
Platform for Studying Self-Repairing Auto-Corrections in
Mobile Text Entry

based on Brain Activity, Gaze, and Context

Felix Putze1 Tilman Ihrig1 Tanja Schultz1 Wolfgang Stuerzlinger2

1Cognitive Systems Lab, University of Bremen, Bremen, Germany
2SIAT, Simon Fraser University, Vancouver, Canada

{felix.putze, ihrigtil, tanja.schultz}@uni-bremen.de w.s@sfu.ca

ABSTRACT
Auto-correction is a standard feature of mobile text entry.
While the performance of state-of-the-art auto-correct meth-
ods is usually relatively high, any errors that occur are cumber-
some to repair, interrupt the flow of text entry, and challenge
the user’s agency over the process. In this paper, we describe
a system that aims to automatically identify and repair auto-
correction errors. This system comprises a multi-modal classi-
fier for detecting auto-correction errors from brain activity, eye
gaze, and context information, as well as a strategy to repair
such errors by replacing the erroneous correction or suggest-
ing alternatives. We integrated both parts in a generic Android
component and thus present a research platform for studying
self-repairing end-to-end systems. To demonstrate its feasibil-
ity, we performed a user study to evaluate the classification
performance and usability of our approach.

Author Keywords
Text entry; auto-correction; self-repair; eye gaze; EEG

CCS Concepts
•Human-centered computing → Human computer inter-
action (HCI);

INTRODUCTION
To increase the usability of systems, some modern user in-
terfaces include components that record sensor data and/or
user input and interpret it through statistical models or other
machine learning techniques. One prominent example is the
auto-correction module embedded in every mobile software
keyboard. On most current mobile devices, auto-correction
uses a statistical language model [18] to replace the input text
sequence with the most likely sequence of letters or words.
While auto-correct usually leads to improvements, it is, like
any statistical model, prone to errors. The occurrence of such
system-generated errors can annoy users, as such mistakes
violate the user’s expectation of text entry system behavior
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CHI’20, April 25–30, 2020, Honolulu, HI, USA

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-6708-0/20/04. . . $15.00

DOI: http://dx.doi.org/10.1145/3313831.3376815

and can lead to embarrassing or costly results. Even the most
sophisticated state-of-the-art auto-correction approaches have
error rates around 5% [14]. Given that we can expect a sub-
stantial fraction of typed words to contain at least one wrong
letter1, we can assume a sufficiently high prevalence of auto-
corrections – and therefore, auto-correction errors – during
mobile text entry. While it is difficult to get auto-correction
error rates from “in the wild” studies on text entry (as these
do not capture the actually intended text), we can derive a
lower boundary of 8.4% auto-correct error rate from Buschek
et al. [8], who report this as the number of auto-corrections
which were manually changed (which does not include auto-
correction errors which were ignored or missed). Each such
auto-correction error is cumbersome to repair (as it requires
otherwise unnecessary operations), interrupts the flow of text
entry (because “random-access” to the text is not a efficient
operation for the user, auto-correction errors may need to be
dealt with immediately), and challenges the user’s agency over
the process (as it results in uncontrollable, potentially unde-
sired changes to the entered text). An approach to detect such
errors automatically and (at least) attempts to repair them can
thus increase the usability of a text entry system. Besides, a
repair attempt can be considered as an implicit apology for
a previously-made error and it is known that apologetic sys-
tems are perceived as more appealing and usable compared to
non-apologetic ones [28].

When a user perceives erroneous and unexpected system be-
havior, this leads to cognitive and behavioral responses. If the
system can detect these responses from sensor data and context
information, it can use such knowledge to respond proactively
to an error that occurred by attempting a self-repair. For exam-
ple, brain activity measured through electroencephalography
(EEG) can encode error potentials [34] which occur in such
situations, eye gaze may respond with prolonged fixations to
unexpected system behaviors [21], or the context provided
by the language model of the auto-correction could hint at
an increased likelihood of an auto-correction error to occur.
Note that exploiting such cognitive responses to system errors
requires the errors to be actually perceived by the user. We
do not consider this an important limitation, as any measures
which do not rely on the user noticing the error should have
been implemented preemptively anyways.

1we estimate this fraction as 23%, based on a 5% probability for
mistyping a single letter [3] and an average English word length of 5.

CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

Paper 686 Page 1

http://dx.doi.org/10.1145/3313831.3376815

Figure 1. Autocorrect failures can be embarrassing or costly (source:
http://damnyouautocorrect.com).

In this paper, we build on previous work which demonstrated
that it is possible to detect user reactions to incorrect auto-
corrects from the EEG signal and context cues [31] well after
the fact, i.e., in post-hoc analysis. However, studying the
potential for automatic recognition alone is not sufficient for a
self-repairing system. For this purpose, we also need to create
a research platform that allows us to study an end-to-end
interactive system, including a real-time recognition method,
appropriate strategies to decide between different self-repair
options, and a user interface to ultimately offer appropriate
self-repair operations. This paper presents such a research
platform and demonstrates its feasibility in a user study. In our
study, we investigate an extended, real-time capable version
of the approach by Putze et al. [31] to which we added eye-
tracking as an information channel to identify if and when
the user actually perceived an auto-correction. We added
gaze information, because the original approach [31] simply
assumed users to immediately perceive any auto-correction
event, instead of accounting for trial-by-trial variation of the
time it takes to attend the event. Such variation could for
example be caused by different gaze targets (on keyboard vs.
on the text panel) when the event occurs.

For creating an end-to-end interface for resolving auto-
correction errors, we first replaced the previously employed
simple edit-distance-based auto-correction method with a
more realistic statistical language model, as implemented in
most commercial text entry systems. Second, we designed
an auto-correction strategy which chooses between different
system actions to resolve a detected auto-correction error, such
as autonomously swapping the initial correction with a second-
best estimate or offering different, equally valid, replacement
options to the user. This strategy is based on classification con-
fidence and language model output. Third, we implemented
this self-repair component as a real-time Android text entry
module that can be integrated into arbitrary applications.

While related work studied physiological responses to erro-
neous behavior (e.g., [29, 39]), we present here to the best of

our knowledge in an ecologically valid setting the first end-
to-end system which exploits a real time recognition of such
responses. Our main research objective is to establish that it is
possible to impact interaction in a measurable way by adding
self-repairing functionality, despite challenging conditions.
To tackle this objective required us to extend the proof-of-
concept detection approach proposed by Putze et al. [31] into
a fully-fledged research platform for studying multimodal er-
ror responses and appropriate system responses to them. For
this, we provide all necessary components for the end-to-end
architecture, including the classification server and Android
keyboard, as open source software at https://osf.io/wkxct.
This will enable further research into self-correcting interfaces
in text entry and other use cases in the future.

RELATED WORK
Text entry auto-correction uses a number of different meth-
ods to identify errors in the entered text and to propose likely
corrections. All such approaches include information about
the entered text, typically in the form of statistical language
models [18]. Modern approaches often use such models to
support both word completion and typing correction [7]. Other
information sources for auto-correction have been explored
as well: hand postures [16], key press timing [11], accelerom-
eter data in mobile text entry [15], uncertainties touch posi-
tions [41], geometric pattern matching [24], or as a combina-
tion of spatial and language models [14]. Multi-modal input
and output can improve auto-correction performance or usabil-
ity, e.g., through auditory and tactile feedback during eyes-free
input [38] or through voice and text-based repair [37].

Very little is known about text entry errors and how they are
corrected in the wild, automatically or manually. Komninos
et al. [23] performed a study on how users deal with typ-
ing errors and identified different strategies for interleaving
reviewing and correcting. Buschek et al. [8] collected in-the-
wild text entry data on mobile devices and reported statistics
on auto-correction usage. They found that auto-correction is
not popular among the participants as “it was often wrong”.
Although their work identified the prevalence and impact of
auto-correction errors, there are only few approaches which
provide mechanisms to cope with them. Arif et al. [2] in-
troduced the “Smart-Restorable Backspace”, which allows
users to deal with auto-correction errors with very few opera-
tions. This technique was highly accepted by users and lead
to quick manual resolutions of auto-correction errors. Quinn
et al. [32] analyzed different strategies for presenting auto-
correction suggestions. They showed that while the number of
keyboard interactions could be reduced by confidence-based
selection of auto-corrections, the baseline cost of attending
to auto-corrections and deciding on their resolution was still
present. Alharbi et al.’s work on WiseType [1] investigated bet-
ter presentation methods for auto-corrections and suggestions
through appropriate highlighting. They also supported fast
manual handling of auto-correction errors through swiping.

To resolve auto-correct errors automatically, it is important
to detect them first. A lot of work has pursued the classifica-
tion of neural responses to system malfunctions, for example,
increased workload and neural responses, as investigated by

CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

Paper 686 Page 2

https://osf.io/wkxct

Hirshfield et al. [19]. To detect specific instances of erroneous
system behavior, several researchers have used EEG to identify
error potentials from brain activity. For example, Förster et
al. [13] used classification of error potentials during operation
of a gesture recognition system to improve its performance
through online adaptation of the gesture recognizer to incor-
rectly classified trials. Vi and Subramanian [39] proposed a
recognizer for error potentials based on a consumer-level EEG
device. They performed person-dependent classification of er-
ror potentials, using a test set of 80 Flanker trials and achieved
a classification accuracy of about 0.7. Using a simulation of
error potential classification with different error rates, they
also showed that already a non-perfect detection rate between
0.65 and 0.8 enhanced spatial selection through better detec-
tion of user errors in flick-gestures on a touch surface. The
authors analyzed accuracy improvements by allowing manual
corrections when an error potential was detected, but did not
analyze costs or other usability aspects. Putze et al. [30, 29]
showed that error potentials can be detected in gesture-based
user interfaces and used them to provide a self-correcting input
mechanism. The authors used a model-based simulation to
investigate the effect of different correction strategies and vali-
dated its predictions in a user study. In further research [31],
the authors also showed that error potentials can be used to-
gether with context features to detect auto-correct errors in
tablet-based text entry after the fact.

The above body of research also discusses a few strategies
for handling errors in processing user input, such as replacing
erroneous input interpretations with the second-best alterna-
tive [26] or asking the user for re-entering some input [35].

Yet, EEG data is not the only source for information about
perceived system errors. Kalaganis et al. [22] showed that
the combination of EEG and gaze-based data resulted in a
more robust detection of errors than the individual modalities.
Banovic et al. [6] demonstrated that, to avoid the costs of cor-
recting mistakes, user typing behaviors change in anticipation
of text entry errors. This implies that user behaviors during
typing and error handling can also act as a feature source to
detect auto-correction errors.

PLATFORM FOR SELF-REPAIRING AUTO-CORRECTION
Our new system for self-repairing auto-correction consists of
several components which work together to support mobile
text entry: The text entry component is an Android-compatible
keyboard application and acts as a user interface to present
auto-corrections and their repair based on a statistical language
model. The classifier activates when an auto-correction was
performed and processes incoming EEG, gaze, and context
information to detect whether the auto-correction was (likely)
successful or erroneous. The repair strategy resolves detected
auto-correction errors by providing alternatives. All compo-
nents are embedded in an online system. Figure 2 illustrates
the interplay of these components.

Text Entry Component
We used a custom keyboard application to enable users to
enter text. This component uses a standard German mobile
keyboard layout where all keys necessary for the experiment

are available in the standard layout with a single button press.
We had to create our own component, as standard Android
auto-correction methods do not provide all data necessary for
our work, see below. Such data also cannot be sent “through”
the standard Android interface for spelling correction services.

To get access to all likelihood scores associated with the pro-
vided corrections, we implemented a custom spell-check ser-
vice, based on state-of-art auto-correction methods: we em-
ploy an n-gram based language model to generate corrections
with the highest likelihood among all candidate words with
an edit distance smaller than a given threshold. Because the
candidate search had to be done in real time on a tablet, the
edit distance threshold was set to 4, meaning that words with
an edit distance of larger than 4 to any word in the vocabulary
of the used language model were not corrected. Search of
all candidate words with the given edit distance was done via
SymSpell 2 using a vocabulary of the 10,000 most common
German words. Each candidate was then given a likelihood
score by a custom trigram language model, trained on Ger-
man phrases from the Leipzig Corpora Collection [17], using
only phrases containing the 10,000 most common German
words. The model was trained with the SRILM toolkit [36] us-
ing Kneser-Ney smoothing. The auto-correction then always
selected the candidate with the highest likelihood score.

An important aspect of analyzing user responses to erroneous
system behavior is to ensure that the behavior in question is
actually perceived by the user. To maximize the probability of
users perceiving an auto-correction, our keyboard employed
four mechanisms: First, after the participant started typing, the
target phrase to type was removed to prevent participants from
gazing at the text presentation (and thus not be able to see
potential corrections). Second, the auto-corrected word was
replaced within the text field. Third, a sound was played for
each correction. Fourth, and motivated by previous work [31],
the replacement was shown as a notification on the keyboard
over the letter which was pressed last, as well as the space bar
(see Figure 3).

This last mechanism was introduced to make sure users no-
ticed auto-corrections even when they focused their gaze on
the keyboard instead of the typed text. The notification was
displayed at multiple locations to maximize the probability
that it appeared at a location at which the user was already
looking at. In contrast to solutions with a notification in a fixed
location, e.g., in the center of the screen, our design allows
users to naturally control their eye gaze.

Classification Setup
To detect auto-correction errors during text entry, we formulate
a two-class classification problem. We extract windows of
EEG and eye tracking data aligned with the presentation of
an auto-correction in the user interface. The alignment is
performed by detecting eye gaze fixations, which indicate
that a presented auto-correction is actually perceived. The
noError class is assigned to windows with corrections which
yielded the expected word, while the error class is assigned
to windows corresponding to wrong corrections.

2https://github.com/wolfgarbe/SymSpell

CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

Paper 686 Page 3

https://github.com/wolfgarbe/SymSpell

„hello...“

trigger

cut out at fixation

M
u

lt
im

o
d

al
 f

ea
tu

re
s

Error Classifier

„hlelo...“
Repair

Strategy

gaze

repair decision

context

EEG

confidence

C
o

n
te

xt
-o

n
ly

fe
at

u
re

s

no fixation

Figure 2. Flowchart of the auto-correct self-repair process.

Figure 3. Screenshot of the Android keyboard showing auto-corrections
as used by Putze et al. [31] and this study. To increase the likelihood
users see the auto-corrections, we display them on the last pressed key
and space bar.

We trained the classifier in a person-dependent manner, i.e.,
an individual model was trained for each user. For this pur-
pose, the classifier uses features from three different infor-
mation sources: EEG, gaze, and context. The EEG features
are designed to capture error potentials which occur when
an auto-correction error is perceived. Gaze features capture
similar responses in the visual processing of such errors, for
example through longer fixation times in the presence of an
auto-correction error. Finally, the context features encode in-
formation about the status of text entry itself at the time the
correction occurred. Person-dependent training is necessary
as person-independent models of error potentials are still an
open research question [40].

Beyond acting as a source for features, gaze data has an-
other important role in the classification process: There is
substantial variance in the latency between the occurrence of
an auto-correction in the interface and the point in time where

it is actually perceived. Putze et al. [31] simply extracted
the classification window right after the presentation of the
auto-correction. Here, we improve on this method and exploit
the fact that a physiological marker for the perception of the
correction is a fixation at one of the locations where the cor-
rection is shown. Therefore, our approach tries to identify the
fixation following the auto-correction event as the onset of the
classification window. For this, a target fixation needs to be at
least 200 ms long, have a distance of at most 0.2x to the closest
correction notification (where both the width and height of
the input device are defined as x), and start before typing is
resumed. If multiple fixations fulfill these criteria, the first one
is selected. We then extract the target window with a dura-
tion of 1 s starting from the fixation onset. See Figure 4 for a
visualization of fixations in response to an auto-correction.

The identified classification window is relevant to extract the
EEG and gaze features. However, if no window can be identi-
fied that fulfills the criteria listed above, no such features can
be extracted. Then, the classifier resorts to a fallback mecha-
nism which only relies on the context data; context features are
defined independently of the auto-correction event itself and
thus do not require a precisely extracted classification window.

For the actual classification, we first extract a joint feature
vector from EEG, gaze, and context data. In the following, we
describe how these features are derived:

EEG Features: The feature extraction from EEG is similar to
previous work [31]: We first adjust the data to have zero mean.
Then, we segment the classification window into smaller parts
of 50 ms length. Subsequently, we bandpass-filter the EEG
data from the electrodes at the positions Fz and FCz between
1 Hz and 10 Hz using a fifth-order Butterworth filter. For each
segment, we calculate the signal mean and stack these as a
feature vector. Additionally, we calculate the power spectrum
using the Welch method for each window.

Gaze Features: From the eye tracking data we derive a num-
ber of features. Using the fixation detection and saccade de-
tection algorithms from PyGazeAnalyser [12], we extract fix-

CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

Paper 686 Page 4

Figure 4. Exemplary visualization of gaze data for 2 seconds after a
correct correction. The red dots with their respective boxes represent
the points where corrections can be visually noticed, namely (from top
to bottom): The text entry field, the last pressed button before the cor-
rection, and the space bar. Green dots are gaze points within a fixation.
Blue dots are gaze points within a ’relevant’ fixation. The numbers rep-
resent the chronological order of each fixation. Figure is cropped to the
relevant segment of the tablet surface.

ations and saccades. For both event types, we calculate the
number, relative total duration, and mean length. Additionally,
we calculate mean confidence (estimated by the Pupil Labs
recorder) for all samples in the window and the total gaze
travel distance.

Context Features: As support for the above-mentioned psy-
chophysiological features, we derive a number or context fea-
tures, which encode information about user behavior and the
state of the language model and thus indirectly also the like-
lihood of an auto-correction error. Our context features are:
Typing speed during the auto-corrected word, length of the
auto-corrected word, time until typing continues, the num-
ber of suggestions with minimal edit distance, the absolute
language model score of the replacing word, and the relative
language model score (relative to the scores of the other can-
didate words). An additional binary feature, which indicates
whether a relevant fixation was identified, is only used as fea-
ture for the fallback context classifier. The context features
capture the likelihood of a wrong correction and the likelihood
that a wrong correction is actually noticed.

To generate the final feature vector, all features are concate-
nated and normalized by removing the median and scaling
according to the interquartile range. For classification, we em-
ploy a boosted regression tree (using XGBoost [10]) with 1000
base classifiers and a learning rate set to 0.01. For the con-
text classifier, which is trained on a much smaller feature set,
we employ Linear Discriminant Analysis with an analytically
derived shrinkage coefficient [25].

Resolution Strategies
In this section, we present our new strategy for self-repair
of auto-corrections, which is more robust to mistakes of the
classifier and the ambiguity of the underlying language model.

0.20.40.60.8

t2t1

Language model probability (scaled)

P
ro

b
ab

ili
ty

o
f

co
rr

ec
tn

es
s

o
f

2
n

d
b

es
t

Figure 5. Cumulative accuracy of 2nd-best candidate (for n= 6), ordered
by descending confidence (scaled language model probability) of the 2nd-
best candidates. Note that the vertical axis starts at 0.5, i.e., random
chance.

The central idea of this strategy is to use contextual informa-
tion from the auto-correction, e.g., confidence of the 1st-best
and 2nd-best candidate, to decide on how to much to trust an
error result of the classifier, where the confidence of the nth

candidate is its n-gram likelihood normalized by the likeli-
hood mass of all candidates. Depending on this contextual
information, our strategy can either

• automatically replace the initial correction with another
candidate,

• show a pop-up menu to let the user choose an alternative, or

• do not react and rely on the user to correct the potential
error.

To explain our new repair strategy, we formalize the auto-
correction process as follows: To replace the last word v3 in
a sequence v1v2v3, we generate an n-best list of candidates
w1, . . . ,wN by retrieving all dictionary entries with minimal
edit distance and ranking them according to their n-gram prob-
ability p(v1v2wi) from highest to lowest. We then use the best
candidate w1 to replace the current word.

Using this notation, we formalize our repair strategy, which
combines two mechanisms: Automatic replacement of the best
candidate w1 with the second-best w2 or presenting a transient
pop-up menu near the text entry field with alternatives for the
user to choose from. Yet, even if we actively replace with the
second-best candidate, we still also show the transient pop-up
menu with additional alternatives to support quick manual
repair, as necessary. If the user continues typing, the transient
pop-up disappears automatically without further changes to
the input text. However, to avoid unnecessary distraction or
backward steps, the two mechanisms are not employed for
every error.

As the transient pop-up menu does not automatically modify
the actual text without user intervention, it is less intrusive

CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

Paper 686 Page 5

Algorithm 1 Auto-correct Self-Repair
1: Calculate confidence c1st for w1.
2: c1st = ngram(w1)−ngram(w2)
3: normalize c1st by ∑w∈C ngram(w)
4: if c1st > t1st then
5: return no repair
6: else
7: l = classification result
8: if l == noError then
9: return no repair

10: else
11: c2nd = ngram(w2)−ngram(w3)
12: normalize c2nd by ∑w∈C\w1

ngram(w)
13: if c2nd > t2nd then
14: replace w1 by w2 . Direct Replacement
15: open pop-up(w1, w3, w4, w5) . Repl. Pop-up
16: return
17: else
18: open pop-up (w1, w2, w3, w4) . Full Pop-up
19: return
20: end if
21: end if
22: end if

than a direct word replacement and can thus be employed
more freely. Still, the transient popup menu creates a visual
distraction which could be avoided. Thus, we use two thresh-
olds on the confidence scores of the initial correction and the
replacements to determine if the current instance is a good
opportunity for automatic self-repair. After all, a central goal
of our repair strategy is to avoid the detrimental effects of false
alarms from the auto-correction error classifier. The pseudo-
code shown in Algorithm 1 illustrates the logic for our repair
strategy, which is employed after an auto-correction error was
detected.

To prevent the repair strategy from replacing auto-
corrections too aggressively, we use two thresholds, t1st and
t2nd on the confidence. Based on pilots, we heuristically se-
lected the values for t1st and t2nd to optimize the trade-off
between mitigation of false alarms and leveraging the suc-
cessful detection of auto-correction errors. As an example
for words of length six, Figure 5 shows how with decreasing
confidence of the 2nd-best candidate its cumulative likelihood
of being correct decreases from near-certainty to a coin toss.
This shows that our chosen confidence is a valid parameter to
base the repair decision on. We set the thresholds t1st and t2nd
to 0.75 and 0.5, respectively. These values were chosen based
on pilot tests and a simulation of repair costs for different
system configurations.

It should be noted that a user does not have to wait to continue
typing until the self-repair has been triggered. The self-repair
will occur in whatever state the text entry system is when
the result is returned and the user can then respond to it, if
necessary.

Online System
We implemented an end-to-end system which is able to per-
form self-repair in real-time. This setup consists of a Python
server which collects the data and performs the classification.
It is connected to its data sources and the text entry application
via the LabStreamingLayer3 (LSL) middleware, which enables
us to switch between different types of EEG devices, for exam-
ple the BrainVision actiCHamp and the wireless OpenBCI4.
Text entry is handled by a custom Android app which employs
the self-repairing auto-correct for text entry. Both Android
apps can also connect to the classification server via LSL.
When the server is notified of an auto-correction, it retrieves
the relevant EEG and context data from its buffer and performs
classification. Classification models are trained before each
session from data recorded during a training segment with
predefined sentences.

Upon detection of an auto-correction error by the classification
server, the system then informs the text entry app about it. The
app then follows the repair strategy described in Algorithm 1
to provide pro-active self-repair. This setup is very generic
and can be employed on any Android device. See Figure 6 for
a screenshot of the application.

Figure 6. Screenshot of the user interface for the text entry with au-
tomatic self-repair, showing the user making a text entry error (a), an
auto-correction error (b), an automatic self-repair with a pop-up (c) and
the result after a finished self-repair (d). Example in English for illustra-
tion purposes.

.

DATA COLLECTION
Data was collected from sixteen participants. Participants
were students and employees at the University of Bremen with
ages between 21 and 55 years (mean 27.6, standard deviation
11.0), four of whom were female. All participants gave their
3https://github.com/sccn/labstreaminglayer
4https://openbci.com/

CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

Paper 686 Page 6

https://github.com/sccn/labstreaminglayer
https://openbci.com/

Figure 7. User typing on Android phone using self-repairing auto-
correct in the experimental setup with EEG cap and eye tracker.

written consent to the data collection. The study was approved
by the local ethics committee.

The data of the first ten participants was used to evaluate the
classification component of the system. Participants entered a
total of 220 sentences. One sentence at a time was presented
at the top of the application.

Presented sentences for training and the main study were se-
lected from the German Open Subtitles corpus [33]. The
sentences were filtered and normalized so that all presented
sentences were restricted to contain only English lower case
letters and only words from the dictionary of the language
model. This was done to avoid confounds due to switches
between different keyboards or modes and to avoid any as-
sociated errors, as well as to avoid un-repairable errors. As
the presented sentence disappeared after the first character,
participants were asked to remember the sentence and then
type it as they would normally do.

To keep participants from typing too slowly and deliberately,
an alarm was triggered if a sentence took longer than 20 sec-
onds to type. During all text entry submissions from a partici-
pant, we did not want to enforce correctness or completeness
of the phrase, to avoid breaking the typing flow of the partici-
pants and to provide an “easy out” if a participant forgot the
rest of a sentence. To avoid later ambiguities in the alignment
of the entered phrases and the originally prompted text during
the training of the classifier, we only used segments of data up
to the first mismatch between entered and expected text and
disregarded the rest.

The experiment was conducted on a Google Pixel C tablet
(Android 8.1), which was positioned slightly below eye height.
The high placement of the tablet was chosen to encourage
users to keep their eyes reasonably open (in contrast to half-
closed eyes when looking down to a device in their lap), which
improved eye tracking accuracy substantially. Markers were
placed around the tablet to enable the outward looking camera

of the eye tracking system to register the gaze direction accu-
rately, even if the participants moved their heads. Sentences
were presented using a modified version of the TEMA Soft-
ware [9]. Participants typed 10 sentences in a row, progressing
to the next sentence via the Enter key, and were free to start
the next set of 10 sentences at their leisure. At the start of
every set, participants had to look at the middle of the tablet
and needed to have the tablet centered in their field of view for
the first sentence to appear. This was done to ensure the best
possible calibration of the eye tracking component throughout
the experiment.

To record enough training data we needed to induce a suffi-
cient number of auto-corrections. Thus we set the keyboard to
replace 5% of typed letters with neighboring keys [4], except
for the space bar. An error rate of 5% is similar to a normal
typing error rate in mobile text entry [3]. While this measure
may create a slight confusion when noticed, it enabled us to
keep the time required for the experiment within reasonable
bounds. As auto-corrections take place only after the comple-
tion of a word (i.e., during times when no letter replacements
were performed), potential responses to detected keyboard
errors could not be confused with responses to auto-correction
errors.

The data of the final six participants was used to evaluate
the complete end-to-end interface for self-repairing auto-
correction. They first entered 150 sentences to enable us to
train the classifier to perform optimally for each user. During
this phase, participants were asked to manually correct mis-
takes of the auto-correction. We also calculated statistics on
manual repair of auto-correction errors from this data. After
training the classifier, participants then entered 50 additional
sentences, this time with activated self-repair. After the ex-
periment was completed, participants filled a questionnaire
regarding the usability of the system. The fixed ordering of the
two conditions (with and without self-repair) was necessary
to keep the total duration of the experiment under control. As
the text entry interface closely followed the appearance and
behavior of well-known standard components (i.e., the de-
fault Android keyboard), we can assume that participants were
familiar with it and did not exhibit a strong learning effect.

For data acquisition, participants were equipped with a Brain-
Products actiCAP with 32 active EEG electrodes. The elec-
trodes were organized in a standard 32 channel actiCAP layout
following the international 10-20 system. P2 was used as ref-
erence electrode. Impedance was kept below 16kΩ. The
measurements were amplified by the actiCHamp amplifier
and recorded via the PyCorder software. To synchronize the
correction events with the EEG signal, the custom keyboard
included a color-switching box to which a light sensor of the
recording setup was attached. Note that while 32 electrodes
were recorded during the experiments, only two electrodes
(plus the reference electrode) were actually used for analysis.
Thus, the EEG setup could be (much) simplified in actual
application.

Participants received financial compensation in the form of
the equivalent of 20 USD. All participants gave their written
consent to participate and to have their data evaluated.

CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

Paper 686 Page 7

EVALUATION
To evaluate our research platform, we first analyzed the clas-
sification performance when detecting auto-correction errors.
For this purpose, we use the first 150 sentences of a session
for training of the model and the remaining 50 sentences for
testing. Maintaining the temporal order of the original record-
ing (compared to a cross-validation) allows us to draw more
robust conclusions for the online system. Due to the imbal-
ance of classes, i.e., as the auto-correction is giving the right
result more often than it is failing, we needed a relatively high
number of 150 training sentences.

We performed this specific evaluation by replaying the
recorded session to the actual online system from the recorded
LSL streams. This allows for an exact reproduction of the
online conditions. For each sentence, we evaluated all occur-
ring auto-correction events until the entered text (after auto-
correction, automatic repair, and manual repair was applied)
diverged from the prompted sentence.

As performance metric, we report the unweighted averaged F1
score. Table 1 summarizes the results. These results indicate
that the performance is significantly higher than the random
baseline (p < 10−5 for a one-sided paired t-test), showing that
our model is able to successfully detect auto-correction errors.
Furthermore, we see that the addition of the context fallback
mechanism (slightly) improves the classification performance
and that using the fixation-related windows (instead of fixed
correction-related ones) increases classification performance
by 7% relative, which is a significant difference (p = 0.02
for a one-sided paired t-test), which makes this a substantial
improvement over previous work. See Table 1, where “All
features, no fixation windows” corresponds to the data from
Putze et al. [31] which used no eye-tracking (instead, classifi-
cation windows were always extracted immediately following
the auto-correction event).

Mode F1 F0.5 F2 SD
All features 0.65 0.68 0.62 0.1
All features + context fall-
back

0.67 0.71 0.64 0.06

All features, no fixation win-
dows [31]

0.61 0.65 0.57 0.1

Baseline 0.41 0.39 0.47 0.02
Table 1. Classification performance for different feature combinations
(SD = standard deviation). We report Fβ scores for β ∈ {1,0.5,2}. The
baseline is calculated for only predicting the majority class.

For evaluation of the auto-correction strategy, we compared
the average required correction time for manual and automatic
repair of auto-correction errors. Figure 8 shows a significant
difference in correction time (p = 0.02 for one-sided paired
t-test). In case a re-correction of the automatic result is nec-
essary, the repair time is still not significantly higher than a
manual repair (actually still slightly lower), i.e., there is no
extra overhead when our method does not succeed. Looking
at the operation count metric in Figure 9, we can see that the
automatic repair also significantly reduces the number of nec-
essary manual operations (p = 0.02 for one-sided paired t-test,
for pop-up selection and to account for situations in which no

Manual Repair Automatic Repair Automatic Repair +
manual re-correction

0

1

2

3

4

5

R
ep

a
ir

D
u

ra
ti

on
[s

]

**

Figure 8. Average duration to repair an auto-correction error manually
or automatically.

Manual Repair Automatic Repair Automatic Repair +
manual re-correction

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

O
p

er
at

io
n

C
ou

n
t

[#
]

**

Figure 9. Average number of manual operations to repair an auto-
correction error manually or automatically.

self-repair was issued due to high confidence of the original
correction). The number of manual operations for the auto-
matic correction is likely overestimated as it also counts key
presses which occurred before the self-repair was issued. If we
look at situations where manual re-correction was necessary,
the number of operations for our new system was still less, but
not significantly so.

Table 2 illustrates the performance of the different compo-
nents of the auto-correction and the self-repair component.
Here we compare a manual repair (by user only, through
manual keyboard operations), automatic repair (through the
self-correcting interface after a detected error; only correctly
detected and repaired auto-correction errors), and automatic
repair+manual re-correction (through the self-correcting in-
terface after a detected error and with a potential follow-up
of manual re-correction, if the repair subsystem did not work
correctly). The table shows that the auto-correction exhibits
an accuracy of 73.5%, indicating that while its performance is
below what one might expect from a “perfect” auto-correction

CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

Paper 686 Page 8

mechanism, it performs reasonably well. It should be con-
sidered that the user prompts were chosen from a different
corpus than the data for the language model, which makes
auto-correction and its repair harder compared to a more ho-
mogeneous, but less realistic matching condition.

The result also implies that the classification task to detect such
errors is imbalanced. In 40% of all cases, a direct replacement
lead to an automatic repair of an erroneous auto-correction
(requiring no manual intervention by the user), and in 77%
of the remaining cases, an additional pop-up contained the
correct replacement (requiring only a single manual opera-
tion). A similar performance was achieved when a pop-up was
generated immediately.

Manual re-correction after a failed repair attempt occurred
in 26.7% of all cases (absolute number of occurrences: 53
(recorrection) vs. 145 (no re-correction) on average across all
sessions).

Method Correctness [%]
Before After*

Initial correction (1st-best cand.) 73 -
Direct replacement - 40
Replacement pop-up - 77
Direct replacement & Replacement
pop-up

- 86

Full pop-up - 75
Table 2. Correctness of several individual correction methods, both be-
fore the first auto-correct is executed and, as a result to different repair
attempts, after a failed auto-correct (*relative to the total number of
failed auto-corrects). A “pop-up after a direct replacement” does not
contain the word that directly replaces the text.

Beyond the objective evaluation, we also looked at the sub-
jective assessment by the participants. Table 3 reports on
the reception of the text entry system. While users acknowl-
edged that they frequently made mistakes, they reported only
medium agreement to the statements that the keyboard was
malfunctioning and that it was sometimes changing letters.
Additionally, memorizing the given phrases was no challenge
for most users. These two results indicate that our experimen-
tal manipulation did not impede text entry and users could still
type reasonably swiftly. Participants rated auto-corrections
as plausible, which shows that our implemented text entry
component behaves comparable to existing commercial sys-
tems. The fact that most people did not look at the text entry
field supports our decision to present the auto-corrections at
multiple places. Participants indicated strongly that they paid
attention to the performed corrections.

Table 4 shows the comparison of average user responses for
manual and automatic repair of auto-correction errors. Results
show that the self-repair approach is perceived as significantly
more “intelligent” by the users (p = 0.01), i.e., they acknowl-
edge that the system is (sufficiently) context-dependent. We
also see a tendency to perceive the self-repair more quickly,
and that compared to manual correction it makes the process
of dealing with auto-correct errors less annoying. On the other
hand, the automatic repair is also perceived as less reliable (as

Statement Agreement
I frequently made mistakes while I
was typing.

5.25 (1.48)

I could type swiftly on the keyboard. 5.13 (1.32)
I thought the keyboard was malfunc-
tioning.

3.44 (1.97)

I could usually remember the sen-
tences well.

5.84 (1.14)

When an auto-correction was per-
formed, I visually checked whether
the new word was correct.

6.06 (0.83)

I could anticipate when an auto-
correction would happen.

4.94 (0.97)

I mostly looked at the keyboard
while typing.

6.50 (0.71)

I ignored the auto-corrections. 2.19 (1.13)
I noticed that sometimes wrong let-
ters would appear.

3.94 (1.89)

The auto-corrections were usually
plausible.

5.81 (0.73)

I could anticipate when an auto-
correction would be correct.

4.31 (1.53)

I mostly looked at the text field
while typing.

2.31 (1.21)

Table 3. Typing behaviours questionnaire, using a 7-point Likert scale
(from strong disagreement=1 to strong agreement=7). Standard devia-
tion in brackets. Cells in light gray support the validity of the evaluation.
Cells in dark gray are potential challenges.

it can introduce a new source of errors) and more confusing.
While not all these effects are significant, we see a strong
correlation (absolute average Pearson’s ρ of 0.61) between
classification performance and positive assessment of the self-
repairing variant. This shows us that a well-performing self-
repair can improve user satisfaction during text entry notice-
ably.

DISCUSSION & CONCLUSION
In this paper, we presented a platform for research on recogni-
tion and reaction to multimodal error responses in the context
of self-repairing auto-corrections and evaluated it in a user
study. This platform brings together a 1) multimodal, real-
time classifier for the detection of error responses during text
entry, 2) a multi-state self-repairing strategy which takes con-
fidence and context into account, 3) an integration of both
components into generic Android components, which allows
the investigation in arbitrary applications.

Our study demonstrates that the system successfully detects a
large percentage of incorrect auto-corrections and either au-
tomatically fixes them or enables users to fix them through
a pop-up menu, with a manual correction fallback. We fur-
ther showed that a pro-active self-repair strategy is able to
significantly reduce the required time for repairing erroneous
auto-corrections as well as the number of required user opera-
tions. Users also perceived the behavior of the self-repairing
auto-correct to be significantly more “intelligent” than the
auto-correction without self-repair.

CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

Paper 686 Page 9

Statement Manual Automatic
Auto-correct mistakes could
be repaired reliably.

5.86 (0.99) 5.25 (1.15)

Auto-correct mistakes could
be repaired quickly.

5.00 (1.41) 5.31 (1.26)

I felt comfortable using the
system.

5.69 (1.21) 5.31 (0.77)

I regarded the system’s be-
haviour as intelligent.

4.31 (1.45) 5.5 (0.87)

I found the system confus-
ing.

1.94 (0.83) 2.86 (1.05)

I had no control over the sys-
tem’s behaviour.

2.81 (1.63) 3.06 (1.43)

Repairing auto-correct mis-
takes was annoying.

4.38 (1.22) 3.94 (1.39)

Table 4. Questionnaire results for the auto-correct repair mechanisms,
comparing manual and automatic correction. Participants used a 7-
point Likert-Scale (from strong disagreement=1 to strong agreement=7).
Standard deviation in parentheses.

Our results show that detection of erroneous system behavior
in a realistic, complex text entry task is feasible, which goes
well beyond most previous work that applies the detection
of error potentials to user interfaces. We showed how the
combination of multiple modalities, namely EEG, gaze, and
context information can contribute to a more robust system.
This improvement is not only due to the creation of a larger
feature set, but also through the more accurate determination of
the classification window together with an appropriate fallback
mechanism. The proposed classification method as well as
the confidence-based strategy for selecting between different
repair options can be transferred to other human-computer
interfaces where erroneous system behavior can be expected,
such as speech recognition or recommender systems.

Now that we have demonstrated that our research platform can
handle one specific auto-correction method, we are planning
to extend it in many different directions. For example, we
could easily replace the text entry method (e.g., using a swip-
ing method or even spoken text entry), perform a comparison
of different modalities for detection of error responses, or eval-
uate different self-repair strategies. We already investigated an
always-on variant of the auto-correction through a simulation
and a pilot experiment. While the simulation results showed
relatively good performance, pilot users found it confusing.
Another possibility would be to study error responses not only
to individual words but also to text messages that were sent
and then immediately regretted. Another alternative approach
to handling detected auto-correction errors would be not maxi-
mize automation through self-repair, but instead use the “error
self-awareness” of the system for building trust with the user
through transparency and feedback, following the suggestions
of Hoff and Bashir [20].

To enable others to build on the presented system, the software
components of our work are all available at Open Science
Framework. The modular architecture enables the modifica-
tion of individual components to adapt the platform to many
different use cases.

Our new classifier requires only two EEG electrodes (plus
reference and ground electrodes) and an affordable mobile
eye tracker, i.e., there is substantial room for improvement in
terms of further miniaturization and increased comfort. Recent
years have shown remarkable improvements in mobile eye
tracking from tablet-based cameras [5] and consumer-grade
EEG systems (such as the NeuroSky or Muse headsets). For
future research, such developments might enable us to actually
take the research platform into the field, as one limitation of the
presented work is that while the technology is mobile-ready
(e.g., through use of wireless EEG recording devices), we did
not actually evaluate mobile use of the system. After all, it
is likely that during mobile text entry users will make more
mistakes. We also expect to more frequently see situations
where an auto-correction error is not attended to and thus not
detected by our current approach. Moving to a smaller screen
would also add new challenges, such as for the localization of
eye gaze; Müller [27] showed that target differentiation from
eye gaze on a smart phone screen is possible, but might come
with reduced accuracy compared to larger tablet screens.

Our research platform also enables the future exploration of
the potential of self-repairing auto-corrections using only the
available context information or other modalities, such as
fNIRS, skin conductance response, or facial features.

Another limitation of our work is that while our core auto-
correction implementation uses a state-of-the-art statistical
language model, its performance might not perfectly match
that of the highly optimized auto-correction methods embed-
ded in today’s mobile devices and their operating systems. Yet,
we cannot access these operating system components, as they
do not provide sufficient access to all the information required
by our current approach. We plan to explore this topic fur-
ther through collaborations. This limitation also holds for the
manual repair to which we compare to and which could be
improved for a more realistic comparison to state-of-the-art
text entry. This could for example happen by adding the al-
ternative replacements used in the pop-ups of the automatic
repair to every auto-correction to allow more efficient manual
repair as well. For the presented study, the simple manual
auto-correction allowed us to successfully demonstrate mea-
surable impact through detecting and reacting to users’ error
responses. Future research with our presented platform will
reveal whether the currently implemented repair strategy will
be able to improve performance over the best available sophis-
ticated text entry support systems.

ACKNOWLEDGEMENTS
This work was done within the project DINCO “Detection
of Interaction Competencies and Obstacles”. We thank the
German Research Foundation (DFG) for funding this DINCO
project under the reference number 316930318 and the Cana-
dian NSERC Discovery program.

REFERENCES
[1] Ohoud Alharbi, Ahmed Sabbir Arif, Wolfgang

Stuerzlinger, Mark D Dunlop, and Andreas Komninos.
2019. WiseType: A Tablet Keyboard with Color-Coded

CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

Paper 686 Page 10

Visualization and Various Editing Options for Error
Correction. Graphics Interface 2019 (2019).

[2] Ahmed Sabbir Arif, Sunjun Kim, Wolfgang Stuerzlinger,
Geehyuk Lee, and Ali Mazalek. 2016. Evaluation of a
Smart-Restorable Backspace Technique to Facilitate
Text Entry Error Correction. In Proceedings of the 2016
CHI Conference on Human Factors in Computing
Systems (CHI ’16). ACM, New York, NY, USA,
5151–5162. DOI:
http://dx.doi.org/10.1145/2858036.2858407

[3] Ahmed Sabbir Arif and Wolfgang Stuerzlinger. 2009.
Analysis of text entry performance metrics. In Science
and Technology for Humanity (TIC-STH), 2009 IEEE
Toronto International Conference. 100–105.

[4] Ahmed Sabbir Arif and Wolfgang Stuerzlinger. 2010.
Predicting the Cost of Error Correction in
Character-based Text Entry Technologies. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI ’10). ACM, New
York, NY, USA, 5–14.

[5] Mihai Bâce, Sander Staal, and Andreas Bulling. 2019.
Accurate and Robust Eye Contact Detection During
Everyday Mobile Device Interactions. arXiv preprint
arXiv:1907.11115 (2019).

[6] Nikola Banovic, Varun Rao, Abinaya Saravanan,
Anind K. Dey, and Jennifer Mankoff. 2017. Quantifying
Aversion to Costly Typing Errors in Expert Mobile Text
Entry. In Proceedings of the 2017 CHI Conference on
Human Factors in Computing Systems (CHI ’17). ACM,
New York, NY, USA, 4229–4241. DOI:
http://dx.doi.org/10.1145/3025453.3025695

[7] Xiaojun Bi, Tom Ouyang, and Shumin Zhai. 2014. Both
Complete and Correct?: Multi-objective Optimization of
Touchscreen Keyboard. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems
(CHI ’14). ACM, New York, NY, USA, 2297–2306.

[8] Daniel Buschek, Benjamin Bisinger, and Florian Alt.
2018. ResearchIME: A Mobile Keyboard Application
for Studying Free Typing Behaviour in the Wild. In
Proceedings of the 2018 CHI Conference on Human
Factors in Computing Systems (CHI ’18). ACM, New
York, NY, USA, 255:1–255:14. DOI:
http://dx.doi.org/10.1145/3173574.3173829

[9] Steven J. Castellucci and I. Scott MacKenzie. 2011.
Gathering Text Entry Metrics on Android Devices. In
CHI ’11 Extended Abstracts on Human Factors in
Computing Systems (CHI EA ’11). ACM, New York, NY,
USA, 1507–1512.

[10] Tianqi Chen and Carlos Guestrin. 2016. XGBoost: A
Scalable Tree Boosting System. In Proceedings of the
22Nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD ’16).
ACM, New York, NY, USA, 785–794. DOI:
http://dx.doi.org/10.1145/2939672.2939785

[11] James Clawson, Kent Lyons, Alex Rudnick, Robert A.
Iannucci, Jr., and Thad Starner. 2008. Automatic
Whiteout++: Correcting mini-QWERTY Typing Errors
Using Keypress Timing. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems
(CHI ’08). ACM, New York, NY, USA, 573–582.

[12] Edwin S Dalmaijer, Sebastiaan Mathôt, and Stefan
Van der Stigchel. 2014. PyGaze: An open-source,
cross-platform toolbox for minimal-effort programming
of eyetracking experiments. Behavior research methods
46, 4 (2014), 913–921.

[13] Kilian Förster, Andrea Biasiucci, Ricardo Chavarriaga,
Jose del R Millan, Daniel Roggen, and Gerhard Tröster.
2010. On the Use of Brain Decoded Signals for Online
User Adaptive Gesture Recognition Systems. In
Pervasive Computing. Number 6030 in Lecture Notes in
Computer Science. Springer Berlin Heidelberg,
427–444.

[14] Andrew Fowler, Kurt Partridge, Ciprian Chelba, Xiaojun
Bi, Tom Ouyang, and Shumin Zhai. 2015. Effects of
Language Modeling and Its Personalization on
Touchscreen Typing Performance. In Proceedings of the
33rd Annual ACM Conference on Human Factors in
Computing Systems (CHI ’15). ACM, New York, NY,
USA, 649–658.

[15] Mayank Goel, Leah Findlater, and Jacob Wobbrock.
2012. WalkType: Using Accelerometer Data to
Accomodate Situational Impairments in Mobile Touch
Screen Text Entry. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems
(CHI ’12). ACM, New York, NY, USA, 2687–2696.

[16] Mayank Goel, Alex Jansen, Travis Mandel, Shwetak N.
Patel, and Jacob O. Wobbrock. 2013. ContextType:
Using Hand Posture Information to Improve Mobile
Touch Screen Text Entry. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems
(CHI ’13). ACM, New York, NY, USA, 2795–2798.

[17] Dirk Goldhahn, Thomas Eckart, and Uwe Quasthoff.
2012. Building Large Monolingual Dictionaries at the
Leipzig Corpora Collection: From 100 to 200
Languages.. In LREC, Vol. 29. 31–43.

[18] Joshua Goodman, Gina Venolia, Keith Steury, and
Chauncey Parker. 2002. Language Modeling for Soft
Keyboards. In Proceedings of the 7th International
Conference on Intelligent User Interfaces (IUI ’02).
ACM, New York, NY, USA, 194–195.

[19] Leanne M. Hirshfield, Philip Bobko, Alex Barelka,
Stuart H. Hirshfield, Mathew T. Farrington, Spencer
Gulbronson, and Diane Paverman. 2014. Using
Noninvasive Brain Measurement to Explore the
Psychological Effects of Computer Malfunctions on
Users During Human-computer Interactions. Adv. in
Hum.-Comp. Int. 2014 (Jan. 2014), 2:2–2:2. DOI:
http://dx.doi.org/10.1155/2014/101038

CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

Paper 686 Page 11

http://dx.doi.org/10.1145/2858036.2858407
http://dx.doi.org/10.1145/3025453.3025695
http://dx.doi.org/10.1145/3173574.3173829
http://dx.doi.org/10.1145/2939672.2939785
http://dx.doi.org/10.1155/2014/101038

[20] Kevin Anthony Hoff and Masooda Bashir. 2015. Trust
in automation: Integrating empirical evidence on factors
that influence trust. Human factors 57, 3 (2015),
407–434.

[21] Gernot Horstmann and Arvid Herwig. 2015. Surprise
attracts the eyes and binds the gaze. Psychonomic
Bulletin & Review 22, 3 (June 2015), 743–749. DOI:
http://dx.doi.org/10.3758/s13423-014-0723-1

[22] Fotis P. Kalaganis, Elisavet Chatzilari, Spiros
Nikolopoulos, Ioannis Kompatsiaris, and Nikos A.
Laskaris. 2018. An error-aware gaze-based keyboard by
means of a hybrid BCI system. Scientific Reports 8, 1
(Sept. 2018), 13176. DOI:
http://dx.doi.org/10.1038/s41598-018-31425-2

[23] Andreas Komninos, Mark Dunlop, Kyriakos Katsaris,
and John Garofalakis. 2018. A Glimpse of Mobile Text
Entry Errors and Corrective Behaviour in the Wild. In
Proceedings of the 20th International Conference on
Human-Computer Interaction with Mobile Devices and
Services Adjunct (MobileHCI ’18). ACM, New York,
NY, USA, 221–228. DOI:
http://dx.doi.org/10.1145/3236112.3236143

[24] Per-Ola Kristensson and Shumin Zhai. 2005. Relaxing
Stylus Typing Precision by Geometric Pattern Matching.
In Proceedings of the 10th International Conference on
Intelligent User Interfaces (IUI ’05). ACM, New York,
NY, USA, 151–158.

[25] Olivier Ledoit and Michael Wolf. 2004. A
well-conditioned estimator for large-dimensional
covariance matrices. Journal of multivariate analysis 88,
2 (2004), 365–411.

[26] Perrin Margaux, Maby Emmanuel, Daligault Sébastien,
Bertrand Olivier, and Mattout Jérémie. 2012. Objective
and Subjective Evaluation of Online Error Correction
During P300-based Spelling. Adv. in Hum.-Comp. Int.
2012 (2012).

[27] Stefanie Mueller. 2019. Inferring target locations from
gaze data: A smartphone study. In Proceedings of the
11th ACM Symposium on Eye Tracking Research &
Applications. 1–4.

[28] S. Joon Park, Craig M. MacDonald, and Michael Khoo.
2012. Do You Care if a Computer Says Sorry?: User
Experience Design Through Affective Messages. In
Proceedings of the Designing Interactive Systems
Conference (DIS ’12). ACM, New York, NY, USA,
731–740. DOI:
http://dx.doi.org/10.1145/2317956.2318067

[29] Felix Putze, Christoph Amma, and Tanja Schultz. 2015.
Design and Evaluation of a Self-Correcting Gesture
Interface Based on Error Potentials from EEG. In
Proceedings of the 33rd Annual ACM Conference on
Human Factors in Computing Systems (CHI ’15). ACM,
New York, NY, USA, 3375–3384.

[30] Felix Putze, Dominic Heger, and Tanja Schultz. 2013.
Reliable subject-adapted recognition of EEG error

potentials using limited calibration data. In 6th
International Conference on Neural Engineering. San
Diego, USA.

[31] Felix Putze, Maik Schünemann, Tanja Schultz, and
Wolfgang Stuerzlinger. 2017. Automatic classification
of auto-correction errors in predictive text entry based
on EEG and context information. In Proceedings of the
19th ACM International Conference on Multimodal
Interaction. ACM, 137–145.

[32] Philip Quinn and Shumin Zhai. 2016. A Cost-Benefit
Study of Text Entry Suggestion Interaction. In
Proceedings of the 2016 CHI Conference on Human
Factors in Computing Systems (CHI ’16). ACM, New
York, NY, USA, 83–88. DOI:
http://dx.doi.org/10.1145/2858036.2858305

[33] Germán Sanchis-Trilles and Luis A. Leiva. 2014. A
Systematic Comparison of 3 Phrase Sampling Methods
for Text Entry Experiments in 10 Languages. In
Proceedings of the international conference on
Human-computer interaction with mobile devices and
services (MobileHCI).

[34] Gerwin Schalk, Jonathan R Wolpaw, Dennis J
McFarland, and Gert Pfurtscheller. 2000. EEG-based
communication: presence of an error potential. Clinical
Neurophysiology 111, 12 (2000), 2138–2144.

[35] Martin Spüler, Michael Bensch, Sonja Kleih, Wolfgang
Rosenstiel, Martin Bogdan, and Andrea Kübler. 2012.
Online use of error-related potentials in healthy users
and people with severe motor impairment increases
performance of a P300-BCI. Clinical neurophysiology:
official journal of the International Federation of
Clinical Neurophysiology 123, 7 (2012), 1328–1337.

[36] Andreas Stolcke. 2002. SRILM-an extensible language
modeling toolkit. In Seventh international conference on
spoken language processing.

[37] Bernhard Suhm, Brad Myers, and Alex Waibel. 2001.
Multimodal Error Correction for Speech User Interfaces.
ACM Trans. Comput.-Hum. Interact. 8, 1 (2001), 60–98.

[38] Hussain Tinwala and I. Scott MacKenzie. 2010.
Eyes-free Text Entry with Error Correction on
Touchscreen Mobile Devices. In Proceedings of the 6th
Nordic Conference on Human-Computer Interaction:
Extending Boundaries (NordiCHI ’10). ACM, New
York, NY, USA, 511–520.

[39] Chi Vi and Sriram Subramanian. 2012. Detecting
error-related negativity for interaction design. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI ’12). New York,
USA.

[40] Martin Voelker, Sofie Berberich, Ecaterina Andreev,
Lukas DJ Fiederer, Wolfram Burgard, and Tonio Ball.
2017. Between-subject transfer learning for
classification of error-related signals in high-density
EEG. In The First Biannual Neuroadaptive Technology
Conference, Vol. 81. 47.

CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

Paper 686 Page 12

http://dx.doi.org/10.3758/s13423-014-0723-1
http://dx.doi.org/10.1038/s41598-018-31425-2
http://dx.doi.org/10.1145/3236112.3236143
http://dx.doi.org/10.1145/2317956.2318067
http://dx.doi.org/10.1145/2858036.2858305

[41] Daryl Weir, Henning Pohl, Simon Rogers, Keith
Vertanen, and Per Ola Kristensson. 2014. Uncertain Text
Entry on Mobile Devices. In Proceedings of the SIGCHI

Conference on Human Factors in Computing Systems
(CHI ’14). ACM, New York, NY, USA, 2307–2316.

CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

Paper 686 Page 13

	Introduction
	Related Work
	Platform for Self-Repairing Auto-Correction
	Text Entry Component
	Classification Setup
	Resolution Strategies
	Online System

	Data Collection
	Evaluation
	Discussion & Conclusion
	Acknowledgements
	References

