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Figure 1: Eye-Hand Coordination Training system(a) used with a virtual reality head mounted display. (b) the virtual scene, as seen
by the participant.

ABSTRACT

Eye-hand coordination training systems are used to train partici-
pants’ motor skills and visual perception. Such systems have already
been tested in Virtual Reality, and the results revealed that Head
Mounted Display-based systems have the potential to improve the
motor training. However, this was only investigated in an hour-long
study. In the longitudinal study reported here, we analyzed the motor
performance of three participants in ten sessions with three different
assessment criteria, where participants were instructed to focus on
speed, error rate, or complete the training freely (with no instruc-
tions). We also assessed the effective throughput performance of the
participants. Our results indicate that effective throughput can be
potentially used as an additional assessment criterion. We hope that
our results will help practitioners and developers design efficient
Virtual Reality training systems.

Index Terms: Human-centered computing—Human Computer
Interaction (HCI); Human-centered computing—Virtual Reality;
Human-centered computing—Pointing;
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1 INTRODUCTION

Virtual Reality (VR) systems have become much more affordable
and thus accessible in recent decades. Virtual reality environments or
virtual scenes are most commonly visualized through head-mounted
displays (HMDs), and besides many other applications, they could
be used as training systems [60].

HMD-based VR training systems offer many advantages over
conventional methods. Firstly, VR systems allow trainees to be
exposed to exactly the same scenario several times or can apply a
limited amount of randomization to create controlled irregularities
in the task [29, 43]. Secondly, HMDs provide a safer environment
for novice trainees when faced with potentially dangerous tasks
(e.g., fire-fighter training [20]). Further, using VR systems has been
shown to reduce the number of accidents and injuries compared
to real-world training systems. For example, Huang et al. showed
that HMD-based VR systems significantly decrease the number of
hits received by an athlete during training [27]. Thirdly, a large
amount of data can be collected more easily in such digital systems,
compared to conventional analog systems with the associated cus-
tom hardware [13]. Finally, trainees can experience asynchronous
training wherever they want, whenever they want, without needing
the presence of a trainer. In addition, HMD-based VR systems offer
great promise for training and education applications, where trainees
can learn or improve certain skills on their own without needing
other physical training equipment [41]. This increases accessibility
and inclusivity for the trainees.

Sports are a frequent target for HMD-based VR training systems,
and various studies investigated the impact of such systems on user
performance in sports-based training applications [1,26,31,34]. One
of the critical skills to train in sports is eye-hand coordination (or the
peripheral eye-hand response). For instance, Burris et al. showed
that higher sensorimotor abilities contribute to the performance of
professional baseball players [16]. Systems designed for eye-hand
coordination training (EHCT) aim to improve sensorimotor skills



and perceptual performance. Such systems are referred to as Eye-
Hand Coordination Training Systems (EHCTSs) from here on.

EHCTSs include a visual feedback mechanism for stimuli, and
the trainee is asked to “hit” a random sequence of these stimuli.
EHCTSs are also known as reaction-training systems since they
are also used to decrease the reaction time of the trainee when
hitting the stimuli. Such training systems have been implemented
for 2D touchscreens [58], tablets [21], and 2D real-world surfaces
[19]. 2D screen versions of EHCTSs are used in various sports
to improve trainee performance, such as hockey [49] and football
[25]. Furthermore, EHCTSs are also sold commercially, e.g., by
Nike [45] and Batak [50]. Considering the positive impact of VR-
based training systems in various sports, including basketball [17],
American football [27], skiing [54], cycling [52], and other fields
such as e-sports [44] and rehabilitation [23], the potential of EHCTSs
becomes even greater if they were implemented using HMD-based
VR systems.

The previous literature on EHCT showed that HMD-based VR
systems can be used as an alternative to conventional EHCTSs [9,11].
These studies consist of user experiment that took place in one
session. Therefore, the impact of longitudinal training sessions on
trainee motor performance skills is still unknown. Further, studies
on HMD-based VR training systems mostly required the trainees to
focus on the efficiency and efficacy of the approach in general [18,
42, 46, 55]. So, these studies did not analyze the impact of different
task execution strategies (e.g., completing the tasks fastest, the most
accurate, the most precise, etc.) during sensorimotor learning in a
longitudinal user study of HMD-based VR EHCTS.

To fill this gap in the literature, we replicated an HMD-based
VR EHCTS environment from previous work [12] and conducted a
longitudinal user study to understand the efficiency of this EHCTS
with three different task execution strategies. To assess the change in
motor performance across sessions, we asked participants to either
focus on lowering their task execution time, which we refer to as
a speed-focus strategy, to focus on selecting targets as closely as
possible to the target center, which we refer to as accuracy-focus,
or to simply complete the task without a particular focus, which we
refer to as no-focus.

We hypothesize that (H1) different task execution strategies have
a different impact on long-term user performance for HMD-based
VR EHCTSs, and (H2) it is possible to use effective throughput
as a long-term assessment criterion for HMD-based VR EHCTSs.
Overall, our contributions are:

• A comparison of speed-focus, accuracy-focus, and no-focus
training approaches within a longitudinal study,

• Using effective throughput as an assessment criterion in a
longitudinal VR EHCTS study, and

• Suggestions for analyzing performance and reporting feedback
to the trainees in VR EHCTS.

Here, we report our results from a preliminary user study con-
ducted with three participants, where each participant was assigned
one training strategy over the course of 12 days. Our results show
that training strategy plays an important role in psychomotor im-
provement, and throughput can be used as an assessment criterion to
observe the motor performance progress of the participants. We hope
that our findings can guide practitioners, developers, and trainers to
design more efficient HMD-based VR EHCTSs in the future.

2 PREVIOUS WORK

2.1 Eye-Hand Coordination Training
EHCT uses psychometric tasks that aim to both decrease the reaction
time of the trainee and increase perceptual performance. EHCT
requires trainees to detect a certain stimulus and react to it with their

hands, which can be extended to many activities in daily life. Even
though it applies to a variety of application scenarios, EHCTS are
most frequently used for training in various sports, e.g., [17,27], and
other fields such as e-sports [44], military aircraft pilot training [14],
and rehabilitation [23]. In 2D touchscreen and other hardware-based
EHCTSs, a target randomly appears on a surface, and the trainees
are instructed to select the target as swiftly and smoothly as possible.
Previous studies investigated the skill transfer and the effectiveness
of such EHCTSs, as well as the effect of daily human variations,
such as sleepiness [58]. Overall, previous work showed that EHCT
helps trainees to react faster to visual stimuli, which also increases
trainee performance in sports, directly affecting game results [25].

Eye-hand coordination of the trainees can be improved through
activities involving physical systems, e.g., through ball drops, jug-
gling, or wall-ball. However, many trainers prefer digital systems
since they can collect data about the objective motor performance of
the trainee and provide direct feedback based on it. This approach
also allows the trainee and trainer to adjust the learning strategy
and decrease the time required for the trainer. Previous commer-
cial EHCTSs relied on 2D touchscreens (e.g., NIKE’s system [45]
or Meyend [40]) or mounted buttons with lights on a frame (e.g.,
BATAK [50]).

2.2 Eye-Hand Coordination Training in VR systems

The recent advances in VR technology enable HMDs to be used for
EHCT [11]. HMD-based VR systems are particularly useful for the
direct collection of 3D movement data, since eye-hand coordina-
tion tasks require actions to be performed in 3D space. VR-based
EHCTSs can thus help trainers to provide feedback to the trainees
based on this collected data.

A VR-based EHCTS presented in previous work [11] used a
task similar to the Nike SPARQ sensory station [45]. In these
setups, there is a layout of potential targets in a virtual setting, but
only a single target gets highlighted at a time. Participants see a
virtual cursor representing their fingertip in real-time and select each
highlighted target in turn as fast and precisely as possible with that
cursor. The authors showed that HMD-based VR EHCTSs have
the potential to improve visual-motor skills. In follow-up work,
Batmaz et al. [9] conducted another user study and compared user
performance across VR, AR, and touchscreen-based systems. The
results showed that user performance in HMD-based VR system
was at the same level as in touchscreen-based systems in terms of
time and error rate [9]. However, user performance was significantly
worse in the HMD-based AR training system. Further analysis
also revealed that trainees performed the best with HMD-based VR
EHCT while interacting with objects in mid-air, with their dominant
hand, and with a vertical task plane orientation. In another study,
the authors also analyzed the effect of different target and cursor
sizes [12]. The results showed that user performance increases when
the target size increases, but not when the size of the cursor attached
to the user’s hand changes.

Mutasim et al. [30] analyzed the gaze movements of participants
while they executed HMD-based VR EHCT. The authors identified
that with current HMDs, most users have to flex their necks sub-
stantially to see all the targets in the 6x6 design used in previous
work [9, 11]. They also showed that EHCTSs should be designed to
reduce the visual search time for the next target. As a result, they
proposed to use a 5x6 target design instead of a 6x6 design, which
ultimately allows users to see all targets in their field of view at once
while being able to reach all of them directly.

The aforementioned studies helped us understand how human
performance and decision making is affected by HMD-based VR
technologies [35]. Still, the literature lacks a longitudinal study
that analyzes the long-term impact of HMD-based VR EHCTSs
for training. In this study, we used the above-mentioned 5x6 target
layout in a 12-day longitudinal experiment to investigate the long-



term effects of HMD-based VR EHCTSs on motor learning.

2.3 Motor Performance Assessment Criteria
An important research question for training systems is how to assess
the performance of the trainee and how to provide effective feedback
to them [51]. While some work proposed training systems without
analyzing the efficiency of the learning strategies [42, 46], others
only assessed user performance through execution time [57]. Yet,
participants might use different task execution strategies, which
might then affect the outcome of the training.

A recent study proposed using precision as the primary assess-
ment criterion [6]. The results showed that participants can learn
how to execute the task and perceive the stimuli faster if they are
motivated to prioritize precision over performing the task quicker or
to focus on the feedback. The authors claim that a precision-focused
strategy would help users to speed up their sensorimotor learning
and rapidly adapt to the task [7].

2.4 Fitts’ Law and Effective Throughput
Fitts’ law models the time required for a human to perform a task as
a function of the target size and the distance [22]. While there are
multiple approaches, one of the most widely used ones in human-
computer interaction research is MacKenzie’s Shannon formula
(Equation 1) [36], which is based on information theory:

MovementTime(MT) = a+b∗ log2

(
A
W

+1
)
= a+b∗ ID (1)

where A and W represent the target distance and the target size,
respectively. The log term represents the task difficulty and can be
described as the index of difficulty, ID. The coefficients a and b are
empirically derived via linear regression.

Fitts also defined a second formula to analyze user performance,
called the index of performance. After decades of research, one
of the most well-known versions for the index of performance was
proposed by MacKenzie [36], motivated by the Shannon capacity
theorem, and now known as throughput based on effective measures
(or effective throughput for short).

Throughput =
(

IDe

MovementTime

)
(2)

In Equation 2, movement time represents the task execution time
and IDe describes the effective index of difficulty, with accounts for
the effect of the combination of user’s accuracy and precision in
ISO pointing tasks [28] as in Equation 3:

IDe = log2

(
Ae

We
+1

)
(3)

where the effective target width We is calculated as We = 4.133×SDx
with SDx being the standard deviation of the distance between the
target center and the selection coordinates projected onto each task
axis. According to previous work [28, 37, 38], SDx represents the
accuracy of the task execution. The effective target distance Ae in
Equation 3 is calculated as the average real distance traversed until
the selection, with a bi-variate formulation.

Fitts’ Law and effective throughput are presented in the ISO
standard as an “assessment approach for the design of physical
input devices for interactive systems” [28]. The task precision or
“measure of the user precision achieved in accomplishing a task” [28]
is represented as IDe in ISO 9241-411. The (relative) proximity of
the selected points is referred to as precision in this context. In our
work, we use the ISO 9241:411 equations to analyze the accuracy
(SDx) and precision (IDe) of the participants.

2.5 Effective Throughput as Assessment Criterion
Effective throughput has been proposed as an assessment criterion
for VR systems by Teather and Stuerzlinger [56]. It is particularly
advantageous since it combines task execution time, accuracy (SDx,
see [37]), and precision (IDe, see [28]) into one measure as shown
above in 2. This single measure allows a trainer to get a general
overview of the trainee’s progress at a glance. Previous studies on
HMD-based VR EHCTSs also suggested using effective throughput
as a performance assessment criterion [9, 11, 12]. Looking at the
effective throughput helped researchers identify that participants’
precision decreases in HMD-based VR EHCTSs compared to con-
ventional ones, which might be related to the conflicting depth cues
in current stereo display technologies [2, 3, 5].

MacKenzie and Isokoski also proposed that effective throughput
is speed-accuracy invariant, e.g., the throughput performance of the
participants does not vary even if they focus on speed or accuracy
during task execution [37]. However, previous work revealed that
effective throughput can change with task execution strategy. This
was first analyzed by Guiard et al. on 2D screens and then Olafs-
dottir et al. [47], which asked participants to execute a Fitts’ law
task with different execution strategies. The results showed that user
performance varies across execution strategies. Recent work also
investigated effective throughput (in)variance for 3D mid-air inter-
action [10]. The results demonstrated that throughput is dependent
on task execution strategy, i.e., it is not invariant.

To our knowledge, previous studies limited the analysis of effec-
tive throughput across, at most, a few sessions. For example, Boritz
and Booth analyzed the effective throughput for four sessions [15].
Thus, we do not know how throughput would change after much
longer training. In our current work, we thus analyze how the ef-
fective throughput performance of participants evolves with each
session across a longer time span.

In our current study, we do not aim to investigate the effective
throughput (in)variance for Fitts’ law task. Yet, as in previous
EHCT work [9], we still use effective throughput as an assessment
criterion to understand the motor-skill evolution of the participants
in a longitudinal HMD-based VR EHCT study.

3 USER STUDY

To test our hypotheses, we designed an experimental setup for
EHCTS with a HMD-based VR system. The used virtual scene
was similar to previous works [12, 30].

3.1 Participants
We recruited 3 participants (2 female, 1 male) aged between 19
and 23 years (mean = 21, SD = 2). Participation was voluntary,
and no incentives were provided for taking part in this study. All
participants were students from the local university. 1 participant
reported normal, 2 participants had corrected-to-normal vision, and
none of them reported color vision deficiencies. All participants
were right-handed and their right eye was the dominant one. We
also collected information about their prior experience with HMD-
based VR systems: 2 participants had used them more than 5 times,
and 1 participant had used them between 1-3 times. None of the
participants were daily VR users.

3.2 Apparatus
In this study, we used an Oculus Quest 2 as HMD for our VR system,
with a resolution of 1920 x 1832 pixels and a diagonal field-of-view
of 110°. Participants could interact with targets using the embedded
hand-tracking feature of the HMD. We tape-measured all displayed
target distances and target sizes to verify that they matched the real-
world distances. We created an interactive panel (Figure 2 (a)) for
selecting the experiment data, such as participant number, day of the
experiment, dominant hand of the participant, training strategy, and
height adjustment setup so that they could comfortably execute the



task. The information screen summarizes the current state of these
selections for the experiment (2 (b)).

3.3 Virtual Task
We designed the virtual environment using Unity 2019.2. The par-
ticipants were shown a white cursor attached to the index fingertip
of their virtual hand, which allowed them to interact with virtual
entities (Fig. 2 (c)) and a matrix of 5 x 6 (5 rows and 6 columns)
virtual spheres, where targets were separated 6 cm from each other
(Fig. 2 (d)). The virtual task involved 3 target sizes: small, medium,
and large (12, 30, and 42 mm diameter, respectively).

At the beginning of the experiment, all spheres were displayed
in grey except one, which was shown in yellow, indicating the
current target that the participants needed to “hit” with their index
finger. When the virtual cursor controlled by the participant was
located inside a sphere, the sphere was highlighted in blue. If the
participant continued pressing the current blue sphere, this target
would be selected. After the selection, the color of the blue sphere
was adjusted based on the correctness of the task execution (i.e., if
they missed the correct sphere or not) to provide visual feedback.
If the participant did not hit the target, the selected sphere turned
red with an error sound, and the trial was recorded as a “miss”. If
participants “hit” the target, the color of the sphere turned green.

After each selection, the software automatically picked the next
target among the available spheres and showed that sphere in yellow.
That next target was chosen at random, but always in accordance
with specific target distances and directions. We used 3 different
target steps (second, third, and fourth targets) and varied user move-
ment in 8 different directions: North (N), North West (NW), West
(W), South West (SW), South (S), South East (SE), East (E), and
North East (NE). For the North, South, East, and West directions, the
software randomly selected the second, third, or fourth target in that
direction, corresponding to 12 cm, 18 cm and 24 cm target distances.
For the diagonal directions, the software also selected the second,
third and fourth targets along one of the diagonals, corresponding
to 16.97 cm, 25.45 cm and 33.94 cm target distances. To describe
this in more compact form, we use a notation that combines the next
target direction with the selected target order, e.g., “N3” represents
the third target above the previous target. In total, we had 24 factor
levels for 8 different directions with 3 different step sizes: North
West (NW2, NW3 and NW4), South West (SW2, SW3 and SW4),
South East (SE2, SE3 and SE4), North East (NE2, NE3 and NE4),
North (N2, N3 and N4), West (W2, W3 and W4), South (S2, S3
and S4), and East (E2, E3 and E4). The software automatically
looked for a random potential next target under the above-mentioned
restrictions, while still staying within the grid and also avoiding
the assignment of a target that had been used before. Participants
repeated each direction and distance 2 times in each trial. To reduce
potential participant confusion, the visual cues of the previous selec-
tions (red or green) were only displayed for another two selections,
then each sphere turned back to grey.

3.4 Experiment Procedure
The experiment was spread across a total of 12 days with 12 sessions:
a pre-training assessment session on day 1, 10 days of training
sessions with a specific task execution strategy, and a final post-
training session on day 12. This experimental design enables us to
investigate the impact of 10-day training sessions with different task
execution strategies on motor learning.

Every participant was assigned to a single, specific task execution
strategy: speed-focus, accuracy-focus, or no-focus. For the speed-
focus strategy, they were instructed to select the target “as fast as
possible”. For the accuracy-focus strategy, they were instructed to
select the targets as close to their center as possible. Participants
in the control group were not given any specific strategy, i.e., only
instructed to complete the tasks, which is referred to as the no-focus

strategy from now on. During the experiments, the experimenter
observed the participants and, as needed, reminded them to follow
the task execution strategy that they were assigned to.

On day 1, participants were initially asked to fill out a demograph-
ics questionnaire. Then, the experimenter demonstrated to each
participant how to execute the experiment task. After the task on day
12, they were also asked to fill out a user-preference questionnaire.
Each experimental session took approximately 20 minutes. Each
day, we adjusted the inter-pupillary distance of the HMDs for each
participant.

3.5 Experimental Design & Evaluation Metrics

We used a between-participants design with 3 task execution strate-
gies (3ExecutionStrategy: speed, accuracy, and no focus). To vary the
ID, we used 3 different target sizes (3TargetSize: 12, 30, and 42 mm)
and 6 target distances (3TargetStepSize: second, third, fourth). For each
of the 8 directions, participants repeated 2 selections. In total, each
participant performed 144 selections (3TargetSize x 3TargetStepSize x 8
directions x 2 times) per day.

To analyze the motor performance, we collected data for time (s),
error rate (%), throughput (bits/s), accuracy, and precision (bits).

4 RESULTS

To analyze the pre- and post- training results, we used SPSS 24. We
considered the data to be normal when the Skewness (S) and Kurtosis
(K) of the data distribution were within ±1.5 [24, 39]. Otherwise,
we used log-transform. If the data was not normally distributed after
the log-transform, we used a Wilcoxon signed-rank test. The graphs
shown in the figures below represent the mean, and the error bars
represent the standard error of the mean. Similarly, the results in the
table show the mean and standard error of the mean.

4.1 Pre- and Post-Training Sessions

According to the statistical data analysis, time (S = 0.12, K = -
0.56), throughput (S = 0.955, K = 1.018), and IDe (S = -0.24, K =
0.419) were normally distributed. Error rate (S = 0.929, K = -0.89)
was normally distributed after log-transform. SDx was not normally
distributed even after log-transform, so we used the Wilcoxon signed-
rank test. The results are given in Fig. 3.

Time: Execution time results were significantly smaller during
the post-training compared to the pre-training for the speed-focus
participant. This participant’s average time decreased from 0.8s
to 0.61s. There were no statistical differences for the other two
participants in execution time. Results are shown in Table 1.

Table 1: Time Results

Participant Pre-training Post-training t-test

No-focus 1.10 (±0.05) 1.09 (±0.04) t(17)=0.519,
p=0.305

Accuracy-focus 1.13 (±0.03) 1.1048 (±0.03) t(17)=1.163,
p=0.13

Speed-focus 0.8 (±0.02) 0.61 (±0.01) t(17)=14.306,
p<0.01

Error rate: Error rate results were significantly lower during
the post-training compared to the pre-training for the no-focus par-
ticipant. This participant decreased their error rate from an average
of 0.099% to 0.021%. There were no statistical significance for
the other two participants in terms of the error rate. The results are
shown in Table 2.

Throughput: Throughput results were significantly greater dur-
ing the post-training compared to the pre-training for all three par-
ticipants. The results are shown in Table 3.



Figure 2: VR system interaction: (a) Interaction panel used to select the configuration for the experiment for each participant and experiment
conditions. (b) An information screen summarizing the selections from the interaction panel. (c) The participant saw a white cursor placed at the
fingertip of a hand avatar. (d) An annotated screenshot how a participant saw the virtual task in the HMD. In the task, they interacted with a 5x6
grid of spheres all shown in grey by default. The yellow sphere shows the next target, while blue indicates that the cursor is inside a sphere, and
that if the participant continued the selection process, this target would be selected. A red sphere shows a previously missed target, while green
shows a previously correctly selected target.
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Figure 3: Pre- and post-training comparison of IDe for (a) time, (b)
error rate, (c) throughput, (d) SDx, and (e) IDe.

Table 2: Error Rate Results

Participant Pre-training Post-training t-test

No-focus 0.099 (±0.021) 0.021 (±0.011) t(17)=5.048,
p<0.001

Accuracy-focus 0.024 (±0.008) 0.0034 (±0.003) t(17)=-0.941,
p=0.18

Speed-focus 0.027 (±0.009) 0.013 (±0.006) t(17)=1.068,
p=0.15

Table 3: Throughput Results

Participant Pre-training Post-training t-test

No-focus 2.70 (±0.15) 2.99 (±0.13) t(17)=-2.149,
p<0.5

Accuracy-focus 2.67 (±0.08) 3.11(±0.05) t(17)=-5.511,
p<0.01

Speed-focus 3.85 (±0.14) 5.14 (±0.19) t(17)=-6.562,
p<0.01

SDx : SDx results were significantly lower during the post-
training compared to the pre-training for the no-focus and accuracy-
focus participants. The no-focus participant’s accuracy improved
from 1.21 to 0.67, and the accuracy-focus participant’s accuracy
improved from 0.76 to 0.52. There were no significant differences
for the speed-focus participant in terms of the SDx. The results are
shown in Table 4.

Table 4: SDx Results

Participant Pre-training Post-training Z-test

No-focus 1.21 (±0.2) 0.67 (±0.04) Z=-3.5,
p<0.001

Accuracy-focus 0.76 (±0.06) 0.52 (±0.02) Z=3.41,
p<0.001

Speed-focus 0.72 (±0.04) 0.71 (±0.06) Z=-849,
p=396

IDe : IDe results were significantly greater during the post-
training compared to the pre-training for the no-focus and accuracy-
focus participants. The no-focus participant’s precision increased
from 2.61 bits to 3.16 bits, and the accuracy-focus participant’s preci-
sion increased from 2.95 bits to 3.42 bits. There were no significant
differences for the speed-focus participant in terms of the IDe. The
results are shown in Table 5.

4.2 Longitudinal Study Results

We also looked at the longitudinal results to observe details of the
motor performance changes for each participant over time. As
visible in the plots in Fig. 4, we did not observe major anomalies.



Table 5: IDe Results

Participant Pre-training Post-training t-test

No-focus 2.61 (±0.17) 3.16 (±0.16) t(17)=-4.098,
p<0.001

Accuracy-focus 2.95 (±0.13) 3.42(±0.09) t(17)=-5.523,
p<0.001

Speed-focus 3.05 (±0.14) 3.11 (±0.19) t(17)=-0.554,
p=0.293
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Figure 4: Longitudinal study results for (a) time, (b) error rate, (c)
throughput, (d) SDx, and (e) IDe.

4.3 Questionnaire Results

After the training session on day 12, we also asked participants about
their insights on HMD-based VR EHCTS. We first asked them if
they felt any improvement in their performance during the training

sessions (1- I do not feel improvement, 7- I feel improvement), and
they reported to have mostly felt an improvement in their skills,
with an average rating of 6. We also asked participants how much
they felt annoyed with the system (1-I do not feel annoyed at all,
7- I am extremely annoyed). The participants reported not to have
been annoyed with the HMD-based VR EHCTS, with an average
of 3.6 ±1.46. We finally asked about their physical fatigue (1- I
feel rested, 7- I feel extremely fatigued), and the average rating
was 4.6 ±1.4, indicating some (albeit limited) fatigue, which is
unsurprising after a longitudinal training session. Additionally, one
participant mentioned, “While performing in a VR environment, it
feels more vibrant and the experiment makes you feel more complete
and focused.”

5 DISCUSSION

In this paper, we asked three participants to use an HMD-based VR
EHCTS while focusing either on speed, accuracy, or no assessment
criterion and observed the change in their performance. Our results
revealed that each participant improved their motor performance
after 10 days of training. However, as can be seen from the results
for time, we only observed significantly lower execution time for the
speed-focus participant. Thus, users who want to focus on reducing
their execution time should only focus on their speed in EHCT
setups. After all, such systems are also known as reaction-time
training systems, which aim to lower the time to react to stimuli.

Beyond increasing the speed, another purpose of EHCTSs is to
improve the eye-hand coordination of the users. Unlike the speed-
focus participant, the accuracy-focus participant showed significant
improvements in both accuracy and precision. This result also sup-
ports the findings of previous work [4], where participants’ accuracy
only increased when they focused on accuracy.

Our results imply that participants should focus on specific assess-
ment criteria to improve their corresponding performance. In the
meantime, their other psychomotor skills can still improve, which
plays a vital role in eye-hand coordination tasks [17, 27]. Thus,
our results support H1. different task execution strategies have a
different impact on long-term user performance for HMD-based
VR EHCTSs.

When we look at the effective throughput results, we observe that
participants’ motor skills improvements also affected their through-
put performance. For each assessment criterion, we observed an
increase in throughput, which could be potentially related to time,
accuracy, or precision results. For a trainer, such an assessment
method could decrease their workload since it could potentially help
them to monitor the overall motor performance increase of a trainee.
Thus, this result also supports our hypothesis, H2. it is possible to
use effective throughput as a long-term assessment criterion for
HMD-based VR EHCTSs.

In summary, if a trainee wants to improve their reaction time,
they should focus on executing the task as fast as possible. Still,
any performance improvement should also be visible in the through-
put progress of the participant. However, the performance of the
trainee in terms of accuracy, precision, and error rate might not
improve. If a trainee wants to improve their accuracy or precision,
they should focus on accuracy, and this would also be visible in the
effective throughput. Finally, if a trainee does not focus on a spe-
cific task execution strategy, their error rate, accuracy, and precision
performance might improve, and this would still be visible in the
effective throughput results. Thus, it is important to plan the task
execution strategy ahead of the training sessions to improve user
performance in HMD-based VR EHCTSs. In addition, our question-
naire findings reveal that all participants enjoyed the HMD-based
VR EHCTS and self-observed an increase in their task performance
in our longitudinal study.

Even though our results support the approach of using effective
throughput as an assessment criterion, trainers should be careful



when they monitor user performance while looking only at this par-
ticular measure. After all, using only effective throughput decreases
the expressivity of motor skills monitoring. Thus, it is vital to also
keep track of individual performance criteria, i.e., time, accuracy,
or precision, and draw corresponding conclusions based on a more
holistic understanding. We thus suggest making all decisions not
solely based on effective throughput.

5.1 Limitations & Future Work
In this study, participants were asked to focus on a particular assess-
ment criterion, and if they did not follow that particular criterion, the
experimenter reminded them to do so. However, we observed a few
cases where the participants failed to follow the instructions, such
as the accuracy-focus participant on day 2 in terms of the error rate.
For future studies, we recommend more immediate verbal feedback
to help participants to focus on a particular task execution strategy.

We deliberately asked participants not to focus on effective
throughput as an assessment criterion since we are aware of previ-
ous work that challenges the invariance of MacKenzie’s effective
throughput [47]. In the current paper, we did not analyze the par-
ticipants’ speed-accuracy trade-off in detail, since the number of
participants was not high enough to draw any specific conclusions.

We only used an HMD-based VR system to investigate longi-
tudinal performance in EHCTS. Yet, previous work showed that
user performance can significantly decrease with HMD-based AR
systems [9] and thus suggested not using them for EHCT. In their
work, the authors used a Meta 2 HMD for visual feedback and a
Leap Motion for hand tracking. As AR technologies have improved
since then, we also suggest investigating HMD-based AR EHCTS
and extending our studies to other devices and virtual environments.

The effects of movement direction on user performance have
already been examined by previous Fitts’ law and human motor
performance studies, such as [4, 8, 32, 33, 53]. Our findings are
consistent with those in the previous literature. Additionally, when
they reach for farther away targets, their movement time increases
and their accuracy decreases [22,48,59]. Given this, and that we used
on a small number of participants, we did not analyze movement
direction in detail in this study.

Another limitation of this work is the variety of task execution
strategies. While we asked participants to complete the tasks fo-
cusing on speed, accuracy, or no focus, we could have investigated
other strategies, such as precision (i.e., selecting the targets always
at the same position—not necessarily at the center of the target) or
error rate (i.e., reducing the number of errors). We recommend that
future work thus investigate other task execution strategies.

Moreover, in this paper, we did not focus on the interaction be-
tween different task execution strategies. The number of participants
(3) was also clearly not enough to conduct a between-subjects analy-
sis. However, we invite researchers to conduct additional studies to
analyze the effect of different task execution strategies in EHCTSs,
to potentially reveal optimal training plans.

6 CONCLUSION

In this paper, we asked three participants to perform eye-hand co-
ordination training in a HMD-based VR system for 12 days in a
longitudinal study. While performing the task, each participant
focused on a specific task execution strategy, i.e., one participant
focused on speed, another on the accuracy, and the third participant
was not given a specific focus. The results showed that each task
execution strategy has a different effect on one or more psychomotor
characteristics of the trainee, which highlights the importance of
the training program. We also showed that effective throughput is a
candidate for monitoring the overall motor performance progress in
eye-hand coordination training systems.

In the future, this proposed study should be extended to HMD-
based AR systems as well as a conventional eye-hand coordination

training system, involving additional task strategies, and more par-
ticipants to accurately compare the improvements with different task
execution strategies.
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