Per-pixel divisions

Sergey Parilov. Wolfgang Stuerzlinger
Department of Computer Science
York University
4700 Keele Street, M3J 1P3

Toronto, Ontario, Canada

{parilov|wolfgang}@cs.yorku.ca

Abstract
We describe a method to perform per-pixel divisions using graph-
ics hardware, with a simple iterative algorithm. In the worst case,
the number of rendering passes is 17 for approximate divisions, and
18 for accurate divisions. The algorithm can be used for 3D vec-
tor normalization, evaluating complex lighting models, and image
reconstruction.

1 Introduction and Previous Work

Graphics hardware can act as a powerful SIMD data processing unit.
However, the numerical precision is limited to the available number of
bits per color channel of a pixel, and only fairly simple operations are
available in the hardware. In particular, the OpenGL standard contains
no operation for a single per-pixel division operation [3]. This paper
presents an algorithm for computing division using multiple rendering
passes.

Alternatives to our division algorithm,described below, could be using
look-up tables storing m values or using pixel textures to perform
R,G,B,A to R,G,B look-up’s [3]. Unfortunately, even 16-bit look-up tables
result in considerable loss of precision, when set-up to evaluate % Pixel
textures are not widely supported by the graphics hardware and have an
additional drawback of consuming too much memory.

One of our applications of the division algorithm is image reconstruc-
tion from non-uniformly distributed samples, which requires the compu-

2,

wi-I; .
tation of a weighted average of the form S per pixel [2].

The division could also be used to perforrﬁ per-pixel vector normaliza-
tion. If the coordinates of a 3D-vector are stored in R,G,B components
of every pixel, it is possible to use blending operations and color look-up
tables to compute the length of the vector in the alpha channel. Then
we normalize the vector by dividing each component by its length, which
can be used for realistic shading. The same result can be achieved with
the parabolic and cube maps for 3D vector normalization.

The following section describes how we use the OpenGL functions
mentioned above to perform the division using the general graphics hard-
ware.

2 Performing the division

We use an iterative approach to compute the result z of the division
r===— (1)

for some x,y,z < 1. This choice is dictated by the fact that current
implementations of OpenGL operate on values in the range of [0...1].

To find = given y = = - z and z, we find a set of scaling factors s;,
between 1 and 2, such that z-sg-... s, &~ 1. Then, sg-... s, ~ % and
y-so-...-sn:m-z-so-...-snmx-z-%:m.

From here on, we assume that the Red channel of the frame buffer
initially stores the values y, and the Alpha channel initially stores the
values z, for every pixel. Denote these Red and Alpha respectively.

Our algorithm consists of multiple steps. At each step i we are going
to set s; so that Alpha increases gradually to 1, while avoiding overflow
in both Red and Alpha.

At step i, Red and Alpha contain y - sg - ...-s; and 2 - 8¢« ... 8;
respectively. At each step, the values Red and Alpha grow by a little as
the result of multiplication by s;. At the end, Red will contain z, and
Alpha will contain 1, which is the desired result.

At each step, all the Alphay values are greater than some value low.
We continuously raise this lower boundary, until [ow becomes close to 1.
Our algorithm consists of two phases. In the first phase, we raise low so

that it is greater than or equal to 0.5. In the second phase, we raise low
from 0.5 to 1.

At the first step, we assume low = % (when using 8 bits to represent
intensities)!. We can easily raise the lower boundary to 0.5 by successively
multiplying all the values that are less than 0.5 by a factor of 2. This
constitutes the first phase of our division algorithm. In this phase, we
are only working with the pixels with Alpha < 0.5. In the worst case, it
takes no more than 7 iterations over the image, since 27% > 0.5. Using
blending and alpha test, we effectively run the pseudo-code presented in

the figure 1.

for iteration=1..7
for all pixels in the image, in parallel
if (alpha<0.5)
alpha=alpha+alpha
red=red+red

Figure 1: The first phase of the division algorithm.

After the first phase, we can assume that the lowest alpha value in
the frame buffer (low) will be greater than 0.5. At this point, we cannot
continue multiplying by 2, since it will result in values greater than 1,
which will be clamped by OpenGL.

To raise the lower boundary, we then pick an interval [low;, high;)
of alpha values for the step i. All the alphas within this range will be
multiplied by some constant c;.

low; is our current smallest alpha value in the frame buffer. Our choice
of high; and ¢; is determined by the following factors -

e ¢; > 1, since we want to raise our lower boundary low;
e high;*c; = 1, since we do not want any overflow in the frame buffer;

o low; * c; = low; 1, since the lowest alpha value possible in step ¢ + 1
is the lowest value for step ¢, multiplied by ¢;;

e low;y1 = high;, since we want to to perform as few multiplications
as possible.

L Alpha = 0 corresponds to a division by 0. Our algorithm will produce arbitrary
results in this case.

Solving the above system of constraints for ¢; and high; yields

; (2)

and
high; = low; * c; = \/low;. (3)

As mentioned before, there is no way to perform a per-pixel division
in a few simple OpenGL operations. Moreover, there is no easy way
to perform per-pixel multiplications by a factor bigger than 1 without
considerable loss of precision, which could be used to replace divisions
by some a with multiplications by % Nevertheless, we can imitate a
multiplication by some factor a between 1 and 2 by using the equivalence
ar = x + (a — 1)xz. This can be easily computed using the blending
operation.

Given the equations for ¢; and high;, we iterate over the image in-
creasing the low; value at every step until it becomes 1. This constitutes
the second phase of our division algorithm. Figure 2 presents the pseudo-
code.

low = 0.5

for iteration = 1..9
c=sqrt(1/low) /* computed on the CPU */
high=low*c

for all pixels in the image, in parallel
if (alpha<=high)
alpha=alpha+(c-1)*alpha
red=red+(c-1)*red

low=high

Figure 2: The second phase of the division algorithm.

Table 2 shows the convergence of the division algorithm. The entire
second phase requires a maximum of 9 iterations over the image. As the
table indicates, subsequent iterations would involve values of ¢; — 1 be-
low the frame-buffer precision, and do not influence the result. Since the

OpenGL standard [3] does not specify how exactly the arithmetic opera-
tions are performed, we assume that each intermediate result is rounded
down to the closest representable number, which is the worst case for
our algorithm. 12 bits per channel in the frame buffer provide enough
precision to perform the computations. When working with 8-bit frame
buffers, the algorithm converges after 8 iterations with a value of 253 in
the alpha channel. Note that better results can be expected on hardware
that properly rounds the intermediate results.

When additional precision is desired, the values that are not fully
normalized (Alpha = 254) can be updated with an additional rendering
pass. One would need to set up the look-up table for the red channel to
compute Red = Red - %. Then, this look-up should be performed for all
pixels with Alpha = 254, using alpha tests to operate only on the desired
subset of pixels.

To test our algorithm, we performed all valid divisions with 8 bit
arguments and 8 bit result, for Red, Alpha < 1. In all cases, the result
was either the correct value, or the value one greater than the correct one.
For example, 0.22/0.77 & 0.29, expressed 8-bit fixed point 56/196 = 72.
Our algorithm returns 73 in this case. This deviation from the ideal result
occurs in 38% of all possible 8 bit divisions.

i Ci low; high; | |low; % 255]
1 | 1.4142 | 0.5000 | 0.7070 127
2 | 1.1893 | 0.7070 | 0.8408 180
3 | 1.0906 | 0.8408 | 0.9167 214
4 | 1.0444 | 0.9167 | 0.9573 233
5 | 1.0221 | 0.9573 | 0.9783 244
6 | 1.0110 | 0.9783 | 0.9890 249
7 | 1.0055 | 0.9890 | 0.9944 252
8 | 1.0028 | 0.9944 | 0.9971 253
9 | 1.0015 | 0.9971 | 0.9983 254
10 | 1.0009 | 0.9983 | 0.9990 254

Table 1: Worst case convergence of the second phase of the division algo-
rithm. All computations are performed with 12-bit precision, with hard-
ware that truncates the intermediate results. (See text for how to get
correct result.)

3 Discussion and Conclusions

The described division with the help of graphics hardware is an example
of multi-pass rendering. We need one pass to upload the image to the
graphics hardware, 7 passes to complete the first phase of our division
algorithm, and 9 passes to complete the second phase. In total, we make
17 rendering passes, which is not a problem given the pixel fill-rates of the
modern hardware. If lower precision is acceptable, we can stop iterations
of the second phase of the algorithm earlier. Also, a better estimate of
the smallest denominator in the frame buffer can reduce the number of
iterations in the first phase of our division algorithm.

Recent graphics hardware, i.e. released during 2002, offers the ability
to do dependent texture lookups. This can be used to do three texture
lookups (one for each color channel) on a two-dimensional table of pre-
computed values y/z 2[1]. Subsequent generations of graphics hardware
will offer floating point frame buffers with support for arbitrary per pixel
computations.

Our division algorithm does not require any special graphics hardware
capabilities beyond alpha blending, although we need OpenGL GL_ARB_imaging
extension for the second phase of our algorithm. Moreover, the algorithm
can also be applied on framebuffers with more than 8 bits. For example,
on a 16 bit framebuffer, the second phase will finish after 17 iterations
(if stopped after 9 iterations, the error will be less than 0.2%). The
whole algorithm will compute the correct result in 25 passes. The actual
C/OpenGL implementation of the algorithm is presented in the figure 3.

References

[1] NVIDIA, Overview of graphics hardware, 2002.

[2] S. PARILOV, Real-time rendering of large point-sampled scenes, Mas-
ter’s thesis, York University, July 2002.

[3] M. SEGAL AND K. AKELEY, The OpenGL (R) Graphics System: A
Specification (Version 1.8), Copyright ©1992-2001 Silicon Graphics,
Inc.

2Pointed out by an anonymous reviewer.

/* for each pixel R,G,B channels contain the numerators,
Alpha channel contains the denominators,
assume alpha-blending and alpha-tests enabled */

glRasterPos2i(0,0);

/* the first phase */
glAlphaFunc (GL_LEQUAL, 0.5);
glBlendFunc (GL_ONE, GL_ONE);

for(i=0;i<7;i++)
glCopyPixels(0,0,WIN_SIZE_X,WIN_SIZE_Y,GL_COLOR);

/* the second phase */
glBlendFunc (GL_CONSTANT_ALPHA, GL_ONE);

low=0.5;

for(i=0;i<9;i++)
{
c=sqrt(1/low);
high=low*c;

glAlphaFunc(GL_LEQUAL, high);
glBlendColor(c,c,c,c);
glCopyPixels(0,0,WIN_SIZE_X,WIN_SIZE_Y,GL_COLOR);

low=high;
X

/* at this point R,G,B channels of each pixel in the frame buffer
contain the results of the division, Alpha channel is set to 1 */

Figure 3: The actual C/OpenGL code performing the division.

