
Multi-View Visibility Orderings for
Real-Time Point-Sampled Rendering

S. Parilov
LucasArts

W. Stuerzlinger
Department of Computer Science,

York University, Toronto

Abstract
Occlusion-compatible traversals and z-buffering are often
regarded as the only choices for resolving visibility in the
image- and point-based rendering community. These
algorithms do either per-frame or per-pixel computations.
This paper first discusses visibility orderings for point
samples in general and then discusses orderings that are
valid for multiple views. Then we present a novel, highly
efficient, visibility algorithm for point-sampled models that
has much smaller per-frame cost than previous
approaches. We also discuss a high-performance, cache
friendly implementation of this visibility method and
present results. Finally, we speculate on possible
hardware implementations.

1. Introduction
Real world environments are usually very complex. While
computer graphics has made great progress, the generation
of images of “real” scenes in real-time (>20Hz) is still a
challenge. There are two fundamental problems in creating
an image – identifying the pixels covered by any given
object and determining which parts are visible to the
viewer. These two problems are usually called
rasterization and visibility.
Naive rasterization algorithms perform a number of
operations proportional to the number of covered pixels.
Recently, output-sensitive algorithms have been
introduced, with rasterization time proportional to the
number of pixels covered. For this progressively simpler
versions are pre-computed. These simpler versions are
used for more distant parts of the scene (as they appear in
less detail on-screen). For visibility computations, there
are two fundamental approaches. Visibility can be
computed at linear cost in the number of primitives or on a
per-pixel basis. The former assumes that visibility is
computed on the primitives directly and is in the worst
case proportional to the number of primitives. The latter
takes time proportional to the number of pixels covered.
An alternative that can compute visibility in sub-linear
time is to order the primitives a priori in such a way that
rendering them in that order yields the correct result. This
ordering can be done at run-time with logarithmic cost if
primitives are organized in a hierarchical data structure.
For highest efficiency there are two more requirements. It
is important that primitives are read in a cache-coherent
manner, otherwise memory latencies play a large factor,
and ideally, a visibility algorithm should not require any

frame-buffer reads. Finally, any rendering algorithm needs
to compute a correct result. Due to the limits of sampling
this is usually hard to guarantee, but the maximum error
that can be tolerated is one pixel wide (usually around the
boundary of an object). Consequently, a high-performance
rendering algorithm should have the following properties:

• store a complete object representation
• rasterization cost proportional to the number pixels

covered on the screen
• sublinear time for visibility computation (assuming

some pre-processing)
• correct and consistent visibility (limited by sampling)
• cache-coherent data reads and writes
• only frame-buffer writes (no reads)
• the ability to efficiently utilize existing hardware
• the potential for hardware implementation

Our approach fulfills all of the above criteria. In the
following, we first discuss relevant previous work. Then,
we describe the theory behind our algorithm and consider
its correctness under some assumptions. Later, we discuss
practical considerations related to sampled images and
pixel grids. We then describe the first implementation of
the algorithm and present results.

1.1. Previous work
Over the last few decades, numerous point-sampled
rendering approaches have been proposed. Among others,
those include 3D image-based rendering by warping
(IBRW) and rendering point clouds.
McMillan et al. derived warping equations that describe
the relationship between the projections of a point on two
images [10]. The pixels of the source image are then
warped in an order towards or away from the epipole of an
image. However, with this algorithm samples are written
into the output in an unpredictable pattern, which
complicates hardware implementations. Mark et al.
modified the image traversals to be more cache-friendly
[9], but concluded that occlusion-compatible traversals are
not viable on modern cache and memory architectures due
to bad cache utilization. Shade et al. resolved intra-scene
occlusions by using Layered Depth Images (LDIs), which
store multiple samples per source pixel [20]. Due to the
nature of the data structure, implementations of LDIs
suffer from bad cache-coherency and are hard to port to
hardware [20]. Oliveira et al. decomposed the warping
function into two steps, pre-warping and texture mapping,
where the last step can be performed via graphics
hardware. The simplicity of this method enables a very

cache-coherent implementation. However, this method
cannot represent images with more that one layer of
samples. In summary, most of the image-based rendering
works employ occlusion-compatible image traversals [10,
20, 4, 13, 16].
Pfister et al. represented objects as sets of surfels [15], i.e.
point primitives without explicit connectivity, organized
them into an octree, and rendered them with a warping
algorithm. Holes in the generated images are filled with
interpolation and an algorithm similar to z-buffering.
Grossman et al. represented objects as collections of points
in 3D [6]. They used a hierarchy of z-buffers and
employed an algorithm that detects and fills holes in the
images. Rusinkiewicz et al. present a system for rendering
large scenes using a point rendering system (QSplat) that
targets large point-sampled datasets [17, 7]. The object is
stored as a hierarchy of bounding spheres, which allows
for level-of-detail control and efficient frustum culling,
and provides a compact dataset. Visibility is resolved
using z-buffering. The randomized Z-buffer approach by
Wand et al.’s approach randomly selects a set of samples
on the primivites of the scene, with the number of samples
proportional to projected area. The samples are then
projected using z-buffering to resolve visibility [22]. Most
point-based rendering systems use z-buffering to resolve
visibility [8, 6, 15, 17, 22, 3, 14]. The main disadvantage
of this apprach is the necessity to store and update depth
information per pixel.
The discussed approaches are summarized in table 1,
which considers the cost of rasterization, the cost of
computing visibility in terms of the number of primitives.
For cache-coherency, 4WR indicates that linear access
patterns can be achieved by replicating the data and
storing it in four different orders. Furthermore, the table
lists is the algorithm suffers from visibility artifacts. The
rest of the table provides data for a comparison of
performance. McMillan’s work was mostly theoretical,
therefore performance data is not available.
 3D

IBRW
LDI/LDI
Trees

Relief
Textures

3D HIC Rand Z-
buffer

QSplat Surfels Z-buf Our
approach

Complete scene
representation

No Yes No Yes Yes Yes Yes Yes Yes

Cost of
rasterization

O(n) O(n)/O(plogn) O(n) O(plogn) O(plogn) O(plogn) O(plogn) O(n) O(plogn)

Per-frame
visibility
computation
cost

Const Const/O(logn) Const O(logn+p) O(logn+p) O(logn+p) O(logn+p) O(n) O(logn+p)

Streaming
source data
reads

4WR No 4WR Yes No No No Yes Yes

Cache-coherent
frame buffer
access

No No Yes No No No No No Yes

Guaranteed
correct images

Almost Almost Almost Almost Almost Yes Yes Yes Can be
guaranteed

Potential
hardware
implementation

Hard Hard Easy Hard Easy Hard Moderate Done Easy

Largest model
size (samples)

N/A 5.0*106 6.5*104 1.0*105
tris

4.1*108
tris

1.0*109 5.4*105 N/A 2.7*1011

Performance
(Msamples/sec)

N/A 1.4 0.7 N/A 1.5 2.5 1.3 40,000 58

Hardware
platform

N/A 300/250 MHz
CPUs

PII 400
MHz

R3000 PIII 800
MHz

SGI
Onyx2

PIII 700
MHz

GeForce4 12xR12000
300 MHz

Table 1: Comparison of image-based and point-sampled
rendering approaches. p is the number of rendered
samples, n is the number of samples in the scene.

1.2. Contributions
The fundamental idea of the new visibility algorithm
presented here is the same as Newell, Newell, and

Sancha’s [5] and Seitz and Dyer’s [19], only applied to
point samples. The samples are first ordered in decreasing
depth and are then rendered back-to-front. The samples
drawn later then cover those drawn earlier [5].
In this work we present a new multi-view visibility sorting
algorithm, which orders samples in a particular way. Once
established, that ordering stays correct for nearby camera
positions. Because samples are pre-ordered, they can be
rendered by sequential traversal, which results in spatially
and temporally coherent memory access patterns, and thus
improves cache-hit ratios and makes simple and efficient
hardware implementations possible. Whenever the camera
moves too far, the algorithm efficiently re-sorts the
samples in linear time to re-establish the ordering.

2. Visibility determination
We first discuss a theoretical, ideal, case, and prove the
existence of correct multi-view orderings for point
samples. We then analyze the difficulties that arise in
practice, and propose a method to solve them.

2.1. Multi-view visibility orderings for point
samples
For simplicity, we consider only the case of a planar
perspective pinhole camera separated by a plane from the
set of point samples. For the purpose of determining
visibility, we define a point sample as an indication of the
presence of a surface within a small neighbourhood of the
point sample. In the ideal case, this neighbourhood is
negligibly small, and the samples are thus infinitesimal. In
this section, we also assume a continuous image, as
opposed to a pixel grid. Note that even though the samples
are infinitesimal and the image is continuous this situation
can still give rise to occlusion problems (see Figure 1b).

 (a) (b)

Figure 1: (a) Illustration of separating plane α
(b) Visibility ordering constraints. Lines passing through
any pair of points may or may not impose restrictions on

the visibility ordering. Ray rab intersects the viewing
volume, forcing a to be rendered before b. Ray rbc does not

intersect the viewing volume, and hence places no
restriction on the order in which b and c can be rendered.

It is then possible to render the samples in a particular
order, such that the correct visibility is resolved by
painter’s algorithm [5]. Moreover, we claim that there
exist orderings such that the same order is valid for a

whole set of camera positions. Such orderings are called
multi-view visibility orderings.
Proposition 1: Assume a set S={si} of point samples, a
volume V, in which the camera used to render the scene is
located, and a separating plane Π such that V ⊂ Π– and
S ⊂ Π+, where Π– is the negative half-space, and Π

+ is the
positive half-space, with respect to Π. It is possible to
order S in a way such that the primitives correctly occlude
each other when rendered as seen from any position in V
(Figure 1a).
Proof of proposition 1: Consider a plane α, which
separates two points, a and b. Similar to BSP-trees, the
order in which the points should be drawn depends on the
half-space in which the observer is located [1]. For points
that are a finite distance from each other, it is always
possible to select such a separating plane α', such that α'
does not intersect the volume V. In this case, no matter
where in V the camera is, the order of the points a and b
w.r.t. visibility stays the same. QED.
One way to establish correct orderings, is to consider a ray
rab = vab + tab(a-b), passing through a and b such that vab ∈
V and t ≠ 0. For t > 0, the correct order is <a,b>. For t <
0, the order is <b,a>. Moreover, if no such ray exists
(samples b and c in Figure 1b), the order in which the
points are rendered is not important, since points can
occlude each other only along a ray passing through both
of them. Thus, we can say that a ray imposes an ordering
constraint (see Figure 1b). Note that in the absence of
ordering constraints many orderings are possible (see
below). In particular, points sorted in order of non-
increasing distance from the plane Π are always in a
correct order.
The above idea does not apply for non-infinitesimal
primitives, such as clouds or surfels, as it may then be
impossible to pick a separating plane that does not
intersect V. Figure 2 illustrates a case, where all potential
separating planes intersect V. Then, it is impossible to
construct an ordering that is correct for the all of V.

 (a) (b)

Figure 2: (a) A situation when it is impossible to pick a
suitable separating plane for non-infinitesimal samples.

(b) Occlusion graph. A directed edge a→b exists
iff point b can occlude point a.

The above assumes that the camera does not go to infinity,
that is V is bounded, and that samples do not coincide. If
the camera is allowed to go to infinity on a plane parallel
to Π, then there may not exist a separating plane between
the points lying on a line parallel to Π. These assumptions
are not too strict. When the camera crosses the separating

plane, a new order needs to be established. This
corresponds to the case of picking another image or LDI,
which samples the scene better [20].
Another assumption in the above is infinitesimal samples.
In practice, samples have non-infinitesimal size and the
size of a neighbourhood determines the size of the
footprint the rendered sample will cover in the image.
However, if we assume that each sample produces only a
footprint of one pixel or less, the above still holds (see
section 2.3).

2.2. Visibility orderings in the ideal case
Consider a graph (called an occlusion graph), with a
vertex for each sample in the original dataset. In the graph,
a directed edge a→b exists, iff there is an ordering
constraint between a and b with t > 0. An undirected edge
a―b exists, if a and b never occlude each other when the
camera is within V. The transitive closure of this graph
reflects all visibility dependencies.
Any topological sort of such a graph then yields a correct
occlusion compatible ordering of point samples. The fact
that a topological sort is not unique in general implies that
there are many possible orderings. Figure 2b presents the
graph corresponding to the occlusion constraints for the
points in Figure 1b. For this particular arrangement,
correct orderings are <a,b,c,d> or <a,c,b,d>.
As there may be multiple solutions to a given instance of
the topological sort problem, there may be many correct
orderings. In practice, any sorting algorithm will work, as
long as the obtained solution is a correct solution of the
topological sorting problem. For instance, it is sufficient to
sort samples according to their distance from the observer.
As there are many correct orderings, one can select the
best one according to some criteria. For example, consider
an image tiled into a set of rectangular tiles so that each
one fits into one cacheline. One could assign weights to
the edges of the occlusion graph proportional to the
probability of two corresponding samples being projected
into the same tile (for a camera within the viewing
volume). Then a solution of the Traveling Salesperson
Problem (TSP) on this graph would yield a correct
ordering for which the cache-hit rate is close to the
maximum. However, as we will see below, under certain
assumptions it is possible to structure the data so that
linear-time sorting methods can be used (see section 3.2).

2.3. Visibility ordering computation in practice
The above discussion is based on the assumptions of a
continuous image, and infinitely small samples. However,
real implementations need to quantize the image into
pixels. Therefore, we assume the size of the
neighbourhood of a sample to correspond to one pixel in
the image or less. This can easily be guaranteed with level-
of-detail algorithms, see section 3. With pixel grids, two
samples occlude each other when they are projected into
the same pixel. This constraint is harder to deal with than
the ideal case, as the points can occlude each other even
though there is no line passing through both points and the
image plane of the camera.

The ideal case solution (section 2.2) did not place any
constraints on the order of the samples on a plane parallel
to the separating plane. Any ray through such samples is
parallel to the separating plane and hence places no
constraints on their visibility ordering. Thus, the ordering
for such samples in the image plane is effectively random.
As the ordering cannot identify the foremost sample the
result may be arbitrarily bad in the sense that any sample
may end up as the foremost in the pixel. The situation is
illustrated in the Figure 3. Both camera A and camera B
are located within Π–, and the order in which points a and
b are handled is pre-determined by the ordering. However,
as can be seen from the figure, for camera A the correct
ordering is <b,a>, and for camera B the correct ordering is
<a,b>.

Figure 3: Occlusion errors due to image quantization.

A way to mitigate this undesired effect is to introduce
additional separating planes (see Figure 4). The idea is
then to pick the plane most perpendicular to the current
viewing direction and order samples with respect to this
plane each time the image is generated. While the samples
are then re-sorted more often than theoretically needed, the
chances of encountering an incorrect ordering are lower.
This is because we have decreased the chances of two
points lying on a ray parallel to the separating plane being
projected into the same pixel of the image. This means that
one can control visibility artifacts by setting a threshold on
how much the viewing direction is allowed to deviate from
the direction in which the samples are sorted.

Figure 4: Using multiple separating planes. Depending on
the camera position and viewing direction, either Π1, Π2,
or Π3 is a better choice for the current separating plane.

For faster rendering, we are interested in performing as
few re-sorts as possible. The minimal number of re-sorts
corresponds to the maximal value of the visibility re-
sorting threshold. To determine the maximal value of the
visibility re-sorting threshold that produces no artifacts,
we performed a series of worst-case tests. For these tests
we assumed that the density of the projected samples onto
the image is at least as high as the image resolution. To

facilitate computation of how closely samples can project
we further assumed that samples are placed in an
(arbitrarily dense) regular grid. If these constraints cannot
be met, we assume that level-of-detail techniques are used
(see section 3). The reader is also advised that sampling
artifacts are outside the scope of this section (as opposed
to visibility artifacts).
For these worst-case tests, we generated a 3D-grid with
samples at each grid point. A full cube of samples is the
worst case, as (1) the samples are as close to each other as
possible thus maximizing the potential for visibility errors,
and (2) removing a sample results in no visual artifacts in
the case when the existence of this sample would produce
an artifact. For a regular grid of samples, it is easy to show
that once a correct sorting order is established, visibility
artifacts can occur only if the viewing angle deviates more
than 45° from the normal of a face.

Figure 5: Different views of a set of pre-ordered samples
in a grid (shown in 2D for illustration). The grey arrow
illustrates the sorting direction; numbers next to point

samples show the order of samples in the sequence. B, C,
D are worst case view points. See text for details.

We fixed the ordering of samples to be according to the
distance to one face of the cube (the sort-face). We then
can view this cube from various viewing positions (Figure
5) and consider the results:

• Looking directly at the sort-face of the cube (camera
A in the Figure 5) is the best case for the visibility
sorting algorithm and no visibility artifacts can occur
under the assumptions stated in the text until the
camera reaches position B (or moves beyond E).
Although some sampling artifacts are possible due to
projection of samples from the front face of the cube
onto a discrete grid of pixels in the image, these do
not influence visibility.

• Looking directly at an edge of the cube between the
sort-face and one of the adjacent to it faces (camera
B). Here it is possible that visibility artifacts start to
appear and the closer the camera gets to positions C
and D, the higher the probability for artifacts.

In an implementation of this test we assigned each face of
the cube a color, and the inside of the volume another to
make artifacts easily noticeable. A correct image without
visibility artifacts shows no pixels with the color of the
inner volume of the cube. And indeed, as soon as the
camera passes point B, the images start to show artifacts.
Summarizing we can say that as long as the viewing
direction does not deviate more than 45° from the sorting

direction for a grid of samples there will be no visibility
artifacts. For real, non-worst-case scenes, the threshold
value can be somewhat increased, which may reduce the
number of re-sorts necessary while maintaining a low
probability of producing artifacts. We experimentally
determined that setting the threshold to 70° for non-
synthetic datasets results in practically no visible artifacts.
Another view of the problem is to observe that the ideal
algorithm fails beyond camera B because of the finite size
of the neighbourhood in which the surface sampled by the
point sample is present. This was discussed at the
beginning of this section.

2.4. Convex-cell space partitioning and LOD
The results of the previous section are only applicable for
a viewer constrained to one side of a plane. To avoid this
restriction on viewer motion, we resort to space
partitioning methods (e.g. BSPs trees, octrees, etc.) Then,
for an observer outside the current partition, the planes
separating the cell from the rest of the volume can serve as
separating planes. When the camera moves, it may cross
such a separating plane, thus invalidating it. In this case,
we have to pick another separating plane. With practically
any spatial datastructure, we can use back-to-front
traversals to resolve the visibility between the nodes.
Inside a node, the visibility is resolved by sorting, as
described above.
As we need to control the level of detail, we choose an
octree to partition space. Before rendering an octree node,
we check if the current ordering of the samples within the
node is valid, given the current camera position. If the
order is valid, we render the samples, simply traversing the
stream of samples in one forward loop. If the order is not
valid, the samples need to be re-sorted. When re-sorting,
we choose the new separating plane to be the side of the
octree node cube with the normal vector most orthogonal
to the viewing direction. The pseudocode for rendering the
scene is presented in Figure 6.

render_the_scene(a node)
 traverse data structure back-to-front;
 if current node has sufficient LOD
 render_the_node(node);
 else
 recurse to children;

render_the_node(node)
 get normal to current separating plane;
 compute view_vector to center of node;
 if angle between normal and view_vector
 >= threshold
 pick separating plane most orthogonal
 to current view direction;
 topological_sort(node.samples);
 for all node.samples
 project and draw sample

Figure 6: Pseudocode for the rendering algorithm.

3. Implementation and Optimization
We implemented our system on a 16-processor SGI
Onyx2 with 10GB of memory. Time-critical inner loops
were fine-tuned manually.

3.1. Pre-processing
For generality, we assume that the source data is an
unorganized point cloud, where its coordinates and color
specify each point. We store these points in an axis-
aligned octree. Within each node, we arrange the samples
into a regular 16x16x16 grid, which allows nodes to fit
into the cache. The regular sampling inside each node
allows us to (1) store data in a compact form, and (2)
efficiently process the data. The octree construction
algorithm has a complexity of O(nlogn) on the number of
samples, for non-degenerate cases.

3.2. Octree rendering and visibility sorting
To render the scene, we visit the nodes in back-to-front
order. Due to level of detail control, the number of the
nodes rendered is proportional to the resolution of the
image being generated, but only logarithmically
proportional to the complexity of the scene. Therefore, our
algorithm is output-sensitive [21].
The visibility between the samples for a given octree node
is established by sorting as discussed in section 2.3.
However, based on the fact that samples are stored in a
grid in each node, we can use a counting sort, which
orders samples in linear (!) time. Splitting the scene into
octree nodes also allows us to amortize the cost of
visibility sorting over a number of frames, by re-sorting
only parts of the entire scene at each frame, as opposed to
re-sorting the entire scene every few frames.

3.3. Rendering a single node
An octree node is implemented as structure containing the
number of samples stored in the node, the array of samples
(x,y,z and r,g,b for each sample), and up to eight pointers
to children of the node. The samples are located on a
16x16x16 regular grid and coordinates within each node
are encoded in 4 bits. World-space coordinates are
computed from the node size and its position in the world
during the octree traversal.
Due to the visibility sort, the samples in a node are
traversed in one forward loop when rendering. This
achieves the highest possible performance on cached
memory architectures. Note, that this cache-coherency is
achieved because once a correct visibility order is
established, that sequence can be cached and re-used over
a number of frames. All renderings using this order are
then a simple traversal of an array.

3.4. Image tiling, parallelization, and hole-filling
For better cache utilization on pixel writes, we tile our
output images in a way similar to texture swizzling used in
modern graphics hardware [12]. We also run 12 parallel
rendering processes to achieve real-time frame rates even
on large data sets. For simplicity, each CPU in our system

has its own copy of the entire scene. The output image is
partitioned into 12 regions (1 per CPU), which are
rendered in parallel and integrated into the whole image
before displaying. The image rendered from point samples
may break up into disjoint pixels at close zoom-ins. To
avoid this, when we reach a leaf node with no children, we
temporarily create 8 children by replicating samples from
the current node. For details, refer to [11].

4. Results
We tested our algorithm with several scenes, which are
characterized in tables 2 and 3, and shown in figures 7 and
9. The octree construction during preprocessing took less
than 30 minutes on a 2GHz PC for each of the mentioned
datasets.

Scene Octree
depth

Total
nodes

% non-
empty

% leaf
nodes

Cylinders 9 1.7*106 77.9 68.7
Checkerboard 10 5.5*106 100.0 75.0
Hand 7 3.4*104 79.7 62.6
Stanford Toys 10 3.5*106 75.9 51.4
Replicated Toys 16 1.4*1010 95.3 77.8
Table 2: Octree statistics for test scenes (see Figure 7).

Scene Samples
in octree

Samples in
leaf nodes

% samples
in leaves

Cylinders 1.7*106 9.9*106 20.6
Checkerboard 2.2*107 4.1*106 18.8
Hand 4.5*106 3.6*106 64.1
Stanford Toys 6.8*107 1.9*107 27.6
Replicated Toys 2.7*1011 1.7*1011 62.8

Table 3: Sample counts for the test scenes.

Figure 7: Test scenes. (a) Cylinders; (b) Checkerboard;

(c) Hand; (d) Stanford Toys.

The Cylinders scene is targeted at creating a large number
of visibility event. It consists of 100 randomly placed
interpenetrating cylinders and samples were generated by
raytracing three orthogonal views at 1500x1500 pixel
resolution. The Checkerboard scene is a classic computer
graphics example for testing algorithms involving re-
sampling for severity of aliasing. The Hand scene is a
laser-scan of a human hand model at 0.25 mm resolution.

The Stanford Toys scene presents three complex objects,
reconstructed from laser-scans of real objects at Stanford
University. We ray traced the meshes for the Stanford
Toys scene at high resolution from a number of viewpoints
around it and then merged the results. The resulting point-
sampled representation consists of approximately 69
million points. For large-scale tests we replicated this
scene.

4.1. Performance of visibility algorithm
The visibility algorithm (1) traverses the octree, and (2) to
re-sort the samples within a node, if needed.
The octree traversals in our system consume less that 2%
of the time, and do not influence the performance in a
significant way. Since the visibility orderings are valid for
a number of views, the samples within nodes do not have
to be re-sorted at each frame. We set the value of the re-
sorting threshold to 70° in our experiments. This forces a
re-sort only if the direction from the current viewpoint to
the nodes is too different from the direction in which the
samples within the node are sorted. The threshold was
determined experimentally and can cause visibility
artifacts that are at most 1 pixel wide. To guarantee no
occlusion artifacts, the threshold value should be set to
45°. With these settings, we measured the average number
of node re-sorts per frame versus the number of visualized
nodes. The measurements were done on a 360-frame fly-
around a scene, where the viewing direction was changing
by 2° at each frame. Such settings approximately
correspond to those expected during a high-frame-rate
human-controlled navigation through a scene [2]. The
results are summarized in Table 4.

 Avg. nodes
rendered

Avg. nodes
re-sorted

% re-
sorted

Cylinders 3790 92.9 2.5
Hand 2728 108.0 4.0
Stanford Toys 22650 1469.6 6.5
Replicated Toys 70215 3510.0 5.0

Table 4: Visibility sorting statistics (per frame)

4.2. Performance of a single rendering process
We timed the performance of the render code using the
Stanford Toys scene in a fly-around sequence. We
measured the time required to re-sort a node and the time
required to render a node with an octree containing a
single node with 256 samples, and ran the re-sorting and
rendering 106 times on it. The re-sorts took 38 seconds, the
rendering 25 seconds. Thus, re-sorting a node is
approximately 50% slower than rendering it. However,
with the re-sorts occurring for only ~5% of the rendered
nodes per frame this incurs only approximately 12.5%
overhead. This is a modest loss of time, compared to other
alternatives. For example, occlusion-compatible traversals,
producing incoherent memory-accesss patterns on writes,
can potentially spend more time fetching data from
memory than actually processing it [9]!
We used the SGI performance analyzing tool perfex to
collect more statistics. For 2.6*108 samples, the

implementation took 24.7 seconds, for a rate of 1.0*107
samples/second or 9.6*10-9 seconds/sample, which
corresponds to 29 CPU cycles/sample. The L1 data cache
hit rate was over 98% and the cache line reuse was 58.31.
To test the performance on large scenes, we replicated the
Stanford Toys scene 4096 times. This resulted in an octree
of depth 16, with 2.7*1011 samples in 1.4*1010 nodes (see
Figure 8). We rendered this scene using the same fly-
trough sequence. The average performance was about 10
frames per second. This is a small decrease in the frame-
rate compared to the significant increase in the number of
samples in the octree. This test demonstrates the ability of
our system to render large point-sampled datasets in real-
time.

Figure 8: Part of the replicated Stanford Toys scene

5. Conclusions
We demonstrated a system to render large point-sampled
scenes in real-time. It utilizes a combination of methods,
level of detail control, a new multiple-view visibility
algorithm, and efficient and fine-tuned parallel
implementation. The hierarchical representation of the
scene resulted in an output-sensitive algorithm. Our
visibility algorithm is an alternative to the existing
algorithms. The main advantages of our algorithm are its
simplicity and high performance. The system achieves
very cache-coherent data access patterns and avoids frame
buffer reads completely, which opens the possibility for
hardware implementations. We used parallelization to
achieve real-time framerates in practice. Hence, this work
is a step towards high-performance rendering of extremely
detailed scenes.
Our approach can also be used to speed-up other forms of
rendering. For example, an LDI can be partitioned into
small regions, and the visibility order for each region re-
determined whenever necessary. Some recent work,
including [3] and [14], could also directly benefit from
using our approach with minimal changes.

References
[1] M. Abrash. Bsp trees. Dr. Dobbs Sourcebook, 1995.
[2] R. Azuma. Tracking requirements for augmented
reality. CACM, pages 50–51, July 1993.
[3] M. Botsch, A. Wiratanaya, and L. Kobbelt. Efficient
high quality rendering of point sampled geometry.
Eurographics Workshop on Rendering, 2002.
[4] C.-F. Chang, G. Bishop, and A. Lastra. Ldi tree: a
hierarchical representation for image-based rendering. In
SIGGRAPH, 291–298, 1999.

[5] J. D. Foley and A. van Dam. Computer Graphics:
Principles and Practice. Addison-Wesley, 1996.
[6] J. P. Grossman and W. J. Dally. Point sample
rendering. Eurographics Workshop on Rendering, 181–
192, 1998.
[7] M. Levoy, K. Pulli, B. Curless, S. Rusinkiewicz,
et al. The digital michelangelo project: 3d scanning of
large statues. SIGGRAPH, 131–144, 2000.
[8] M. Levoy and T. Whitted. The use of points as a
display primitive. Technical report, University of North
Carolina, Chapel Hill, 1985.
[9] W. R. Mark and G. Bishop. Memory access patterns
of occlusion-compatible 3d image warping.
SIGGRAPH/Eurographics Workshop on Graphics
Hardware, 35–44, 1997.
[10] L. McMillan. An Image-based Approach to Three-
Dimensional Computer Graphics. PhD thesis, University
of North Carolina, Chapel Hill, 1997.
[11] S. Parilov, Master’s thesis, 2002.
[12] nVidia. Geforce4 product overview. 2002.
[13] M. M. Oliveira, G. Bishop, and D. McAllister. Relief
texture mapping. SIGGRAPH, 359–368, 2000.
[14] R. Pajarola. Efficient level-of-details for point based
rendering. Proc. IASTED Computer Graphics and
Imaging, 2003.
[15] H. Pfister, M. Zwicker, J. van Baar, and M. Gross.
Surfels: surface elements as rendering primitives.
SIGGRAPH, 335–342, 2000.
[16] V. Popescu and A. Lastra. High quality 3d image
warping by separting visibility from reconstruction.
Technical report, Univ. of North Carolina, Chapel Hill,
1995.
[17] S. Rusinkiewicz and M. Levoy. Qsplat: a
multiresolution point rendering system for large meshes.
SIGGRAPH, 343–352, 2000.
[18] G. Schaufler and W. Stuerzlinger. Three dimensional
image cache for virtual reality. Computer Graphics Forum,
227–235, August 1996.
[19] S. M. Seitz and C. R. Dyer. Photorealistic scene
reconstruction by voxel coloring. Computer Vision and
Pattern Recognition Conference, 1067–1073, 1997.
[20] J. Shade, S. Gortler, L. He, and R. Szeliski. Layered
depth images. SIGGRAPH, 231–242, 1998.
[21] O. Sudarsky and C. Gotsman. Output-sensitive
visibility algorithms for dynamic scenes with applications
to virtual reality. Computer Graphics Forum, 249–258,
1996.
[22] M. Wand, M. Fischer, I. Peter, F. M. auf der Heide,
and W. Strasser. The randomized z-buffer algorithm:
interactive rendering of highly complex scenes.
SIGGRAPH, 361–370, 2001.

