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Abstract
Gaze-based interaction is a common input method in virtual reality
(VR). Eye movements, such as fixations and saccades, result in dif-
ferent behaviors compared to other input methods. Previous studies
on selection tasks showed that, unlike the mouse, the human gaze is
insensitive to target distance and does not fully utilize target width
due to the characteristics of saccades and micro-saccades of the
eyes. However, its application in steering tasks remains unexplored.
Since steering tasks are widely used in VR for menu adjustments
and object manipulation, this study examines whether the findings
from selection tasks apply to steering tasks. We also model and
compare the Steering Law based on eye movement characteris-
tics. To do this, we use data on movement time, average speed,
and re-entry count. Our analysis investigates the impact of path
width and length on performance. This work proposes three candi-
date models that incorporate gaze characteristics, which achieve
a superior fit (R2 > 0.964) compared to the original Steering Law,
improving the accuracy of time prediction, AIC, and BIC by 7%,
26%, and 10%, respectively. These models offer valuable insights for
game and interface designers who implement gaze-based controls
in VR environments.

CCS Concepts
• Human-centered computing → HCI theory, concepts and
models.
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1 Introduction
Advancements in eye-tracking technology have made gaze inter-
action more prevalent, and it is now considered an intuitive and
easy-to-use input method [7, 38]. Modern Virtual Reality (VR) and
Augmented Reality (AR) headsets, such as the Quest Pro, Hololens,
Apple Vision Pro, and HTC Vive, are equipped with built-in eye-
tracking capabilities. Notably, the Apple Vision Pro uses gaze as
its primary interaction method, allowing users to gaze at targets
and confirm their selection with a pinch. Gaze-based input also
addresses various interaction challenges, such as scenarios where
hands are occupied or space is limited [40].

Steering, the task of navigating an object from a start to an end-
point along a predefined path, is fundamental in both everyday
interactions and virtual environments (VEs). The Steering Law, a
well-established mathematical model, accurately predicts move-
ment time (𝑀𝑇 ) by considering path attributes such as length and
width [3]. This model has been validated across various devices
and scenarios, including 2D touch screens [36], gaze-controlled
hierarchical menus [19, 21], 3D controllers [23], and driving simu-
lators [17, 51]. By exploring the relationship between path charac-
teristics and user performance, the Steering Law provides valuable
insights for designing intuitive and efficient interfaces. Extended
models have incorporated factors such as path curvature, scale, and
device latency, enhancing their predictive power and applicability
in various types of interactive systems [2, 29, 48]. In VEs, where
steering tasks are essential for menu adjustments and object manip-
ulation, the Steering Law remains a pivotal tool for understanding
and optimizing user behavior, ultimately improving interaction
efficiency and user experience.

Despite its extensive validation, the applicability of the Steering
Law to eye movement input remains underexplored. This study
aims to validate the Steering Law for gaze-controlled inputs and
enhance its predictive power by integrating eye-specific character-
istics. We conducted a user study with 16 participants to examine
how path length and path width influence movement time, aver-
age speed, and re-entry count in steering tasks (see section 4.4).
Based on the collected data, we refined the effects of path width and
length on movement time and developed three improved candidate
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models (see section 4.6). Compared to the original Steering Law,
our models achieved a higher prediction accuracy for movement
time while reducing the complexity of these models.

In summary, our main contributions include: (1) validating the
applicability of the Steering Law for gaze-based input, (2) deter-
mining the impact of path length and path width on various user
performance metrics, and (3) proposing three candidate models to
further predict eye movement time and explain associated behav-
ior patterns. These contributions provide valuable references for
future game and interface designers in assessing task difficulty and
interface suitability.

2 Related Work
2.1 Modeling User Behavior in Pointing and

Steering Tasks
To quantify and predict human performance in pointing or move-
ment tasks, Fitts’ Law is a fundamental andwidely used probabilistic
model based on human behavior patterns [25]. The movement time
(𝑀𝑇 ) in Fitts’ law refers to the time required to point and select a
target, which is influenced by the index of difficulty (𝐼𝐷). The 𝐼𝐷 is
determined by two basic task parameters: target width and target
distance. The equation below expresses the relationship between
𝑀𝑇 and the task parameters:

𝑀𝑇 = 𝑎 + 𝑏 · 𝐼𝐷, 𝐼𝐷 = log2

(
𝐴

𝑊
+ 1

)
(1)

𝑀𝑇 refers to the time taken to move from the starting position to
the target selection point, which is primarily influenced by the 𝐼𝐷
value.𝑊 represents the width of the target,𝐴 denotes the amplitude
(distance) between the starting position and the target, while 𝑎 and
𝑏 are empirical values obtained through regression analysis.

Inspired by Fitts’ law, the Steering Law focuses primarily on in-
terpreting the behavior patterns and performance of individuals in
steering tasks. These tasks involve users navigating objects or them-
selves through paths constrained bywidth and limited length [4, 51].
Behavior and performance are typically represented by the metric
of movement time (𝑀𝑇 ), which refers to the time required to steer
from the start to the end point [1]. The relationship between 𝑀𝑇 ,
width (𝑊 ), and length (𝐴) can be expressed as [1]:

𝑀𝑇 = 𝑎 + 𝑏 ·
∫
𝑐

ds
𝑊 (𝑠) (2)

where 𝑎 and 𝑏 represent empirical constants, 𝑠 denotes a specific
position along path 𝑐 , and𝑊 (𝑠) refers to the width at the position
𝑠 . Assuming that path 𝑐 maintains a constant width, eq. (2) can be
further simplified to:

𝑀𝑇 = 𝑎 + 𝑏 · 𝐴
𝑊

(3)

Thus, the ds and𝑊 (𝑠) can be replaced by the independent value of
path length 𝐴 and constant width𝑊 . More relevant to our work,
previous research has primarily focused on examining the perfor-
mance of gaze-based input in selection tasks and how to model it
using Fitts’ Law. However, the predictive power of Fitts’ Law for
Gaze input has been less clear. Zhai [54] found a relatively low fit,
with a value of 0.75, while Vertegaal et al. [41] reported a higher fit

of 0.86 for eye clicks. Miniotas et al. [28] reported the highest fit
of 0.98. Based on the characteristics of eye movements, Zhang et
al. [55] identified two main factors contributing to the instability of
model fitting. The first factor is attributed to the inevitable micro-
saccadic movements of the eyes, which prevent the full utilization
of the target width. To address this, they proposed to subtract an em-
pirical constant 𝜇 = 11.2 from the original target width. The second
factor stems from prior research suggesting that the contribution
of target distance 𝐴 to selection time is relatively low. Therefore,
they introduced an empirical term 𝑒𝜆𝐴 , with 𝜆 = 0.00052, to reduce
the impact of 𝐴 on selection time. Based on this, they proposed an
adapted version of Fitts’ Law as follows:

𝑀𝑇 = 𝑎 + 𝑏 · 𝑒𝜆𝐴

𝑊 − 𝜇
(4)

2.2 Gaze-Based Interaction in VR
With the widespread adoption of eye-tracking devices, it is com-
mon to find them in VR Head-Mounted Displays(HMDs), includ-
ing the Apple Vision Pro, Quest Pro, and HTC Vive, which all
now offer eye-tracking as an input method. Eye-tracking has been
extensively explored and applied in various scenarios as a stan-
dalone input method or a collaborative input modality, including
in games [9, 16, 42], target manipulation [33, 44, 52], text input
and selection [10, 13, 26, 37, 46], user interface design [30, 39], and
navigation [20, 22]. Although gaze-based interaction is considered
one of the most intuitive and rapid input methods [38] and has the
ability to enable interaction with devices even when users’ hands
are occupied with other tasks [31], there are notable differences
compared to traditional cursor movement. Unlike cursor manipula-
tion, users cannot rely on real-time visual feedback for calibration
but instead must predict and make anticipatory adjustments [35].
During the correction phase, users must alternate between fixation
and saccades [15], maintaining longer fixation durations (ranging
from 100 milliseconds to several seconds) to stabilize the cursor’s
position while using saccades to compensate for positioning er-
rors [31].

3 Research Questions
Although previous studies have explored the optimization and mod-
eling of eye gaze as an input method, they have focused primarily
on selection tasks. To gain a deeper understanding of how eye gaze
influences user behavior in steering tasks, we address the following
research questions under varying path width constraints and path
lengths:

RQ1: How does user behavior in gaze-based cursor control align
with the Steering Law? Unlike mouse cursor movement, eye move-
ments alternate between fixations and saccades [15, 31], which
limits the ability to utilize visual feedback for real-time calibra-
tion fully, thus requiring predictive adjustments [34]. Our study
examines whether the Steering Law, which describes the relation-
ship between path characteristics and movement time, remains
applicable to gaze-based steering tasks.

RQ2: How do path features, such as width and length, influence
user behavior in gaze-based steering tasks? Previous research has
shown that movement time in eye-pointing tasks is not directly



Exploring Gaze-Based Steering Behavior in Virtual Reality CHI EA ’25, April 26-May 1, 2025, Yokohama, Japan

proportional to movement amplitude [12, 34], suggesting a low
contribution of path length 𝐴. Zhang et al. [55] adapted Fitts’ Law
for gaze-based input by applying an exponential transformation to
𝐴 and adjusting the target width𝑊 to account for the stability of eye
fixation. Our study investigates how path width and length affect
movement time, average speed, and re-entry count in gaze-based
steering tasks.

4 User Study
4.1 Participants and Apparatus
Sixteen participants (10 men and 6 women) were recruited from a
local university. They came from various academic backgrounds,
including mathematics, computer science, and design. Their ages
ranged from 18 to 26 years (mean age = 21.56 years, SD = 1.59).
Among them, three participants reported having laser-corrected
vision, two wore contact lenses during the experiment, six wore
eyeglasses, and five did not require correction. Participants rated
their familiarity with VR systems on a 7-point Likert scale (M =
5.06, SD = 2.25), with higher scores indicating greater familiarity.

Eye movements were recorded using the integrated eye tracker
in the Meta Quest Pro VR headset, offering a resolution of 1800 ×
1920 per eye, a horizontal field of view (FoV) of 106°, and a vertical
FoV of 95.57°. The eye-tracking hardware, a standard component of
Quest Pro, captures positional gaze data at up to 90 Hz via Meta’s
Unity public eye-tracking API [27]. To minimize extraneous head
movement even further [5] and to guarantee that the cursor is op-
erated only by eye movements, participants’ heads were stabilized
using a chin rest, similar to those used in vision assessments. The
software ran on a PC equipped with an Intel Core i9 processor and
an NVIDIA RTX 3080 Ti graphics card.

4.2 Experiment Task
In our experimental setup, we adopted a task similar to the Steering
Task described in prior VR research [24, 43]. The starting position
was marked in green and the ending position in blue [50]. Before
each trial, participants pressed a button on the controller to activate
the eye-tracking system and control the cursor ball. When the
cursor ball overlapped with the starting position for 500 ms, the
starting region turned red, signaling the beginning of the task. The
participants were then required to control the cursor ball to move a
target ball with a diameter equal to the path width along the entire
path until it reached the blue end area, marking the completion of
a trial. It was considered an error if the cursor ball exceeded the
path width limit. They were instructed to prioritize both speed and
accuracy throughout the experiment.

4.3 Design and Procedure
The user study employed a 4 × 4 within-subjects design. The design
featured four path lengths𝐴 (25◦, 40◦, 55◦, 70◦) and four pathwidths
𝑊 (3◦, 5◦, 7◦, 9◦), with 𝐼𝐷𝑠 ranging from 2.77 to 23.33 bits, covering
a spectrum from easy to difficult task conditions. Path length was
defined as the distance from the starting position to the ending
position, while path width referred to the diameter of the target ball
(see fig. 1). These four 𝐴 and four𝑊 values were combined into 16
conditions, presented in a randomized order during the experiment.

Each condition was repeated five times, resulting in a total of 1280
data points (4𝐴 × 4𝑊 × 5 repetitions × 16 participants).

Participants began by completing a demographic questionnaire.
They then adjusted the Quest Pro headset’s interpupillary distance
(IPD) until the display was clear, followed by eye-tracking calibra-
tion. An accuracy test ensured calibration quality; participants with
calibration errors greater than 1.5° were required to recalibrate. Af-
ter (re)calibration, participants engaged in a three-minute practice
session to familiarize themselves with the task. Formal trials began
after this practice period. During the experiment, participants were
instructed to remain seated in a fixed, non-rotating chair, minimize
head movement, and focus on speed and accuracy. Each session
lasted approximately 30 minutes, with short breaks between trials
to prevent eye fatigue.

4.4 Evaluation Metric
Three performance metrics were collected for each trial: movement
time (𝑀𝑇 ), average speed (𝑉 ), and re-entry count.

• Movement Time(𝑀𝑇 ): The total time taken to complete
the steering task from the start area to the endpoint.𝑀𝑇 is a
standard metric for assessing human behavior patterns and
task performance [47, 49].

• Average Speed (𝑉 ): Calculated as path length divided by
movement time, average speed offers a stable performance
measure by minimizing the variability seen in point-based
speedmeasurements [11, 53]. Higher average speeds indicate
better performance [48].

• Re-entryCount:The number of attemptsmade to re-control
the cursor and target ball, serving as an indicator of saccadic
stability across varying conditions [6, 45].

4.5 Results
We initially collected 1280 records. After excluding 15 trials (1.17%)
with movement times exceeding 20 seconds and 27 trials (2.11%)
that deviated more than three standard deviations from the mean,
we analyzed 1,238 valid records. Repeated measures ANOVA was
conducted on Movement Time (𝑀𝑇 ), Average Speed (𝑉 ), Success
Rate, and Re-entry Count, applying Greenhouse-Geisser correction
for sphericity violations and Bonferroni corrections for post-hoc
comparisons.

4.5.1 Movement Time. Factors 𝐴 and𝑊 significantly influenced
movement time (𝐴: 𝐹1.702,25.528 = 46.534, 𝑝 < 0.001, 𝜂2𝑝 = 0.756;𝑊 :
𝐹1.727,25.904 = 43.503, 𝑝 < 0.001, 𝜂2𝑝 = 0.744). Their interaction (𝐴 ×
𝑊 : 𝐹2.269,34.03 = 7.774, 𝑝 = 0.001, 𝜂2𝑝 = 0.341) was also significant.
Significant variations were observed among the different conditions
within the factor 𝐴. Specifically, the 25◦ 𝐴 condition exhibited
significantly shorter movement times compared to 40◦ (Δ = 595
ms, 𝑝 = 0.008), 55◦ (Δ = 1311 ms, 𝑝 = 0.002), and 70◦ (Δ = 3477
ms, 𝑝 < 0.001). Also, movement time at 40◦ 𝐴 was significantly
shorter than at 55◦ (Δ = 716 ms, 𝑝 = 0.023) and 70◦ (Δ = 2882 ms,
𝑝 < 0.001). Furthermore, the 55◦ 𝐴 showed significantly shorter
movement times than the 70◦ (Δ = 2116 ms, 𝑝 < 0.001). Regarding
the𝑊 factor, significant differences were evident across the various
conditions. The 3◦ 𝑊 condition resulted in significantly longer
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Figure 1: The path width is defined by the diameter of the target ball. Participants operate the Gaze Cursor along the designated
movement direction to push the target ball from the starting area to the end area.

Figure 2: The effects of path length (𝐴) and path width (𝑊 ) on (a-b) movement time, (c-d) speed, and (e-f) re-entry count. Error
bars indicate 95% CIs (*𝑝 < 0.05, **𝑝 < 0.01, ***𝑝 < 0.001).

movement times than 5◦ (Δ = 1904 ms, 𝑝 < 0.001), 7◦ (Δ = 2417
ms, 𝑝 < 0.001), and 9◦ (Δ = 2574 ms, 𝑝 < 0.001). Finally, the 5◦𝑊
condition exhibited significantly longer movement times than 9◦
(Δ = 670 ms, 𝑝 = 0.036).

4.5.2 Speed. Amplitude 𝐴 did not significantly affect speed (p =
0.057). Speed analysis revealed a significant main effect for factor𝑊
(𝐹2.047,30.708 = 32.940, 𝑝 < 0.001, 𝜂2𝑝 = 0.687). The 3◦𝑊 condition
exhibited significantly lower speed compared to 5◦ (Δ = 0.11 ms/◦,
𝑝 < 0.001), 7◦ (Δ = 0.14 ms/◦, 𝑝 < 0.001), 9◦ (Δ = 0.16 ms/◦,
𝑝 < 0.001). These results are visualized in fig. 2.

4.5.3 Re-entry Count. Regarding the number of re-entries, signif-
icant main effects were found for factors 𝐴 (𝐹1.700,20.398 = 22.267,
𝑝 < 0.001, 𝜂2𝑝 = 0.650) and𝑊 (𝐹1.655,19.862 = 28.424, 𝑝 < 0.001,
𝜂2𝑝 = 0.684). When 𝐴 was 70◦, the re-entry count was significantly
higher than with 25◦(Δ = 1.759,𝑝 < 0.001), 40◦(Δ = 1.601,𝑝 =

0.001), or 55◦(Δ = 1.209,𝑝 = 0.002). When𝑊 was 3◦, the re-entry
count was significantly higher than for 5◦(Δ = 1.497, 𝑝 = 0.002),
7◦(Δ = 1.933, 𝑝 < 0.001), or 9◦(Δ = 2.021, 𝑝 < 0.001) (see fig. 2).

4.6 Models Formulation
In this study, we evaluated three candidate models for predicting
Movement Time (𝑀𝑇 ) and compared them against the baseline
model, as summarized in fig. 3 and table 1. We used the original
Steering Law proposed by Accot and Zhai [1] as the baseline.

To account for potential gaze stability issues that could have hin-
dered participants from accurately perceiving the impact of target
width on𝑀𝑇 , we modified path width𝑊 by defining𝑊 ′ =𝑊 − 𝜇,
where 𝜇 represents the average gaze deviation due to stability issues
(See eq. (4)). This adjustment was made to create Candidate Model

1 (CM1). Furthermore, previous research indicated that target dis-
tance has a minimal effect on𝑀𝑇 under fixed gaze conditions [55].
Therefore, we applied an exponential transformation to the path
length 𝐴, defined as 𝐴′ = 𝑒𝜆𝐴 , resulting in Candidate Model 2
(CM2). Finally, Candidate Model 3 (CM3) combines both the path
width adjustment from CM1 and the path length transformation
from CM2, utilizing both𝑊 ′ and 𝐴′ as predictors.

4.7 Model Fitting
We employed non-linear least squares optimization to estimate the
parameters of each non-linear model accurately. For each iteration,
a distinct set of initial parameters was used to fit the model, and
the adjusted corresponding coefficient of determination (𝑅2) was
calculated. The model with the highest adjusted 𝑅2 was selected as
the final model.

To thoroughly assess the performance of the models, we used
not only the coefficient of determination 𝑅2 but also the Akaike
Information Criterion (𝐴𝐼𝐶) and the Bayesian Information Criterion
(𝐵𝐼𝐶). The 𝑅2 metric measures the proportion of variance in the
dependent variable explained by the model, with higher values
indicating a better fit. Both 𝐴𝐼𝐶 and 𝐵𝐼𝐶 balance the fit of a model
with complexity to prevent overfitting. Specifically, 𝐴𝐼𝐶 considers
the number of parameters and the goodness of fit, while 𝐵𝐼𝐶 adds
a penalty based on the sample size. Lower 𝐴𝐼𝐶 and 𝐵𝐼𝐶 values
indicate that a model can achieve a good fit with lower complexity.

4.7.1 Evaluation Results. As shown in fig. 3 and table 1, the orig-
inal Steering Law model achieved a strong fit with an adjusted
𝑅2 of 0.895. Although the candidate models included additional
parameters, due to their consideration of gaze characteristics, they
consistently outperformed the baseline model in terms of adjusted
𝑅2,𝐴𝐼𝐶 , and𝐵𝐼𝐶 . Interestingly, although Zhang et al. [55] suggested



Exploring Gaze-Based Steering Behavior in Virtual Reality CHI EA ’25, April 26-May 1, 2025, Yokohama, Japan

Figure 3: Movement time (𝑀𝑇 ) model fitting across all conditions (N = 16) using the four candidate models.

Table 1: Model fitting results, where ‘BL’ denotes the baseline and ‘CM’ represents our proposed candidate model. Values
highlighted in bold signify superior performance. *𝑝 < 0.05, **𝑝 < 0.01, ***𝑝 < 0.001.

Name Model Adjusted 𝑅2 𝐴𝐼𝐶 𝐵𝐼𝐶 Coefficients Cross-validation 𝑅2 (𝑆𝐷)

BL MT = 𝑎 + 𝑏
(
𝐴
𝑊

)
0.895 236.751 238.296 𝑎 = 508.8, 𝑏 = 196.2 0.881 (0.062)

CM1 MT = 𝑎 + 𝑏
(

𝐴
𝑊 −𝜇

)
0.925 185.4 187.7 𝑎 = 11.8***, 𝑏 = 383.4, 𝜇 = −2.43* 0.916 (0.028)

CM2 MT = 𝑎 + 𝑏
(
𝑒𝜆𝐴

𝑊

)
0.964 173.5 175.8 𝑎 = 873.2***, 𝑏 = 1190.5**, 𝜆 = 0.035*** 0.959 (0.02)

CM3 MT = 𝑎 + 𝑏
(
𝑒𝜆𝐴

𝑊 −𝜇

)
0.962 175.2 178.3 𝑎 = 788.4**, 𝑏 = 1473.5, 𝜇 = −0.30, 𝜆 = 0.033*** 0.923 (0.03)

that gaze stability issues might limit the utilization of target width
in selection tasks, this limitation did not appear in steering tasks.
In some instances, the target width exceeded the actual path width,
as indicated by negative 𝜇 values in models CM2 and CM4. Among
all candidate models, CM3 and CM4 not only achieved higher 𝑅2
values but also demonstrated superior 𝐴𝐼𝐶 and 𝐵𝐼𝐶 scores.

CM1 has higher 𝐴𝐼𝐶 and 𝐵𝐼𝐶 values than CM2 (𝐴𝐼𝐶 Δ = 11.9,
𝐵𝐼𝐶 Δ = 11.9) and CM3 (𝐴𝐼𝐶 Δ = 10.2, 𝐵𝐼𝐶 Δ = 9.4). For 𝐴𝐼𝐶 ,
the differences are greater than 10, and for 𝐵𝐼𝐶 , the differences are
greater than 10 and in the 6-10 range. This suggests that CM1 has
poorer support compared to CM2 and CM3 [8, 32]. CM2 demon-
strates the best adjusted fit with 𝑅2 = 0.964, 𝐴𝐼𝐶 = 173.5, and 𝐵𝐼𝐶
= 175.8. CM3 also shows a high adjusted fit with 𝑅2 = 0.962, 𝐴𝐼𝐶 =
175.2, and 𝐵𝐼𝐶 = 178.3. When comparing the 𝐴𝐼𝐶 values, there is
no significant difference between CM2 and CM3. However, in the
𝐵𝐼𝐶 comparison, CM2 has a smaller 𝐵𝐼𝐶 value than CM3 (Δ = 2.5),
indicating better model support. Furthermore, we find that in CM3,
𝜇 does not significantly affect the model (𝑝 = 0.659).

4.7.2 Cross-Validation. We conducted cross-validation tests based
on condition grouping to verify the generalizability of the four mod-
els. Model coefficients were obtained from 12 randomly selected
experimental conditions (levels), and the model fit was tested on
the remaining 4 conditions over 100 iterations. Table 1 summa-
rizes the performance results. Overall, our findings indicate that
all models achieved accurate predictions in the cross-validation
analysis, which were also similar to the original estimates. This sug-
gests that the models are capable of predicting unseen experimental
conditions with high accuracy.

5 Discussion
5.1 Applicability of the Steering Law in

Gaze-Based Control Tasks (RQ1)
Our findings demonstrate that the original Steering Law model
already matches the collected data reasonably closely, achieving
an 𝑅2 value of 0.895. This indicates that, even with the transition
from manual hand input to gaze input, the Steering Law maintains
a robust ability to explain user performance and behavior in gaze-
based control tasks.

5.2 Impact of Path Length and Path Width on
Steering Performance in Gaze-Based
Control (RQ2)

Our results also revealed that both path width and path length
have significant effects on movement time (𝑝 < 0.001). Specifically,
users experienced slower movement speeds when navigating highly
constrained (narrow) path widths𝑊 = 3◦, whereas speed levels
off for moderately narrow widths (7° and 9°). Path length, however,
did not significantly influence the speed, which is consistent with
findings from previous work [14].

In terms of re-entry time (refer to section 4.5.3), both path width
and path length displayed consistent trends: increasing path width
constraints and extending path lengths led to higher numbers of
user re-entries. However, these increases were only statistically
significant for the most challenging tasks.

Interestingly, in our steering tasks, path length had a significant
impact on both movement time and re-entry time, as evidenced
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by pairwise analyses (see section 4.5.1). This result contrasts with
previous research on selection tasks, where movement amplitude
was found to have minimal effects on time and re-entry time [18].
Previous studies proposed that rapid eye saccades primarily allo-
cate time to calibration phases, thereby reducing the influence of
movement amplitude. In contrast, steering tasks require users to
maintain continuous and focused control of the cursor to navigate
along a predetermined path. We attribute these differences to the
increased demands on user attention and gaze stability imposed
by the path constraints and temporal requirements inherent in
steering tasks.

6 Limitations and Future Work
In our work, we identified several limitations. First, while our model
achieved promising results in a controlled, simplified setting with
a constant diameter typical of steering tasks, we plan to extend our
findings to real-world applications involving targets with arbitrary
shapes, curved path features, and complex backgrounds. Second,
eye-tracking data requires high device specifications, such as preci-
sion, accuracy, packet loss rate, and sampling rate, all of which can
impact task performance. However, our study did not account for
these variables, which may limit the model’s optimal performance
across all eye-tracking devices and diverse populations. We plan
to explore these variables in future work to better capture their
influence.

7 Conclusion
This study investigated the influence of gaze movements as an in-
put modality on user behavior and performance for steering tasks
within virtual reality (VR) environments. By analyzing the col-
lected behavioral data, we extended the original Steering Law to
incorporate path width and path length, resulting in three candi-
date models tailored to predict movement time using eye gaze as
an input method. Our evaluation demonstrates that the proposed
models outperform existing models in predictive accuracy. After
addressing potential overfitting risks, we identify two models as
the most accurate ones. Additionally, our research enhances the
understanding of user behavior patterns in virtual environments,
particularly in tasks involving steering tasks, such as constrained
object manipulation and navigation along predefined paths.
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