
Per�pixel divisions

Sergey Parilov Wolfgang Stuerzlinger

Department of Computer Science

York University

���� Keele Street� M�J �P�

Toronto� Ontario� Canada

fparilov�wolfgangg�cs�yorku�ca

Abstract

We describe a method to perform per�pixel divisions using graph�

ics hardware� with a simple iterative algorithm� In the worst case�

the number of rendering passes is �� for approximate divisions� and

�� for accurate divisions� The algorithm can be used for �D vec�

tor normalization� evaluating complex lighting models� and image

reconstruction�

� Introduction and Previous Work

Graphics hardware can act as a powerful SIMD data processing unit�
However� the numerical precision is limited to the available number of
bits per color channel of a pixel� and only fairly simple operations are
available in the hardware� In particular� the OpenGL standard contains
no operation for a single per�pixel division operation ���� This paper
presents an algorithm for computing division using multiple rendering
passes�

Alternatives to our division algorithm�described below� could be using
look�up tables storing �

Alpha
values or using pixel textures to perform

R�G�B�A to R�G�B look�up�s ���� Unfortunately� even ���bit look�up tables
result in considerable loss of precision� when set�up to evaluate �

x
� Pixel

textures are not widely supported by the graphics hardware and have an
additional drawback of consuming too much memory�

�



One of our applications of the division algorithm is image reconstruc�
tion from non�uniformly distributed samples� which requires the compu�

tation of a weighted average of the form

P
i
wi�IiP
i
wi

per pixel �	��

The division could also be used to perform per�pixel vector normaliza�
tion� If the coordinates of a �D�vector are stored in R�G�B components
of every pixel� it is possible to use blending operations and color look�up
tables to compute the length of the vector in the alpha channel� Then
we normalize the vector by dividing each component by its length� which
can be used for realistic shading� The same result can be achieved with
the parabolic and cube maps for �D vector normalization�

The following section describes how we use the OpenGL functions
mentioned above to perform the division using the general graphics hard�
ware�

� Performing the division

We use an iterative approach to compute the result x of the division

x 

y

z



x � z

z
���

for some x� y� z � �� This choice is dictated by the fact that current
implementations of OpenGL operate on values in the range of �
 � � � ���

To �nd x given y 
 x � z and z� we �nd a set of scaling factors si�
between � and 	� such that z � s� � � � � � sn � �� Then� s� � � � � � sn �

�

z
and

y � s� � � � � � sn 
 x � z � s� � � � � � sn � x � z � �
z

 x�

From here on� we assume that the Red channel of the frame bu�er
initially stores the values y� and the Alpha channel initially stores the
values z� for every pixel� Denote these Red and Alpha respectively�

Our algorithm consists of multiple steps� At each step i we are going
to set si so that Alpha increases gradually to �� while avoiding over�ow
in both Red and Alpha�

At step i� Red and Alpha contain y � s� � � � � � si and z � s� � � � � � si
respectively� At each step� the values Red and Alpha grow by a little as
the result of multiplication by si� At the end� Red will contain x� and
Alpha will contain �� which is the desired result�

At each step� all the Alphaf values are greater than some value low�
We continuously raise this lower boundary� until low becomes close to ��
Our algorithm consists of two phases� In the �rst phase� we raise low so

	



that it is greater than or equal to 
��� In the second phase� we raise low
from 
�� to ��

At the �rst step� we assume low 
 �

���
�when using � bits to represent

intensities��� We can easily raise the lower boundary to 
�� by successively
multiplying all the values that are less than 
�� by a factor of 	� This
constitutes the �rst phase of our division algorithm� In this phase� we
are only working with the pixels with Alpha � 
��� In the worst case� it
takes no more than � iterations over the image� since 	� �

���
� 
��� Using

blending and alpha test� we e�ectively run the pseudo�code presented in
the �gure ��

for iteration�����

for all pixels in the image� in parallel

if�alpha����	

alpha�alpha
alpha

red�red
red

Figure �� The �rst phase of the division algorithm�

After the �rst phase� we can assume that the lowest alpha value in
the frame bu�er �low� will be greater than 
��� At this point� we cannot
continue multiplying by 	� since it will result in values greater than ��
which will be clamped by OpenGL�

To raise the lower boundary� we then pick an interval �lowi� highi�
of alpha values for the step i� All the alphas within this range will be
multiplied by some constant ci�

lowi is our current smallest alpha value in the frame bu�er� Our choice
of highi and ci is determined by the following factors �

� ci � �� since we want to raise our lower boundary low�

� highi�ci 
 �� since we do not want any over�ow in the frame bu�er�

� lowi � ci 
 lowi��� since the lowest alpha value possible in step i��
is the lowest value for step i� multiplied by ci�

� lowi�� 
 highi� since we want to to perform as few multiplications
as possible�

�Alpha � � corresponds to a division by �� Our algorithm will produce arbitrary

results in this case�

�



Solving the above system of constraints for ci and highi yields

ci 


r
�

lowi

� �	�

and
highi 
 lowi � ci 


p
lowi� ���

As mentioned before� there is no way to perform a per�pixel division
in a few simple OpenGL operations� Moreover� there is no easy way
to perform per�pixel multiplications by a factor bigger than � without
considerable loss of precision� which could be used to replace divisions
by some a with multiplications by �

a
� Nevertheless� we can imitate a

multiplication by some factor a between � and 	 by using the equivalence
ax 
 x � �a � ��x� This can be easily computed using the blending
operation�

Given the equations for ci and highi� we iterate over the image in�
creasing the lowi value at every step until it becomes �� This constitutes
the second phase of our division algorithm� Figure 	 presents the pseudo�
code�

low � ���

for iteration � ����

c�sqrt���low	 �
 computed on the CPU 
�

high�low
c

for all pixels in the image� in parallel

if�alpha��high	

alpha�alpha
�c��	
alpha

red�red
�c��	
red

low�high

Figure 	� The second phase of the division algorithm�

Table 	 shows the convergence of the division algorithm� The entire
second phase requires a maximum of � iterations over the image� As the
table indicates� subsequent iterations would involve values of ci � � be�
low the frame�bu�er precision� and do not in�uence the result� Since the

�



OpenGL standard ��� does not specify how exactly the arithmetic opera�
tions are performed� we assume that each intermediate result is rounded
down to the closest representable number� which is the worst case for
our algorithm� �	 bits per channel in the frame bu�er provide enough
precision to perform the computations� When working with ��bit frame
bu�ers� the algorithm converges after � iterations with a value of 	�� in
the alpha channel� Note that better results can be expected on hardware
that properly rounds the intermediate results�

When additional precision is desired� the values that are not fully
normalized �Alpha 
 	��� can be updated with an additional rendering
pass� One would need to set up the look�up table for the red channel to
compute Red 
 Red � ���

���
� Then� this look�up should be performed for all

pixels with Alpha 
 	��� using alpha tests to operate only on the desired
subset of pixels�

To test our algorithm� we performed all valid divisions with � bit
arguments and � bit result� for Red�Alpha � �� In all cases� the result
was either the correct value� or the value one greater than the correct one�
For example� 
�		�
��� � 
�	�� expressed ��bit �xed point ������ 
 �	�
Our algorithm returns �� in this case� This deviation from the ideal result
occurs in ��� of all possible � bit divisions�

i ci lowi highi blowi � 	��c
� �����	 
��


 
��
�
 �	�
	 ������ 
��
�
 
���
� ��

� ��
�
� 
���
� 
����� 	��
� ��
��� 
����� 
����� 	��
� ��
		� 
����� 
����� 	��
� ��
��
 
����� 
����
 	��
� ��

�� 
����
 
����� 	�	
� ��

	� 
����� 
����� 	��
� ��

�� 
����� 
����� 	��
�
 ��


� 
����� 
����
 	��

Table �� Worst case convergence of the second phase of the division algo�
rithm� All computations are performed with �	�bit precision� with hard�
ware that truncates the intermediate results� �See text for how to get
correct result��

�



� Discussion and Conclusions

The described division with the help of graphics hardware is an example
of multi�pass rendering� We need one pass to upload the image to the
graphics hardware� � passes to complete the �rst phase of our division
algorithm� and � passes to complete the second phase� In total� we make
�� rendering passes� which is not a problem given the pixel �ll�rates of the
modern hardware� If lower precision is acceptable� we can stop iterations
of the second phase of the algorithm earlier� Also� a better estimate of
the smallest denominator in the frame bu�er can reduce the number of
iterations in the �rst phase of our division algorithm�

Recent graphics hardware� i�e� released during 	

	� o�ers the ability
to do dependent texture lookups� This can be used to do three texture
lookups �one for each color channel� on a two�dimensional table of pre�
computed values y�z ����� Subsequent generations of graphics hardware
will o�er �oating point frame bu�ers with support for arbitrary per pixel
computations�

Our division algorithm does not require any special graphics hardware
capabilities beyond alpha blending� although we need OpenGL GL ARB imaging
extension for the second phase of our algorithm� Moreover� the algorithm
can also be applied on framebu�ers with more than � bits� For example�
on a �� bit framebu�er� the second phase will �nish after �� iterations
�if stopped after � iterations� the error will be less than 
�	��� The
whole algorithm will compute the correct result in 	� passes� The actual
C�OpenGL implementation of the algorithm is presented in the �gure ��

References

��� nVidia� Overview of graphics hardware� 	

	�

�	� S� Parilov� Real�time rendering of large point�sampled scenes� Mas�
ter�s thesis� York University� July 	

	�

��� M� Segal and K� Akeley� The OpenGL �R� Graphics System� A
Speci�cation �Version ����� Copyright c����	�	

� Silicon Graphics�
Inc�

�Pointed out by an anonymous reviewer�

�



�
 for each pixel R�G�B channels contain the numerators�

Alpha channel contains the denominators�

assume alpha�blending and alpha�tests enabled 
�

glRasterPos�i����	�

�
 the first phase 
�

glAlphaFunc�GL�LEQUAL� ���	�

glBlendFunc�GL�ONE� GL�ONE	�

for�i���i���i

	

glCopyPixels�����WIN�SIZE�X�WIN�SIZE�Y�GL�COLOR	�

�
 the second phase 
�

glBlendFunc�GL�CONSTANT�ALPHA� GL�ONE	�

low�����

for�i���i���i

	

�

c�sqrt���low	�

high�low
c�

glAlphaFunc�GL�LEQUAL� high	�

glBlendColor�c�c�c�c	�

glCopyPixels�����WIN�SIZE�X�WIN�SIZE�Y�GL�COLOR	�

low�high�

�

�
 at this point R�G�B channels of each pixel in the frame buffer

contain the results of the division� Alpha channel is set to � 
�

Figure �� The actual C�OpenGL code performing the division�

�


