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Figure 1.The left image rows illustrate SHIFT-Sliding. With this technique the user can lift an object off a surface to float (top row). 
The object reverts to sliding upon collision. Alternatively, the user can push the object into another (bottom). The object “pops” to 

the front to avoid being invisible. The middle image shows object height visualization during SHIFT-Sliding. The right image 
illustrates DEPTH-POP, with a stationary cursor. We can place the object into all four positions using up/down mouse wheel actions.

ABSTRACT 
Moving objects is an important task in 3D user interfaces. We 
describe two new techniques for 3D positioning, designed for a 
mouse, but usable with other input devices. The techniques enable 
rapid, yet easy-to-use positioning of objects in 3D scenes. With 
sliding, the object follows the cursor and moves on the surfaces of 
the scene. Our techniques enable precise positioning of 
constrained objects. Sliding assumes that by default objects stay in 
contact with the scene’s front surfaces, are always at least partially 
visible, and do not interpenetrate other objects. With our new 
SHIFT-Sliding method the user can override these default 
assumptions and lift objects into the air or make them collide with 
other objects. SHIFT-Sliding uses the local coordinate system of 
the surface that the object was last in contact with, which is a new 
form of context-dependent manipulation. We also present DEPTH-
POP, which maps mouse wheel actions to all object positions along 
the mouse ray, where the object meets the default assumptions for 
sliding. For efficiency, both methods use frame buffer techniques. 
Two user studies show that the new techniques significantly speed 
up common 3D positioning tasks. 
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1. INTRODUCTION 
In 3D virtual environments, users often encounter the need to 
arrange a scene with numerous objects. Here we only deal with the 
3D manipulation of rigid objects. Posing a 3D rigid object, i.e., 
manipulating the position and orientation of an object, is a basic 
task in 3D user interfaces. This task can be time-consuming as 6 
degrees of freedom (6DOFs) have to be controlled: 3 DOFs for 
translation along three axes and 3 DOFs for rotation around three 
axes. Some techniques use 3- or 6DOF input devices for object 
manipulation, based on a one-to-one mapping of input and object 
movement. For such tasks, research has shown that 3DOF input 
devices outperform 2D devices in some contexts [18][26]. Yet, 
most users are more familiar with the mouse. Also, in some 
contexts 2D input is the better choice [5]. As evident by its 
pervasive use in 3D computer aided design (CAD) applications, 
the mouse has proven to be a reliable and accurate input device, 
despite the lack of the ability to directly manipulate a third DOF. 

To compensate for this shortcoming, various mappings of 2D 
mouse input to 3D operations have been proposed. CAD user 
interfaces use a local coordinate system to assist object movement, 
typically via 3D widgets [34] controlled with the mouse. However, 
the orientation of this coordinate system is typically independent 
of other objects. Still, if one moves objects in the real world, their 
positions also depend on the surfaces of other objects. Sliding, e.g., 
[7][28], links mouse movement directly to object movement and 
moves an object on the surface behind it, i.e., uses the contact of 
the object with that surface. This effectively corresponds to 
manipulation in a view coordinate system, independent of the 
coordinate system of the object. Sliding typically assumes contact 
and non-collision for manipulated objects. With our enhanced 
SHIFT-Sliding method we break the contact/non-collision 
limitation of basic sliding and map manipulation based on the 
coordinate system of the surface that the object was last in contact 
with, which forms a new form of context-dependent manipulation. 

When multiple surfaces are visible in the same area of a scene, 
there is an ambiguity in the mapping of 2D input to 3D position, 
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e.g., as the manipulated object could be placed on the table or the 
floor visible behind it. To address this ambiguity, we introduce a 
new DEPTH-POP method, which enables efficient control of object 
position in depth. For this, we map discrete mouse wheel actions 
to object movement in depth, which puts the object at all those 
positions along the mouse ray, where contact and non-collision 
assumptions are met. 

We first review relevant previous object manipulation work. Then 
we discuss the overall design space and introduce our new 
interaction methods. In the following, we present implementation 
details and describe our user studies. Finally, we discuss the 
results and mention potential future work. 

2. RELATED WORK 
There has been substantial research in the field of object 
manipulation in 3D user interfaces. 

Many mappings of 3- or 6DOF input device movements to object 
manipulation have been proposed. Ware et al. [41] introduced the 
bat, a 6DOF device with a natural one-to-one mapping. Hachet et 
al. [12] introduced the 6DOF Control Action Table, designed for 
immersive large display environments. The GlobeFish and 
GlobeMouse techniques [9] used a 3DOF trackball for 3D 
manipulation. Bérard et al. [5] compared the mouse with three 
3DOF input devices in a 3D placement task and identified the 
mouse superior for accurate placement. Vuibert et al. [40] 
compared contactless mid-air manipulation with a Phantom and 
found mid-air manipulation faster but less accurate. Masliah et al. 
[25] studied the allocation of control in 6DOF docking and 
identified that rotational and translational DOFs are controlled 
separately. All techniques mentioned in this paragraph require 3D 
input devices, which currently do not afford the level of accuracy 
and precision of a modern mouse. 

Many touch-based 3D manipulation techniques have been 
developed. Hancock et al.’s [13] multi-touch techniques provide 
3D interaction within limited depth. Rotate’ N Translate (RNT) 
[22] offers integrated control of translation and rotation through a 
single touch-point. Reisman et al. [30] presented a screen-space 
method that provides direct 2D and 3D control. Martinet et al. [23] 
proposed two multi-touch techniques. Users preferred the Z-
technique, which permits depth positioning. A later improvement 
separated translation and rotation [24]. Herrlich et al. [16] 
presented two techniques that integrate translation and rotation. 
Au et al. [1] presented a set of multi-touch gestures for 
constrained 3D manipulation. In general, the input mappings for 
touch-based 3D methods require learning and do not support 
accurate manipulation. 

Another approach to 3D manipulation is based on widgets [8][34], 
which encapsulate 3D geometry and behavior. Such widgets are 
now prevalent in 3D CAD software. Mine et al. [27] presented 
hand-held widgets, i.e., 3D objects with geometry and behavior 
that appear in the user's virtual hand. Schmidt et al. [32] presented 
a system that automatically aligned widgets to axes and planes 
determined by a users’ stroke. 

Some 3D manipulation systems use 2D input devices, typically the 
mouse. Bier [6] proposed snap-dragging, which snaps the 3D 
cursor to object features close to the cursor using a gravity 
function. Van Emmerik [37] proposed a technique where the user 
can perform 3D transformations in a local coordinate system 
through control points. Venolia [38] presented “tail-dragging”, 
where the user drags an object as it were attached to a rope. With a 
“snap-to” functionality, other objects also attract the manipulated 
object. Kitamura et al. [21] proposed a “magnetic metaphor” for 

object manipulation, which aims to simulate physical behaviors, 
including non-penetration. In most of these techniques, the local 
coordinate system for object movement must be explicitly 
controlled by the user. 

Building on Object Associations [7], Oh et al. [28] presented a 
sliding algorithm, where the object follows the cursor position 
directly and slides on any surface behind it, i.e., the moving object 
always stays attached to other objects. This form of sliding creates 
associations automatically, and these associations are not limited 
to predefined horizontally or vertically aligned surfaces. 
Compared to click-to-place methods, e.g., [7], sliding provides 
better visual feedback as the result of a (potential) placement is 
continuously visible. For targets in contact, Oh et al. compared 
sliding with axis-widgets and found that sliding is significantly 
more efficient for novices. Yet, Oh et al.’s sliding method lacks 
direct access to object movement in the third DOF. The authors 
identified that for some tasks users have to slide an object on a 
sequence of surfaces to reach a desired “layer” in depth, which is 
not always easy to understand, see Figure 3. 

2.1 Contributions 
The main contributions we present here are: 

• SHIFT-Sliding, which generalizes sliding to support 
floating and interpenetrating objects. 

• A new method to map 2D input to 3D object translation 
based on the coordinate system of the surface that the 
object was last in contact with. 

• A new DEPTH-POP interaction method that addresses the 
inherent depth ambiguity in sliding algorithms. 

• Comparative evaluations of the new techniques. 

3. SYSTEM AND INTERACTION DESIGN 
In this section, we discuss the fundamental assumptions that our 
new object manipulation techniques build on. We target novice 
users without CAD knowledge. We focus on a desktop-based user 
interface with a mouse and a keyboard, as this provides high 
performance in both speed and accuracy. A mouse also helps to 
keep our system easy to learn and use by novices, as many are 
used to this interaction device. Yet, the interaction for DEPTH-POP 
and SHIFT-Sliding is so simple and direct, that it could even be 
applied to touchscreens, as mentioned in the discussion section. 

3.1 Design Assumptions 
We use a single perspective view, as this corresponds best to how 
novices are usually presented with 3D content [42]. We do not use 
stereo, as perspective and occlusion are usually sufficient to 
accurately judge an object’s 3D position and visibility [39]. In our 
system, we assume that objects are by default in contact with other 
objects and do not interpenetrate them. Moreover, we choose not 
to enable manipulation of objects when they are invisible. Here, 
we detail the reasoning behind our design assumptions. 

1) The manipulated object stays by default in contact with the rest 
of the scene. As recognized by Teather et al. [36] and Stuerzlinger 
et al. [35], floating objects are exceptional on our planet, as 
(almost) all objects are in contact with other objects in the real 
world. Also, the exact position of a floating object is harder to 
perceive accurately, as there are fewer references to judge against. 
Such objects are also harder to manipulate because more DOFs 
need to be controlled [20]. In the default sliding mode of our 
system, whenever an object would float, we automatically put the 
object back into contact with the first surface behind it. With our 
new SHIFT-Sliding method, we enable the user to override this. 
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When there is nothing behind an object, it will slide parallel to the 
screen until something appears behind it. 

2) The manipulated object does not interpenetrate the scene by 
default. In the real world, objects do not interpenetrate each other 
without explicit actions, such as drilling a hole. To avoid 
unwanted collisions, we choose to avoid interpenetration by 
default. When needed, we permit the user to force an object “into” 
another with SHIFT-Sliding. 
3) The manipulated object is always at least partially visible to the 
user. Without other forms of feedback (such as haptics) an 
invisible object cannot be manipulated with precision with normal 
input devices. Moreover, a common issue in many 3D systems is 
that an object can become “lost” behind or inside other objects, 
which then forces the user to “find” it again through navigation. In 
our system and whenever an object would become completely 
invisible, we automatically bring the object to a position where it 
is visible. 

When the user selects an object and manipulates it with standard 
sliding, the object will always remain in positions (and poses) 
where all three assumptions are met. Beyond the three scene-
related assumptions above, we also assume that the scene is 
rendered as filled polygons. A wireframe representation of objects 
introduces ambiguities, as it does not explicitly define the 
enclosed surfaces. This is often difficult to understand for novices. 
Similarly, we also exclude volumetric content, such as a 3D brain 
scan. 

3.2 Basic Sliding 
Sliding [28] maps object movement so that the manipulated object 
moves along the surface behind it that it is currently in contact 
with. We use the normal vector at the contact point to determine 
the sliding plane. With this contact constraint, we can directly map 
2D motions of the mouse cursor to 3D movement of the object. 
Figure 2 illustrates sliding. When the user selects an object (at 
position A), we record the intersection of the mouse ray on the 
object as the start point. We identify the normal vector at the 
contact point on surface 1 via the frame buffer. The start point and 
the normal vector define the sliding plane. The intersection of a 
new mouse ray and the sliding plane becomes the end point of the 
object translation. By moving the mouse cursor, the user then 
effectively translates the object parallel to the sliding plane. We 
examine the situation with multiple contacts in different planes in 
the discussion section. 

When the user slides the object to position B in Figure 2, any 
further upwards movement would cause the object to float. Here, 
basic sliding snaps the object back to the next surface behind it, to 
position C on surface 2, while keeping the object under the mouse 
cursor. The new contact point provides a new normal vector for a 
new sliding plane. Then the user can slide the object on surface 2, 
to positions such as D. If the user now moves the mouse back 
down, the object can reach position E, where it is still partially 
visible from the camera. Yet, if the user slides the object from E 
further downwards, the object would become invisible to the user. 
Here, we “pop” the object to the front, i.e., bring it to a position 
below (and a bit to the left of) B, in contact with surface 1. With 
this method we keep the mouse cursor at the same point on the 
object throughout, as an additional cue for object position, giving 
the user also a better understanding of the 3D object movement. 
To highlight the fact that the object is in contact, we render a 
semi-transparent rectangle at the contact surface. 

 
Figure 2. Illustration of sliding movements for an object across 

the front surfaces of two objects with an upwards mouse 
movement (positions A-D). The shaded part of surface 2 is 

occluded by surface 1. Position E can only be reached from C 
with a downwards mouse movement. Positions F and G cannot 

be reached from the current viewpoint, see text. 
When dragging an object along a surface nearly aligned with the 
view direction close to the horizon, it can easily disappear into the 
distance, since a small mouse movement can cause a dramatic 
object movement in 3D. To deal with this, we perform an 
occlusion test for every frame and bring the object to the front 
whenever it becomes completely invisible — even if this causes 
the object to slide on another surface. When there is no surface 
behind the object, we keep the object sliding parallel to the screen 
and inside the camera frustum (even if the projection of the object 
is very small). With this, the user can never lose sight of the 
moving object. 

In our system, the user can slide objects on invisible surfaces, such 
as a portion of the surface 2 in Figure 2 that is hidden by surface 1 
(near E). To keep the interaction intuitive, we only permit sliding 
on surfaces facing the user. If we were to enable sliding on back-
faces, this would create inappropriate mappings. Consider that the 
user slides from A to B with an upwards movement of the cursor 
along surface 1 in Figure 2. To reach position F, the cursor 
movement would then need to be mapped to a downwards motion 
of the mouse, which is indistinguishable from a movement back 
towards A. Thus, a better option is to snap the object to a position 
beyond surface 1 and slide the object on surface 2. 

Object sliding maps mouse input to 3D object motions, which 
automatically defines an appropriate local movement plane. This 
also guarantees that the cursor and object always stay aligned, 
regardless of the surface involved. The new SHIFT-Sliding 
technique generalizes sliding to situations where objects float or 
interpenetrate. Our new DEPTH-POP technique gives the user 
discrete control over object depth relative to the camera with a 
contact assumption. 

4. SHIFT-SLIDING 
Basic sliding keeps the object in contact with the scene and 
automatically chooses the local sliding plane for the object. For 
some use cases, such as 3D game design or animation, there are 
scenarios where some objects are floating. Imagine a car in an 
action sequence or a bouncing ball in a 3D game. Basic sliding 
cannot deal with those situations effectively. With SHIFT-Sliding, 
users can break the assumptions of contact or non-collision. We 
still pop the object to front if it would become invisible to ensure 
accurate manipulation and for consistency. 
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While manipulating an object, the user can move the object 
orthogonal to the sliding plane by pressing the SHIFT key. If the 
user then “pulls” the object away from the surface, this will cause 
the object to float, see Figure 1. When the user releases the SHIFT 
key (with the mouse button still held down), the object will then 
keep sliding on a plane defined by the initial normal vector. In this 
state, the floating check is temporarily disabled. To provide 
feedback, we highlight the moving object in a different color in 
SHIFT mode. When the floating object collides, we transition the 
object back into sliding mode and start sliding on the collider 
surface. 

If the user lifts an object up and releases the mouse button, the 
object floats and is highlighted accordingly. While the object is 
still highlighted, the user can later “re-capture” the object with a 
click, is then back in SHIFT-sliding mode, and can move the object 
on the previous sliding plane. If a floating object is no longer 
highlighted, it will snap back to a surface when clicked and then 
start sliding. Alternatively, with another SHIFT-click, the user can 
move the object up or down orthogonal to the sliding plane. This 
is an improvement over Object Associations [7], where breaking 
an association leads only to a three-axis manipulation mode. 

If the user “pushes” the object into a surface while pressing the 
SHIFT key, the object will interpenetrate that surface. When the 
user releases the SHIFT key, the object will then keep sliding on 
the plane defined by the original normal vector, inside the surface, 
still maintaining the visibility assumption. We temporarily disable 
the collision check for objects pushed into a surface. 

  
Figure 3. With sliding one can move between the two object 
positions by following one of the blue mouse paths. For the 

right path in the left image, the object snaps to the wall when 
leaving the table. With DEPTH-POP the user can directly 

transition with a single mouse-wheel action, without moving 
the cursor. 

5. DEPTH-POP 
Moving the object in the 3rd dimension with a 2D input device 
involves indirect mappings. With sliding, previous work has 
observed that users can move objects along the “shortest 
continuous path across visible surfaces,” through long mouse 
motions [28]. For example, in Figure 3 and to move an object 
from the wall to the table top, novices will typically slide the 
object along the wall, the table leg and then onto the table surface 
[28]. With DEPTH-POP, the user can accomplish the same result 
with a single mouse wheel action, which makes manipulation 
more direct. To achieve the same result, Object Associations [7] or 
other “click-to-place” algorithms require the user to first move the 
object away and then into the right place, which requires a 
minimum of two move operations. 

Hinckley et al. [17] used discrete cycling to select multiple objects 
along a mouse ray, but did not use this for positioning an object in 
3D. LayerPaint [10] permits drawing continuous strokes even on 
occluded regions in multi-layer scenes through automatic depth 

determination. Igarashi et al. [19] presented layer swap, which 
allows the user to directly modify the depth order of the top two 
layers by clicking on a 3D layered object. They also presented 
layer-aware dragging. While dragging an object, the user can 
toggle between drag-over and drag-under modes with the SHIFT 
key and the system will adjust the object’s depth automatically. 
Extending these works, we map the choice of 3D object position 
to scroll wheel actions, whenever the user is dragging/sliding an 
object with the left button. More specifically, with each wheel 
action our new DEPTH-POP technique selects the next, respectively 
previous, element from the set of 3D positions along the mouse 
ray that match our assumptions (contact, non-collision, visible). 
We map front and back movement of the mouse wheel to “push-
to-back” respectively “pop-to-front”. Together with sliding, this 
enables users to move objects in all three dimensions directly and 
independently. 

5.1 Push-to-Back/Pop-to-Front 
Moving the mouse wheel away from/towards the user triggers a 
push-to-back/pop-to-front event, e.g., between position B and C in 
Figure 2. With push-to-back the object is moved to the next 
possible position further away from the camera that satisfies all 
three main design assumptions. For each pop-to-front event, the 
object is moved to the next position closer to the camera again 
maintaining the design assumptions. We also call pop-to-front 
whenever the object becomes completely occluded, i.e., invisible. 

5.2 Audio Feedback 
For DEPTH-POP actions, we use different auditory cues to indicate 
a successful DEPTH-POP or a failed attempt to give the user 
feedback. Examples of infeasible actions are an object that is 
already the foremost visible object and thus cannot be pulled 
closer or an object to be pushed further away but with nothing 
behind it. 

5.3 Orthographic vs. Perspective Projection 
We display the 3D scene in perspective and use that camera also 
for visibility detection. After all, when all pixels of the selected 
object are invisible, the user cannot see and manipulate it with 
precision. If our system detects this situation, we call pop-to-front. 

When we move the object along the mouse ray to bring an object 
closer or further away we use an orthographic camera in the 
DEPTH-POP algorithm. This design decision makes a functional 
difference for the user, as it guarantees that the point on the 
selected object remains stable underneath the mouse cursor at all 
times, which yields a better interaction mapping. After all, if the 
cursor position on the object shifts/changes during sliding, object 
movement becomes less predictable, and thus less precise. See 
Figure 4. The DEPTH-POP algorithm (see the appendix) computes a 
distance in depth, which corresponds to the distance that the object 
should move along the mouse ray. If we were to use a perspective 
camera, the minimum difference in depth occurs along various 
rays (a different one for each pixel), rather than a specific 
direction. Thus the smallest perspective depth difference is 
different from the mouse ray direction, which in turn would 
violate the static cursor property. Orthographic projection does not 
suffer from this ambiguity. Also, linear movements in 
orthographic projection correspond better to how an object moves 
in 3D. Thus, we set up an orthographic camera in the direction of 
the mouse ray and use the frame buffer of this camera for all 
computations and DEPTH-POP. 
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Figure 4. Perspective vs. orthographic projection. In 

orthographic projection, an object at position A will be 
popped to B where the minimum depth difference occurs (red 

dashed line), keeping the cursor stable. In perspective, the 
smallest depth difference (blue dashed line) would move the 

object to C, violating the static cursor property. 

6. IMPLEMENTATION 
Here we discuss implementation details of our system. We built 
our system in the Unity game engine. We use a desktop computer 
with 3.5 GHz i7 processor, 16 GB of memory, and two NVIDIA 
GeForce GTX 560 SLI graphics cards. We use a mouse and a 
keyboard as input devices. 

6.1 Frame Buffer vs. Geometry 
We exploit the computing power of GPUs and use the frame 
buffer for most of the computations. This also enables us to slide 
objects on more complex “surfaces”, including even point clouds 
with normal vectors. Geometry-based methods would suffer from 
decreased performance with complex objects and surfaces. To 
support non-convex geometries, we use depth peeling [4] to 
compute all depth values for the hidden layers of the scene. With 
depth peeling, each unique depth layer in the scene is extracted, 
and the layers are enumerated in depth-sorted order. As in other 
systems, a left mouse down selects the closest object along the 
mouse ray. We highlight the selected object with a different color 
during sliding. 

6.2 Floating and Collision Checks 
When the user selects an object that is not in contact with a 
surface, or when an object slides off a surface, we need to push the 
object back to force it into contact with the scene. When the object 
collides with the scene, we pull the object front to resolve the 
collision. 

After floating and/or collision is resolved, we slide the object as 
previously described. Our floating and collision checks guarantee 
that the object is always in contact with the scene, and that the 
sliding plane changes seamlessly. 

  
Figure 5. During rotation, an object is always kept in contact 
with the surface. To ensure contact, we move the object in the 
direction of the (contact) normal vector to resolve floating and 

collision situations. 

6.3 Contact-Based Object Rotation 
We map 3D rotation around the objects’ center to the right mouse 
button with the two-axis valuator method [3] and wheel operation 
in this state to rotation in the 3rd dimension [33]. If the object is in 
contact at the start, we maintain all our design assumptions during 
rotation. If the object rotates to a pose where it would float or 
collide, we resolve it by moving the object in the direction of the 
normal vector of the (last known) contact. See Figure 5. 

7. EVALUATION 
We first evaluated the technical performance of our system. The 
system runs stably at 60 fps for scenes with almost a million 
polygons. The user can slide objects on various surfaces, including 
concave surfaces and point clouds. For the scenes shown on the 
right in Figure 6, a single DEPTH-POP operation takes less than 20 
ms. We conducted two user studies to evaluate our new techniques. 

  
Figure 6. In the left image, the object slides on a point cloud. 

On the right, the torus can be placed on or around any branch 
of the tree (assuming enough space to avoid collisions). 

7.1 Evaluation of SHIFT-Sliding 
Oh et al. [28] had compared the Sliding algorithm against 3D 
widgets in an assembly task for in-contact conditions and found 
the sliding algorithm to be superior. Our new SHIFT-Sliding 
method extends basic sliding to support floating and colliding 
objects. We hypothesize that our new method will similarly 
outperform widget-based techniques for tasks where objects float 
or collide. To address a potential confound we disabled camera 
navigation in our study. To ensure internal validity, we also 
disabled object rotation and DEPTH-POP for this study. 

In a pilot study we compared our sliding technique against widgets 
in various conditions, including single and four-view presentation. 
In the 3D widgets method, the user can drag either the three axes 
manipulators or the corresponding plane manipulators to move the 
object in one or two dimensions. For all situations where objects 
were in contact, we observed that our results matched the outcome 
of the previous evaluation of sliding [28]. Average sliding and 
widget times were significantly different (F1,11 = 91.92, p < 
0.001) with 6.05 seconds, respectively 30.70, which matches the 
main result of Oh et al. [28]. Thus, we examine in our first user 
study only the manipulation of objects not in contact with the 
scene, i.e., floating objects. 

7.2 User Study 1 
For floating objects, widget-based manipulation is easier if the 
local coordinate system of the object aligns with the world system. 
This can affect performance substantially. Thus we investigate 
coordinate system alignment through task subsets in our study. 

7.2.1 Apparatus & Participants 
We used the implementation described above to conduct this 
experiment. We recruited 12 (5 female) undergraduate and 
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graduate students from the local university population. We did not 
screen participants for 3D/gaming experience. Our participants 
had varying game expertise, with 58% being regular gamers and 
42% playing games only rarely. There was a 5-minute training 
session before the study, which introduced participants to the 
techniques in a playground environment, but did not include any 
version of the experimental tasks. 

 

 
Figure 7. Top: The SHS condition with four views. The one-
view condition uses only the bottom left view in full screen. 
The transparently shown target pose is floating above the 

floor. Bottom: The LCS condition with four views. The target 
position is around the pillar. 

7.2.2 Experiment Design 
We designed a 3D object positioning experiment and asked 
participants to move an object to a target position in various 
scenes. When the user positioned the object in the target, we 
measured the completion time and relative distance from the ideal 
target position. We recorded all actions of each user. The 
experiment had a 2 (techniques) x 2 (displays) x 2 (alignment) 
design. The order of technique, display, and alignment conditions 
was counter-balanced to avoid learning effects. The first technique 
uses a 3-axis widget aligned to the local coordinate system of the 
object. We call this technique LCS. With LCS, the user can drag 
either the three axes or the corresponding planes to move the 
object, as in most 3D editing software. The second technique is 
our new SHIFT-Sliding algorithm. We call this technique SHS here 
for brevity. The first display condition used four views (one 
perspective and three orthogonal views), corresponding to the 
standard user interface in 3D editing software. The second 

condition uses only a single perspective view. Figure 7 top shows 
the SHS condition with four views. 

As discussed before, we designed our experiment to focus on 
floating objects. To investigate the effect of object alignment with 
the scene, the tasks were composed of two subsets, corresponding 
to aligned or rotated poses relative to the world coordinate system. 
The object orientations in the aligned condition were aligned with 
the three axes in the world coordinate systems. In the rotated 
condition, objects were rotated 45 degrees on all three axes 
relative to the world coordinate system. The effect of such object 
alignment had not been investigated in previous work. Each task 
condition had 5 trials, with different objects and scenes. The target 
positions were positioned so that movement along all three axes 
was necessary. On average the movement distance along each axis 
corresponded to a third of the viewport size (in the orthogonal 
views). Each user performed all trials in both two task conditions 
with all techniques and displays, corresponding to a total of 40 
(5x2x4) trials for each user. We asked the participants to perform 
the tasks as quickly and as accurately as possible. 

7.2.3 User Study Results 
We used linear mixed models (with repeated measures) to 
incorporate subject variability. A critical value α = 0.05 was used 
to assess significance. The results showed that SHS (M=33.31 
seconds, SE=1.85) is significantly faster than the industry standard 
LCS (M=38.56, SE=1.88), OneView (M=31.37, SE=1.55) is 
significantly faster than FourView (M=40.50, SE=2.12), and the 
aligned condition (M=31.99, SE=1.71) is significantly faster than 
the rotated one (M=39.89, SE=2.00). See Table 1 and Figure 8. 
In terms of completion time, all interactions were significant: 
SHS-OneView is faster than SHS-FourView and LCS-OneView. 
SHS-rotated and LCS-aligned are both faster than LCS-rotated. 
FourView-aligned and OneView-rotated are both faster than 
FourView-rotated. 

A Tukey-Kramer’s test shows that for aligned targets, SHS-
OneView (M=25.58 seconds) is not significantly different from 
LCS-FourView (M=23.80). For rotated targets, SHS-OneView is 
significantly faster than all other combinations. 

In terms of target distance, technique did not have a significant 
effect. FourView (M=0.065, SE=0.007) had a significantly smaller 
distance than OneView (M=0.220, SE=0.017). Alignment did not 
have a significant effect. There were no significant interactions on 
target distance. 

Table 1. Linear mixed model analysis results for completion 
time and distance for study 1. 

Source c2(1) time Sig c2(1) distance Sig 
Tech 4.73 * 0.30 ns 
View 14.32 *** 19.24 * 
Align 10.72 ** 0.56 ns 
Tech*View 4.41 * 1.30 ns 
Tech*Align 17.33 *** 0.01 ns 
View*Align 6.44 * 1.25 ns 
Tech*View*
Align 15.60 *** 0.11 ns 

ns/ms = not/marginally sig., *,**,*** = p<0.05,0.01,0.001. 

Nine of 12 participants found SHS easy to use. Eight participants 
prefer the SHS technique over LCS. Additionally, we got very 
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positive feedback, see the discussion. Those who did not prefer 
SHS stated that the need to hold SHIFT down makes coordination 
slightly harder, but more practice might help. 

 
Figure 8. Time and distance for study 1. Error bars show 95% 

confidence intervals. 

7.3 Evaluation of DEPTH-POP 
We performed another pilot to compare basic sliding with DEPTH-
POP. Several participants aborted the study due to frustration with 
basic sliding which made results hard to interpret. In scenes with 
simple geometry, such as Figure 3, sliding “around” works 
reasonably well, once users figure this out. Yet, in scenes with 
small thin features such as Figure 6 right, moving the torus 
between depth layers is challenging, as one cannot rely on the 
object becoming invisible to pop the object to the front. One 
viable strategy is to purposefully force a collision to pop the object 
to the front; yet then it becomes impossible to place the torus 
around the branch again. An alternative way for placing it around 
the branch is to slide an object from the tip of a branch inwards, 
but none of our participants were able to figure this out. Thus we 
concluded that basic sliding is not suited for such scenes and did 
not evaluate it. 

7.4 User Study 2 
In our second study we evaluated the DEPTH-POP algorithm in 
isolation, for objects in contact with the scene. We hypothesize 
that with DEPTH-POP users would be able to complete tasks 
quicker than with a widget-based technique. 

7.4.1 Apparatus & Participants 
We evaluated our implementation of DEPTH-POP in this 
experiment. We recruited 12 (5 female) different graduate and 
undergraduate students from the local university population. We 
did not screen participants for 3D/gaming experience. Our 
participants had varying game expertise, with 42% being regular 
gamers and 58% playing games only rarely. There was a five-
minute training session before the study, which introduced 
participants to the techniques. 

7.4.2 Experiment Design 
Similar to the first study, the experiment had a 2 (techniques) x 2 
(displays) x 2 (alignment) design. The order of technique, display, 
and alignment conditions was counter-balanced to avoid learning 
effects. We used LCS again as the first technique. The second 
technique was SHIFT-Sliding with DEPTH-POP enabled, which we 
call SDP here. The display conditions were again four views and a 
single view. We also looked again at tasks with aligned and 
rotated poses. All tasks involved only objects in contact and could 
be achieved with basic sliding and DEPTH-POP, i.e., did not require 
SHIFT-Sliding. Still, we did not disable SHIFT-Sliding, as some 
tasks can indeed be completed with SHIFT-Sliding and the 

automatic collision response of our system. We had again 5 trials 
for each object alignment condition. Each user had to perform 40 
(5x2x4) trials. Figure 7 bottom shows the LCS condition with four 
views. 

Table 2. Linear mixed model analysis results for completion 
time and distance for study 2. 

Source c2(1) time Sig c2(1) distance Sig 
Tech 71.67 *** 8.80 ** 
View 7.37 ** 36.86 *** 
Align 56.83 *** 0.58 ns 
Tech*View 1.11 ns 9.55 ** 
Tech*Align 3.56 ms 0.03 ns 
View*Align 13.16 *** 1.77 ns 
Tech*View*
Align 7.68 ** 0.20 ns 

ns/ms = not/marginally sig., *,**,*** = p<0.05,0.01,0.001. 

7.4.3 User Study Results 
The results of a linear mixed model (with repeated measures) 
analysis showed that SDP (M=17.55 seconds, SE=1.18) is 
significantly faster than LCS (M=31.85, SE=1.57), OneView 
(M=22.41, SE=1.24) is significantly faster than FourView 
(M=27.00, SE=1.64), and the aligned condition (M=18.33, 
SE=0.97) is significantly faster than the rotated condition 
(M=31.07, SE=1.73). In terms of completion time, the interaction 
between views and rotation was significant: FourView-aligned and 
OneView-rotated are both faster than FourView-rotated. See Table 
2 and Figure 9. 

In terms of target distance, SDP (M=0.057, SE=0.007) had a 
significantly smaller distance than LCS (M=0.095, SE=0.012). 
Moreover, FourView (M=0.037, SE=0.003) had significantly 
smaller distance than OneView (M=0.115, SE=0.014). Alignment 
did not have a significant effect. The interaction of technique and 
view had a significant effect. Both LCS-FourView and SDP-
OneView had a significantly smaller distance than LCS-OneView. 
The other interactions were not significant. 

Seven participants found the SDP technique easy to use and relied 
solely on DEPTH-POP to complete the tasks. A few participants 
found it harder to understand when to use DEPTH-POP, so they 
performed some of the trials with SHIFT-Sliding. They stated that 
with more practice they would use it more frequently. 

 
Figure 9. Time and distance for study 2. Error bars show 95% 

confidence intervals. 
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7.5 Improvements to 3D Object Position 
Visualization 

Based on the feedback from the participants as well as our 
observations, we added some visualizations to our system to 
enhance the perception of 3D positions. Some users found it hard 
to judge the sliding plane and movement relative to the lift 
position in the floating state with SHIFT-Sliding. In DEPTH-POP, 
some users had issues with the idea that object movement is along 
the cursor ray. To address these issues, when an object is lifted up, 
we now draw a line with markers equal to the bounding box size 
(projected in the normal direction) to indicate height in SHIFT-
Sliding, see Figure 1. When the user slides an object away from 
the initial lift position, we show additional lines in the local 
coordinate system that connect the object’s current and lift 
position, see Figure 7 top. This provides strong perspective cues, 
which further help the user to better judge the object’s position in 
3D. To clearly indicate that an object floats, we replace the semi-
transparent rectangle for contact visualization with a small circle. 
Unlike interactive shadows [15], this circle is not interactive. For 
push-to-back DEPTH-POP actions we also show (dark blue) guides 
to help the user understand the 3D movement better, see Figure 1. 

8. DISCUSSION 
Sliding keeps the manipulated object by default in contact with the 
remainder of the scene. The assumption is true for most scenes in 
the real world, and thus facilitates object movement in many 
scenes. SHIFT-Sliding adds the new ability to have objects float or 
interpenetrate. Moreover, SHIFT-Sliding automatically derives a 
local coordinate system from the last known contact surface, 
which makes it easy to position objects in space relative to other 
objects, without having to explicitly set a local coordinate system. 
Results from the first study show that SHIFT-Sliding is easy to use 
and, for floating objects, 16% faster than the widget-based 
approach, the current industry standard. Together with Oh et al.’s 
results [28], this means that SHIFT-Sliding is globally faster than 
the widget-based method, regardless if the target position is in 
contact or not. Given the frequency of widget-based positioning in 
the 3D workflow, this means that SHIFT-Sliding can result in 
substantial time savings for practitioners. We got very positive 
feedback from the participants, where some even commented 
along the lines of: “I wish I had this in 3DS Max”. Moreover, 
SHIFT-Sliding in a single perspective view is never significantly 
worse than the widget-based approach. With SHIFT-Sliding, users 
received enough depth cues to complete the tasks in the single 
perspective view. They found it easy to find an appropriate plane 
to start sliding with the SHIFT key, even for complex surfaces. In 
fact, we observed that it does not matter that much where in a 
given 3D movement task users start to use the SHIFT key to lift the 
object. For rotated target poses, SHIFT-Sliding was at least 29% 
faster than any widget-based condition. Widget-based 
manipulation also suffered with rotated targets, as dragging in the 
(rotated) widget coordinate system causes movement in more than 
one direction in the world coordinate system, which is harder to 
understand for users. Thus, SHIFT-Sliding effectively merges the 
freedom of widget-based manipulation with the efficiency of 
sliding. This fundamentally improves 3D object manipulation with 
2D input devices. 

The second study shows that SHIFT-Sliding with DEPTH-POP is 
more efficient, 81% faster, and 67% more accurate than the 
widget-based technique, as it automatically determines valid 
object positions in depth. The (seemingly) simple mapping to 
mouse-wheel actions together with our accelerated 

implementation greatly simplifies moving objects in depth and 
radically accelerates the associated tasks. DEPTH-POP facilitates 
even more challenging tasks, such as fitting a complex object 
around another one. 

Results from both studies show that the OneView condition is on 
average more efficient than FourView, but less accurate. Based on 
our observations during the study, users might have tried to be 
more accurate with FourView display, at the expense of efficiency. 
Also, with widget-based manipulation, FourView was faster for 
aligned targets, yet OneView faster for rotated targets. We are not 
certain that this last finding holds up, as in the orthogonal views of 
the FourView widget condition a third of the axis controllers did 
not always work correctly with rotated objects in the study. While 
users were able to complete the tasks, we recognize that the faulty 
controllers may have had a limited negative effect for this specific 
condition. Yet, participants had experienced this issue in the 
training session and thus learned to use the other views and/or 
controllers. Moreover, based on our observations during the study, 
we believe that the impact of this issue was overshadowed by the 
fact that users struggled (much) more with the challenges posed by 
a locally rotated 3D coordinate system. 

In both studies, the participants commented that more practice 
would help. It would be interesting to measure the learnability of 
our new methods in a long term study. To address potential issues 
around having to hold the SHIFT key down during SHIFT-Sliding, 
one option would be to use the SHIFT key similar to a toggle [19]. 

8.1 Other Reflections 
As there are only two interaction modes in our system, we can 
easily adapt our technique for a touchscreen interface. As is 
standard in most touch interfaces, the user can select and slide an 
object with a single finger. A second touch/hold can then serve as 
an activation event for SHIFT-Sliding to float an object. A flick of a 
second finger can be mapped to DEPTH-POP actions, depending on 
the direction of said flick. The second finger could be either a 
finger of the other hand or the same hand, as in recent work [31]. 

If the selected object has multiple contact points, the sliding 
behaviour depends on the contact points and their normal vectors. 
If the object slides across two identical table surfaces that are 
positioned side-by-side, the normal vectors and contact planes are 
the same. Thus the object can smoothly slide from one table to the 
other. If the object slides on a table surface towards a wall, the 
normal vector for the new contact will be different. In this case, 
the object would collide and we pop the object to the front (of the 
wall). Then, it will slide on the wall. Previous work, e.g., [28], has 
already shown that multiple (compatible) contacts can be used to 
slide an object. 

In our system users control translational and rotational DOFs 
separately during manipulation [25]. We choose to keep object 
orientation static during sliding. Alternatively, we could also 
dynamically change the objects’ orientation with the normal 
vector of the sliding plane, thus keeping the same surface of the 
manipulated object in contact with the scene. This could be 
provided as a separated mode. 

Ayatsuka et al. [2] already identified that manipulation via 
interactive shadows is unnatural, since three projections are 
needed. Yet, their penumbrae method [2] has also the drawback 
that penumbrae scale non-linearly with object height. The shadows 
in our system are not interactive. In the work of Glueck et al. [11], 
the shaded inner region of the base coarsely indicates the height of 
objects. Yet, as reported by Heer et al. [14], circular area 
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judgments are not that accurate. The length of their “stalks” shows 
object heights directly – but is still perspectively foreshortened. 
We instead show markers at regular intervals to facilitate quick 
perception of object height. 

As mentioned before, we disable back-face sliding. Yet, we could 
also temporarily enable such sliding in our system in some 
situations. One potential scenario is to permit the user to put an 
object in contact with a back surface with DEPTH-POP and slide 
along it. This would not cause the inappropriate mapping issue 
discussed before. Whenever the object loses contact, i.e., starts 
floating or collides we would then transition to basic “front” 
sliding. 

3D scanning a real scene yields point clouds. Converting such 
point clouds to geometry requires extra work. If the application 
scenario requires the user to place synthetic objects into a scanned 
scene, sliding can be used directly on the point clouds. For this, 
we only need normal vectors for each sample point. Then the 
contact point and sliding plane can potentially change at every 
frame during slides. SHIFT-Sliding also works on point clouds. 
However, DEPTH-POP only works if the samples form reasonably 
dense layers. With DEPTH-POP it is possible to place the object 
inside the “body” of a point cloud, i.e., locations where the normal 
vector of the contact point is pointing away from the user. To 
avoid this, it is better to limit sliding only to front-facing points. 
We accelerate most of the computations through the GPU. We use 
the frame buffer for most of the components in the system, 
including collision detection. For simplicity, we chose to use an 
image-based technique for identifying collisions, but any method, 
which provides information about the position, normal vector, and 
interpenetration distance where the collision occurs, suffices. 

9. CONCLUSION 
We presented two novel 3D positioning techniques that are 
efficient and easy to use. We extend basic sliding with the new 
SHIFT-Sliding and DEPTH-POP methods. The results of the user 
studies showed that for novice users the new methods are more 
efficient for 3D positioning compared to the standard widget-
based approach. Both methods profoundly enhance the ease and 
efficiency of 3D manipulation with 2D input devices. 

In the future, we plan to explore if rendering front layers 
transparent can aid the manipulation of invisible objects, based on 
previous work [10][29]. Also, we intend to look at new methods 
for manipulation with multiple constraints. 

The current implementation of DEPTH-POP can slow down in 
scenes with high depth complexity on lower-end graphics 
hardware. In scenes with many hidden layers, the large amount of 
small fragments could lead to a huge amount of solutions. Many 
of those solutions might be meaningless for interaction. In the 
future, we will optimize the algorithm to deal better with such 
cases through appropriate pruning. 
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APPENDIX 
In this appendix, we describe the technical details of our new 
interaction methods, starting with several helper algorithms and 
implementation details. 

Depth Intervals 
To enable DEPTH-POP, we first introduce a new algorithm based on 
depth intervals. The algorithm for depth intervals will output the 
optimal distance for the object to be pushed to the back or popped 
to the front. For simplicity of explanation, we focus our discussion 
here on convex objects and generalize the algorithm to concave 
cases later. 

We use an orthographic view as this corresponds better to the way 
the object moves. First, we render the moving object twice to 
generate a depth buffer image for both the front and back-facing 
surface of the object, which defines the “thickness” of the selected 
object at each pixel. We limit the size of the 3D orthographic view 
frustum to the bounding volume of the object to maximize precision 
and minimize computation. 

Next, we create an empty interval set and start to populate it. We 
loop over all pixels where the selected object and the scene overlap. 
For each pixel, we calculate the difference of depth values between 
the front and back surface of the object and the front surface of the 
scene. The depth difference between the scene and front-facing and 
back-facing surfaces of the object yield the upper and lower bound 
of each depth interval. Depending on the desired movement 
direction, one of the two interval bounds indicates the correct 
amount of movement, to get the selected object back into contact 
with another surface. For each pixel each depth interval is added to 
the interval set, merging with existing intervals as appropriate. Each 
interval in the fully merged interval set for a pixel then corresponds 
to a possible global solution for pop-to-front or push-to-back. We 
then combine the solutions across all pixels with a minimum (or 
maximum) search to identify the globally best solution. Figure 11 
illustrates the merged depth interval set for push-to-back. 

void MergeInterval() { 
 MergedIntervalSet = {}; 
 
 for every overlapping pixel { 
  LowerBound = SceneDepth - ObjectBackDepth; 
  UpperBound = SceneDepth - ObjectFrontDepth; 
  CurrentInterval = [LowerBound, UpperBound]; 
  if(CurrentInterval overlaps an interval T 
        in MergedIntervalSet) { 
   Merge(CurrentInterval, T); } 
  else MergedIntervalSet.Add(CurrentInterval); 
 } 
} 

Figure 10. Pseudo code for merging intervals for push-to-back. 

DEPTH-POP for Convex Objects 
In the push-to-back algorithm, for the depth interval at each pixel, 
the lower bound is the depth difference between the object back-
facing layer and a front layer scene, which is the desired movement 
distance. The upper bound is the depth difference between the 
object front-facing layer and the scene. We merge all intervals for 
every pixel, and generate a merged depth interval set of all non-zero 
lower bounds and use the global minimum lower bound. See Figure 
10 for pseudo code for merging intervals for push-to-back. 

 

 
Figure 11. Merged depth interval set for the scenario of push-
to-back on the first scene layer (top image) and second layer 

(bottom). In both images the lower bound of interval 1 
corresponds to the current object position. At the bottom the 

lower bound of interval 2 moves the object to position C. 

The pop-to-front algorithm is symmetric to the push-to-back 
algorithm. For the depth interval at each pixel, the upper bound is 
the depth difference between the object back-facing layer and a 
front layer of the scene, which is the desired movement distance. 
The lower bound is the depth difference between the object front-
facing layer and the scene. We merge the intervals for every pixel, 
and generate a merged depth interval set and use the global 
minimum upper bound. 

Frame Buffer Encoding 
We store depth values in the 1st and encode normal vectors in the 
2nd and 3rd channels of the frame buffer. The 4th channel stores the 
pixel position where the minimum or maximum depth difference 
occurs. We use 32-bit floating-point frame buffers to position 
objects with high precision. 

Occlusion Detection 
In our system, we detect occlusion by comparing depth values in 
perspective depth buffers, between the closest front-facing surface 
of the scene and the front-facing surface of the object. If the object 
depth is bigger than the scene depth at every pixel, the object is 
completely invisible to the camera. We then call pop-to-front. 

Depth Peeling 
To support non-convex geometries, we use depth peeling [4] to 
compute all depth values for the hidden layers of the scene. During 
peeling we render not only depth but also normal vectors for each 
pixel and check for a completely blank layer to stop the iteration. 
We store all layer information into an array of render textures. 

DEPTH-POP for Concave Objects in General 
Scenes 
The version of the DEPTH-POP algorithm presented above works 
only for convex objects. Here we generalize it to concave objects. 
When the user moves a concave object, multiple depth layers of the 
object itself may have to be considered. The number of layers varies 
depending on the depth complexity of the current object. During 
sliding, the non-collision assumption has to be valid for all layers 
of the object, as the object may be sliding on any of its back-facing 
layers. We use depth peeling repeatedly to compute all front and 
back-facing layers of the object. We then use the set of front-facing 
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and back-facing depth layers to define the object’s position and 
movement. 

Here we discuss the generalization of the DEPTH-POP algorithm for 
non-convex objects and scenes. For each layer from the object and 
each layer of the scene, we use the depth intervals to obtain a 
solution for the moving distance. Each solution guarantees that a 
part of the concave object will be in contact with a layer of the scene, 
after moving the object by that distance. We gather all non-zero 
solutions and sort them in ascending order. We then identify the 
smallest moving distance that we can move the object without 
causing a collision. For this, we validate all potential solutions: 
Starting from the smallest moving distance, we examine if there 
would be collision if we move the object by that distance and iterate 
until we find a valid solution. Then we move the object by the 
corresponding distance. Otherwise we report failure. Figure 12 
shows the pseudo code for the general algorithm. 

Floating and Collision Checks 
We use the set of object depth layers to detect whether the object is 
in contact. For each pair of depth layers of the object, we render the 
scene depth that is behind the front-facing object layer. We then 
compare the scene depth to the current corresponding back-facing 
object layer and compute the minimum depth difference between 
the depth of scene and depth of object back-facing layer. If we get 
a positive difference, the depth of the scene is bigger than the depth 
of back-facing layer at every pixel. This means that the object is 
floating for that layer. If the object is floating for all of its layers, it 
is not in contact with any surface. We then find the minimum depth 
difference across all layers and push the object back by that 
distance. 

We detect collisions by checking for overlap between all layers of 
the object and the scene by iterating over the corresponding depth 
information. If the object is in collision (at any layer), we then find 
the maximum depth difference of each layer to snap the object to 
the front. 

For simplicity, we chose to implement an image-based collision 
detection method, as we already compute all depth layers of the 
object and the scene. To accelerate computations, we carry the 
(new) normal vector along with the computation of the min/max 
depth difference. Still, our main methods are independent of the 
specific collision detection algorithm and other algorithms could be 
used, see the discussion. 

void PushToBack() 
{ 
 // Render first layer scene depth 
 SceneDepth[0] = RenderSceneDepth(); 
 itr = 0; 
 
 while(1) { 
  for (j=0; j<ObjectLayerNum; j++) { 
   // Find all the intervals for each layer 
  of the object and current layer of the scene 
   PushToBackInterval(SceneDepth[itr], 
   ObjectDepthFront[j], ObjectDepthBack[j]); 
  } 
  // Peel off current scene layer 
 SceneDepth[itr+1]=DepthPeel(SceneDepth[itr]); 
 
  // Iterations stop when next layer is blank 
  if(IsBlank(SceneDepth[itr+1])) break; 
 } 
  
 // Sort all the intervals by lower bounds 
 // Eliminate intervals with lower bound as 0 
 SortByLowerBound (AllIntervals); 
 
 for (i=0; i<IntervalNum; i++) { 
 // Validate current solution with each layer of 
 the scene and each layer of the object 
 ValidCount=Validate(AllIntervals[i], 
 SceneDepth, ObjectDepthFront, ObjectDepthBack); 
  
 // If the solution doesn’t cause collision 
 if(ValidCount==SceneLayerNum * ObjectLayerNum){ 
  FinalSolution = AllIntervals[i].LowerBound; 
  Break; } 
 } 
 
 if(FinalSolution > 0) { 
 PushDis = FinalSolution * (CamFar - CamNear); 
  
 // Push the object back along the mouse ray 
 TranslateObject(MouseRayDirection * PushDis); 
 
 ChangeSlidingPlane(); } 
} 

Figure 12. Pseudo code for push-to-back for general objects. 


