH-POP actions we also show (dark blue) guides
to help the user understand the 3D movement better, see Figure 1.

8. DISCUSSION
Sliding keeps the manipulated object by default in contact with the
remainder of the scene. The assumption is true for most scenes in
the real world, and thus facilitates object movement in many
scenes. SHIFT-Sliding adds the new ability to have objects float or
interpenetrate. Moreover, SHIFT-Sliding automatically derives a
local coordinate system from the last known contact surface,
which makes it easy to position objects in space relative to other
objects, without having to explicitly set a local coordinate system.
Results from the first study show that SHIFT-Sliding is easy to use
and, for floating objects, 16% faster than the widget-based
approach, the current industry standard. Together with Oh et al.’s
results [28], this means that SHIFT-Sliding is globally faster than
the widget-based method, regardless if the target position is in
contact or not. Given the frequency of widget-based positioning in
the 3D workflow, this means that SHIFT-Sliding can result in
substantial time savings for practitioners. We got very positive
feedback from the participants, where some even commented
along the lines of: “I wish I had this in 3DS Max”. Moreover,
SHIFT-Sliding in a single perspective view is never significantly
worse than the widget-based approach. With SHIFT-Sliding, users
received enough depth cues to complete the tasks in the single
perspective view. They found it easy to find an appropriate plane
to start sliding with the SHIFT key, even for complex surfaces. In
fact, we observed that it does not matter that much where in a
given 3D movement task users start to use the SHIFT key to lift the
object. For rotated target poses, SHIFT-Sliding was at least 29%
faster than any widget-based condition. Widget-based
manipulation also suffered with rotated targets, as dragging in the
(rotated) widget coordinate system causes movement in more than
one direction in the world coordinate system, which is harder to
understand for users. Thus, SHIFT-Sliding effectively merges the
freedom of widget-based manipulation with the efficiency of
sliding. This fundamentally improves 3D object manipulation with
2D input devices.

The second study shows that SHIFT-Sliding with DEPTH-POP is
more efficient, 81% faster, and 67% more accurate than the
widget-based technique, as it automatically determines valid
object positions in depth. The (seemingly) simple mapping to
mouse-wheel actions together with our accelerated

implementation greatly simplifies moving objects in depth and
radically accelerates the associated tasks. DEPTH-POP facilitates
even more challenging tasks, such as fitting a complex object
around another one.

Results from both studies show that the OneView condition is on
average more efficient than FourView, but less accurate. Based on
our observations during the study, users might have tried to be
more accurate with FourView display, at the expense of efficiency.
Also, with widget-based manipulation, FourView was faster for
aligned targets, yet OneView faster for rotated targets. We are not
certain that this last finding holds up, as in the orthogonal views of
the FourView widget condition a third of the axis controllers did
not always work correctly with rotated objects in the study. While
users were able to complete the tasks, we recognize that the faulty
controllers may have had a limited negative effect for this specific
condition. Yet, participants had experienced this issue in the
training session and thus learned to use the other views and/or
controllers. Moreover, based on our observations during the study,
we believe that the impact of this issue was overshadowed by the
fact that users struggled (much) more with the challenges posed by
a locally rotated 3D coordinate system.

In both studies, the participants commented that more practice
would help. It would be interesting to measure the learnability of
our new methods in a long term study. To address potential issues
around having to hold the SHIFT key down during SHIFT-Sliding,
one option would be to use the SHIFT key similar to a toggle [19].

8.1 Other Reflections
As there are only two interaction modes in our system, we can
easily adapt our technique for a touchscreen interface. As is
standard in most touch interfaces, the user can select and slide an
object with a single finger. A second touch/hold can then serve as
an activation event for SHIFT-Sliding to float an object. A flick of a
second finger can be mapped to DEPTH-POP actions, depending on
the direction of said flick. The second finger could be either a
finger of the other hand or the same hand, as in recent work [31].

If the selected object has multiple contact points, the sliding
behaviour depends on the contact points and their normal vectors.
If the object slides across two identical table surfaces that are
positioned side-by-side, the normal vectors and contact planes are
the same. Thus the object can smoothly slide from one table to the
other. If the object slides on a table surface towards a wall, the
normal vector for the new contact will be different. In this case,
the object would collide and we pop the object to the front (of the
wall). Then, it will slide on the wall. Previous work, e.g., [28], has
already shown that multiple (compatible) contacts can be used to
slide an object.

In our system users control translational and rotational DOFs
separately during manipulation [25]. We choose to keep object
orientation static during sliding. Alternatively, we could also
dynamically change the objects’ orientation with the normal
vector of the sliding plane, thus keeping the same surface of the
manipulated object in contact with the scene. This could be
provided as a separated mode.

Ayatsuka et al. [2] already identified that manipulation via
interactive shadows is unnatural, since three projections are
needed. Yet, their penumbrae method [2] has also the drawback
that penumbrae scale non-linearly with object height. The shadows
in our system are not interactive. In the work of Glueck et al. [11],
the shaded inner region of the base coarsely indicates the height of
objects. Yet, as reported by Heer et al. [14], circular area

9

judgments are not that accurate. The length of their “stalks” shows
object heights directly – but is still perspectively foreshortened.
We instead show markers at regular intervals to facilitate quick
perception of object height.

As mentioned before, we disable back-face sliding. Yet, we could
also temporarily enable such sliding in our system in some
situations. One potential scenario is to permit the user to put an
object in contact with a back surface with DEPTH-POP and slide
along it. This would not cause the inappropriate mapping issue
discussed before. Whenever the object loses contact, i.e., starts
floating or collides we would then transition to basic “front”
sliding.

3D scanning a real scene yields point clouds. Converting such
point clouds to geometry requires extra work. If the application
scenario requires the user to place synthetic objects into a scanned
scene, sliding can be used directly on the point clouds. For this,
we only need normal vectors for each sample point. Then the
contact point and sliding plane can potentially change at every
frame during slides. SHIFT-Sliding also works on point clouds.
However, DEPTH-POP only works if the samples form reasonably
dense layers. With DEPTH-POP it is possible to place the object
inside the “body” of a point cloud, i.e., locations where the normal
vector of the contact point is pointing away from the user. To
avoid this, it is better to limit sliding only to front-facing points.
We accelerate most of the computations through the GPU. We use
the frame buffer for most of the components in the system,
including collision detection. For simplicity, we chose to use an
image-based technique for identifying collisions, but any method,
which provides information about the position, normal vector, and
interpenetration distance where the collision occurs, suffices.

9. CONCLUSION
We presented two novel 3D positioning techniques that are
efficient and easy to use. We extend basic sliding with the new
SHIFT-Sliding and DEPTH-POP methods. The results of the user
studies showed that for novice users the new methods are more
efficient for 3D positioning compared to the standard widget-
based approach. Both methods profoundly enhance the ease and
efficiency of 3D manipulation with 2D input devices.

In the future, we plan to explore if rendering front layers
transparent can aid the manipulation of invisible objects, based on
previous work [10][29]. Also, we intend to look at new methods
for manipulation with multiple constraints.

The current implementation of DEPTH-POP can slow down in
scenes with high depth complexity on lower-end graphics
hardware. In scenes with many hidden layers, the large amount of
small fragments could lead to a huge amount of solutions. Many
of those solutions might be meaningless for interaction. In the
future, we will optimize the algorithm to deal better with such
cases through appropriate pruning.

10. ACKNOWLEDGMENTS
We would like to thank all the participants.

11. REFERENCES
[1] Au, O.K.C., Tai, C.L. and Fu, H., 2012, May. Multitouch

gestures for constrained transformation of 3d objects.
In Computer Graphics Forum (Vol. 31, No. 2pt3, pp. 651-
660). Blackwell Publishing Ltd.

[2] Ayatsuka, Y., Matsuoka, S. and Rekimoto, J., 1996,
November. Penumbrae for 3D interactions. In Proceedings

of the 9th Annual ACM Symposium on User Interface
Software and Technology (pp. 165-166). ACM.

[3] Bade, R., Ritter, F. and Preim, B., 2005, August. Usability
comparison of mouse-based interaction techniques for
predictable 3d rotation. In International Symposium on
Smart Graphics (pp. 138-150). Springer Berlin Heidelberg.

[4] Bavoil, L. and Myers, K., 2008. Order independent
transparency with dual depth peeling. NVIDIA OpenGL
SDK, pp.1-12.

[5] Bérard, F., Ip, J., Benovoy, M., El-Shimy, D., Blum, J.R.
and Cooperstock, J.R., 2009, August. Did “Minority Report”
get it wrong? Superiority of the mouse over 3D input
devices in a 3D placement task. In IFIP Conference on
Human-Computer Interaction (pp. 400-414). Springer
Berlin Heidelberg.

[6] Bier, E.A., 1990. Snap-dragging in three dimensions. ACM
SIGGRAPH Computer Graphics, 24(2), pp.193-204.

[7] Bukowski, R.W. and Séquin, C.H., 1995, April. Object
associations: a simple and practical approach to virtual 3D
manipulation. In Proceedings of the 1995 Symposium on
Interactive 3D graphics (pp. 131-ff). ACM.

[8] Conner, B.D., Snibbe, S.S., Herndon, K.P., Robbins, D.C.,
Zeleznik, R.C. and Van Dam, A., 1992, June. Three-
dimensional widgets. In Proceedings of the 1992 Symposium
on Interactive 3D Graphics (pp. 183-188). ACM.

[9] Froehlich, B., Hochstrate, J., Skuk, V. and Huckauf, A.,
2006, April. The globefish and the globemouse: two new six
degree of freedom input devices for graphics applications.
In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (pp. 191-199). ACM.

[10] Fu, C.W., Xia, J. and He, Y., 2010, April. Layerpaint: a
multi-layer interactive 3D painting interface. In Proceedings
of the SIGCHI Conference on Human Factors in Computing
Systems (pp. 811-820). ACM.

[11] Glueck, M., Crane, K., Anderson, S., Rutnik, A. and Khan,
A., 2009, February. Multiscale 3D reference visualization.
In Proceedings of the 2009 Symposium on Interactive 3D
Graphics and Games (pp. 225-232). ACM.

[12] Hachet, M., Guitton, P. and Reuter, P., 2003, October. The
CAT for efficient 2D and 3D interaction as an alternative to
mouse adaptations. In Proceedings of the ACM Symposium
on Virtual Reality Software and Technology (pp. 225-112).
ACM.

[13] Hancock, M., Carpendale, S. and Cockburn, A., 2007, April.
Shallow-depth 3d interaction: design and evaluation of one-,
two-and three-touch techniques. In Proceedings of the
SIGCHI Conference on Human Factors in Computing
Systems (pp. 1147-1156). ACM.

[14] Heer, J. and Bostock, M., 2010, April. Crowdsourcing
graphical perception: using mechanical turk to assess
visualization design. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems (pp.
203-212). ACM.

[15] Herndon, K.P., Zeleznik, R.C., Robbins, D.C., Conner,
D.B., Snibbe, S.S. and Van Dam, A., 1992, December.
Interactive shadows. In Proceedings of the 5th Annual ACM
Symposium on User Interface Software and Technology (pp.
1-6). ACM.

10

[16] Herrlich, M., Walther-Franks, B. and Malaka, R., 2011,
July. Integrated rotation and translation for 3D manipulation
on multi-touch interactive surfaces. In International
Symposium on Smart Graphics (pp. 146-154). Springer
Berlin Heidelberg.

[17] Hinckley, K., Pausch, R., Goble, J.C. and Kassell, N.F.,
1994, November. A survey of design issues in spatial input.
In Proceedings of the 7th Annual ACM Symposium on User
Interface Software and Technology (pp. 213-222). ACM.

[18] Hinckley, K., Tullio, J., Pausch, R., Proffitt, D. and Kassell,
N., 1997, October. Usability analysis of 3D rotation
techniques. In Proceedings of the 10th Annual ACM
Symposium on User Interface Software and Technology (pp.
1-10). ACM.

[19] Igarashi, T. and Mitani, J., 2010, July. Apparent layer
operations for the manipulation of deformable objects.
In ACM Transactions on Graphics (TOG) (Vol. 29, No. 4, p.
110). ACM.

[20] Jacob, R.J., Sibert, L.E., McFarlane, D.C. and Mullen Jr,
M.P., 1994. Integrality and separability of input
devices. ACM Transactions on Computer-Human
Interaction (TOCHI), 1(1), pp.3-26.

[21] Kitamura, Y., Ogata, S. and Kishino, F., 2002, November. A
manipulation environment of virtual and real objects using a
magnetic metaphor. In Proceedings of the ACM Symposium
on Virtual Reality Software and Technology (pp. 201-207).
ACM.

[22] Kruger, R., Carpendale, S., Scott, S.D. and Tang, A., 2005,
April. Fluid integration of rotation and translation.
In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (pp. 601-610). ACM.

[23] Martinet, A., Casiez, G. and Grisoni, L., 2010, March. The
design and evaluation of 3d positioning techniques for
multi-touch displays. In 3D User Interfaces (3DUI), 2010
IEEE Symposium on (pp. 115-118). IEEE.

[24] Martinet, A., Casiez, G. and Grisoni, L., 2010, November.
The effect of DOF separation in 3D manipulation tasks with
multi-touch displays. In Proceedings of the 17th ACM
Symposium on Virtual Reality Software and Technology (pp.
111-118). ACM.

[25] Masliah, M.R. and Milgram, P., 2000, April. Measuring the
allocation of control in a 6 degree-of-freedom docking
experiment. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems (pp. 25-32). ACM.

[26] McMahan, R.P., Gorton, D., Gresock, J., McConnell, W.
and Bowman, D.A., 2006, November. Separating the effects
of level of immersion and 3D interaction techniques.
In Proceedings of the ACM Symposium on Virtual Reality
Software and Technology (pp. 108-111). ACM.

[27] Mine, M.R., Brooks Jr, F.P. and Sequin, C.H., 1997, August.
Moving objects in space: exploiting proprioception in
virtual-environment interaction. In Proceedings of the 24th
Annual Conference on Computer Graphics and Interactive
Techniques (pp. 19-26). ACM Press/Addison-Wesley
Publishing Co.

[28] Oh, J.Y. and Stuerzlinger, W., 2005, May. Moving objects
with 2D input devices in CAD systems and desktop virtual
environments. In Proceedings of Graphics Interface

2005 (pp. 195-202). Canadian Human-Computer
Communications Society.

[29] Ortega, M. and Vincent, T., 2014, April. Direct drawing on
3D shapes with automated camera control. In Proceedings
of the SIGCHI Conference on Human Factors in Computing
Systems (pp. 2047-2050). ACM.

[30] Reisman, J.L., Davidson, P.L. and Han, J.Y., 2009, October.
A screen-space formulation for 2D and 3D direct
manipulation. In Proceedings of the 22nd Annual ACM
Symposium on User Interface Software and Technology (pp.
69-78). ACM.

[31] Scheurich, D. and Stuerzlinger, W., 2013, September. A
One-Handed Multi-Touch Method for 3D Rotations. In IFIP
Conference on Human-Computer Interaction (pp. 56-69).
Springer Berlin Heidelberg.

[32] Schmidt, R., Singh, K. and Balakrishnan, R., 2008, April.
Sketching and composing widgets for 3d manipulation.
In Computer Graphics Forum (Vol. 27, No. 2, pp. 301-310).
Blackwell Publishing Ltd.

[33] Shuralyov, D. and Stuerzlinger, W., 2011. A 3D desktop
puzzle assembly system. In Proceedings of the IEEE
Symposium on 3D User Interfaces (3DUI), pp. 139-140.
IEEE.

[34] Strauss, P.S. and Carey, R., 1992, July. An object-oriented
3D graphics toolkit. In ACM SIGGRAPH Computer
Graphics (Vol. 26, No. 2, pp. 341-349). ACM.

[35] Stuerzlinger, W. and Wingrave, C.A., 2011. The value of
constraints for 3D user interfaces. In Virtual Realities (pp.
203-223). Springer Vienna.

[36] Teather, R.J. and Stuerzlinger, W., 2007, November.
Guidelines for 3D positioning techniques. In Proceedings of
the 2007 Conference on Future Play (pp. 61-68). ACM.

[37] Van Emmerik, M.J., 1990, December. A direct manipulation
technique for specifying 3D object transformations with a
2D input device. In Computer Graphics Forum (Vol. 9, No.
4, pp. 355-361). Blackwell Publishing Ltd.

[38] Venolia, D., 1993, May. Facile 3D direct manipulation.
In Proceedings of the INTERACT'93 and CHI'93
Conference on Human Factors in Computing Systems (pp.
31-36). ACM.

[39] Vishton, P.M. and Cutting, J.E., 1995. Wayfinding,
displacements, and mental maps: velocity fields are not
typically used to determine one's aimpoint. Journal of
Experimental Psychology: Human Perception and
Performance, 21(5), p.978.

[40] Vuibert, V., Stuerzlinger, W. and Cooperstock, J.R., 2015,
August. Evaluation of Docking Task Performance Using
Mid-air Interaction Techniques. In Proceedings of the 3rd
ACM Symposium on Spatial User Interaction (pp. 44-52).
ACM.

[41] Ware, C. and Jessome, D.R., 1988. Using the bat: A six-
dimensional mouse for object placement. Computer
Graphics and Applications, IEEE, 8(6), pp.65-70.

[42] Wickens, C. and Hollands, J., 1999. Spatial
displays. Engineering Psychology and Human Performance,
Prentice-Hall, 3.

11

APPENDIX
In this appendix, we describe the technical details of our new
interaction methods, starting with several helper algorithms and
implementation details.

Depth Intervals
To enable DEPTH-POP, we first introduce a new algorithm based on
depth intervals. The algorithm for depth intervals will output the
optimal distance for the object to be pushed to the back or popped
to the front. For simplicity of explanation, we focus our discussion
here on convex objects and generalize the algorithm to concave
cases later.

We use an orthographic view as this corresponds better to the way
the object moves. First, we render the moving object twice to
generate a depth buffer image for both the front and back-facing
surface of the object, which defines the “thickness” of the selected
object at each pixel. We limit the size of the 3D orthographic view
frustum to the bounding volume of the object to maximize precision
and minimize computation.

Next, we create an empty interval set and start to populate it. We
loop over all pixels where the selected object and the scene overlap.
For each pixel, we calculate the difference of depth values between
the front and back surface of the object and the front surface of the
scene. The depth difference between the scene and front-facing and
back-facing surfaces of the object yield the upper and lower bound
of each depth interval. Depending on the desired movement
direction, one of the two interval bounds indicates the correct
amount of movement, to get the selected object back into contact
with another surface. For each pixel each depth interval is added to
the interval set, merging with existing intervals as appropriate. Each
interval in the fully merged interval set for a pixel then corresponds
to a possible global solution for pop-to-front or push-to-back. We
then combine the solutions across all pixels with a minimum (or
maximum) search to identify the globally best solution. Figure 11
illustrates the merged depth interval set for push-to-back.

void MergeInterval() {
 MergedIntervalSet = {};

 for every overlapping pixel {
 LowerBound = SceneDepth - ObjectBackDepth;
 UpperBound = SceneDepth - ObjectFrontDepth;
 CurrentInterval = [LowerBound, UpperBound];
 if(CurrentInterval overlaps an interval T
 in MergedIntervalSet) {
 Merge(CurrentInterval, T); }
 else MergedIntervalSet.Add(CurrentInterval);
 }
}

Figure 10. Pseudo code for merging intervals for push-to-back.

DEPTH-POP for Convex Objects
In the push-to-back algorithm, for the depth interval at each pixel,
the lower bound is the depth difference between the object back-
facing layer and a front layer scene, which is the desired movement
distance. The upper bound is the depth difference between the
object front-facing layer and the scene. We merge all intervals for
every pixel, and generate a merged depth interval set of all non-zero
lower bounds and use the global minimum lower bound. See Figure
10 for pseudo code for merging intervals for push-to-back.

Figure 11. Merged depth interval set for the scenario of push-
to-back on the first scene layer (top image) and second layer

(bottom). In both images the lower bound of interval 1
corresponds to the current object position. At the bottom the

lower bound of interval 2 moves the object to position C.

The pop-to-front algorithm is symmetric to the push-to-back
algorithm. For the depth interval at each pixel, the upper bound is
the depth difference between the object back-facing layer and a
front layer of the scene, which is the desired movement distance.
The lower bound is the depth difference between the object front-
facing layer and the scene. We merge the intervals for every pixel,
and generate a merged depth interval set and use the global
minimum upper bound.

Frame Buffer Encoding
We store depth values in the 1st and encode normal vectors in the
2nd and 3rd channels of the frame buffer. The 4th channel stores the
pixel position where the minimum or maximum depth difference
occurs. We use 32-bit floating-point frame buffers to position
objects with high precision.

Occlusion Detection
In our system, we detect occlusion by comparing depth values in
perspective depth buffers, between the closest front-facing surface
of the scene and the front-facing surface of the object. If the object
depth is bigger than the scene depth at every pixel, the object is
completely invisible to the camera. We then call pop-to-front.

Depth Peeling
To support non-convex geometries, we use depth peeling [4] to
compute all depth values for the hidden layers of the scene. During
peeling we render not only depth but also normal vectors for each
pixel and check for a completely blank layer to stop the iteration.
We store all layer information into an array of render textures.

DEPTH-POP for Concave Objects in General
Scenes
The version of the DEPTH-POP algorithm presented above works
only for convex objects. Here we generalize it to concave objects.
When the user moves a concave object, multiple depth layers of the
object itself may have to be considered. The number of layers varies
depending on the depth complexity of the current object. During
sliding, the non-collision assumption has to be valid for all layers
of the object, as the object may be sliding on any of its back-facing
layers. We use depth peeling repeatedly to compute all front and
back-facing layers of the object. We then use the set of front-facing

12

and back-facing depth layers to define the object’s position and
movement.

Here we discuss the generalization of the DEPTH-POP algorithm for
non-convex objects and scenes. For each layer from the object and
each layer of the scene, we use the depth intervals to obtain a
solution for the moving distance. Each solution guarantees that a
part of the concave object will be in contact with a layer of the scene,
after moving the object by that distance. We gather all non-zero
solutions and sort them in ascending order. We then identify the
smallest moving distance that we can move the object without
causing a collision. For this, we validate all potential solutions:
Starting from the smallest moving distance, we examine if there
would be collision if we move the object by that distance and iterate
until we find a valid solution. Then we move the object by the
corresponding distance. Otherwise we report failure. Figure 12
shows the pseudo code for the general algorithm.

Floating and Collision Checks
We use the set of object depth layers to detect whether the object is
in contact. For each pair of depth layers of the object, we render the
scene depth that is behind the front-facing object layer. We then
compare the scene depth to the current corresponding back-facing
object layer and compute the minimum depth difference between
the depth of scene and depth of object back-facing layer. If we get
a positive difference, the depth of the scene is bigger than the depth
of back-facing layer at every pixel. This means that the object is
floating for that layer. If the object is floating for all of its layers, it
is not in contact with any surface. We then find the minimum depth
difference across all layers and push the object back by that
distance.

We detect collisions by checking for overlap between all layers of
the object and the scene by iterating over the corresponding depth
information. If the object is in collision (at any layer), we then find
the maximum depth difference of each layer to snap the object to
the front.

For simplicity, we chose to implement an image-based collision
detection method, as we already compute all depth layers of the
object and the scene. To accelerate computations, we carry the
(new) normal vector along with the computation of the min/max
depth difference. Still, our main methods are independent of the
specific collision detection algorithm and other algorithms could be
used, see the discussion.

void PushToBack()
{
 // Render first layer scene depth
 SceneDepth[0] = RenderSceneDepth();
 itr = 0;

 while(1) {
 for (j=0; j<ObjectLayerNum; j++) {
 // Find all the intervals for each layer
 of the object and current layer of the scene
 PushToBackInterval(SceneDepth[itr],
 ObjectDepthFront[j], ObjectDepthBack[j]);
 }
 // Peel off current scene layer
 SceneDepth[itr+1]=DepthPeel(SceneDepth[itr]);

 // Iterations stop when next layer is blank
 if(IsBlank(SceneDepth[itr+1])) break;
 }

 // Sort all the intervals by lower bounds
 // Eliminate intervals with lower bound as 0
 SortByLowerBound (AllIntervals);

 for (i=0; i<IntervalNum; i++) {
 // Validate current solution with each layer of
 the scene and each layer of the object
 ValidCount=Validate(AllIntervals[i],
 SceneDepth, ObjectDepthFront, ObjectDepthBack);

 // If the solution doesn’t cause collision
 if(ValidCount==SceneLayerNum * ObjectLayerNum){
 FinalSolution = AllIntervals[i].LowerBound;
 Break; }
 }

 if(FinalSolution > 0) {
 PushDis = FinalSolution * (CamFar - CamNear);

 // Push the object back along the mouse ray
 TranslateObject(MouseRayDirection * PushDis);

 ChangeSlidingPlane(); }
}

Figure 12. Pseudo code for push-to-back for general objects.

