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Abstract 
Occlusion-compatible traversals and z-buffering are often 
regarded as the only choices for resolving visibility in the 
image- and point-based rendering community. These 
algorithms do either per-frame or per-pixel computations. 
This paper first discusses visibility orderings for point 
samples in general and then discusses orderings that are 
valid for multiple views. Then we present a novel, highly 
efficient, visibility algorithm for point-sampled models that 
has much smaller per-frame cost than previous 
approaches. We also discuss a high-performance, cache 
friendly implementation of this visibility method and 
present results. Finally, we speculate on possible 
hardware implementations. 

1. Introduction 
Real world environments are usually very complex. While 
computer graphics has made great progress, the generation 
of images of “real” scenes in real-time (>20Hz) is still a 
challenge. There are two fundamental problems in creating 
an image – identifying the pixels covered by any given 
object and determining which parts are visible to the 
viewer. These two problems are usually called 
rasterization and visibility. 
Naive rasterization algorithms perform a number of 
operations proportional to the number of covered pixels. 
Recently, output-sensitive algorithms have been 
introduced, with rasterization time proportional to the 
number of pixels covered. For this progressively simpler 
versions are pre-computed. These simpler versions are 
used for more distant parts of the scene (as they appear in 
less detail on-screen). For visibility computations, there 
are two fundamental approaches. Visibility can be 
computed at linear cost in the number of primitives or on a 
per-pixel basis. The former assumes that visibility is 
computed on the primitives directly and is in the worst 
case proportional to the number of primitives. The latter 
takes time proportional to the number of pixels covered. 
An alternative that can compute visibility in sub-linear 
time is to order the primitives a priori in such a way that 
rendering them in that order yields the correct result. This 
ordering can be done at run-time with logarithmic cost if 
primitives are organized in a hierarchical data structure. 
For highest efficiency there are two more requirements. It 
is important that primitives are read in a cache-coherent 
manner, otherwise memory latencies play a large factor, 
and ideally, a visibility algorithm should not require any 

frame-buffer reads. Finally, any rendering algorithm needs 
to compute a correct result. Due to the limits of sampling 
this is usually hard to guarantee, but the maximum error 
that can be tolerated is one pixel wide (usually around the 
boundary of an object). Consequently, a high-performance 
rendering algorithm should have the following properties: 

• store a complete object representation 
• rasterization cost proportional to the number pixels 

covered on the screen 
• sublinear time for visibility computation (assuming 

some pre-processing) 
• correct and consistent visibility (limited by sampling) 
• cache-coherent data reads and writes 
• only frame-buffer writes (no reads) 
• the ability to efficiently utilize existing hardware 
• the potential for hardware implementation 

Our approach fulfills all of the above criteria. In the 
following, we first discuss relevant previous work. Then, 
we describe the theory behind our algorithm and consider 
its correctness under some assumptions. Later, we discuss 
practical considerations related to sampled images and 
pixel grids. We then describe the first implementation of 
the algorithm and present results. 

1.1. Previous work 
Over the last few decades, numerous point-sampled 
rendering approaches have been proposed. Among others, 
those include 3D image-based rendering by warping 
(IBRW) and rendering point clouds. 
McMillan et al. derived warping equations that describe 
the relationship between the projections of a point on two 
images [10]. The pixels of the source image are then 
warped in an order towards or away from the epipole of an 
image. However, with this algorithm samples are written 
into the output in an unpredictable pattern, which 
complicates hardware implementations. Mark et al. 
modified the image traversals to be more cache-friendly 
[9], but concluded that occlusion-compatible traversals are 
not viable on modern cache and memory architectures due 
to bad cache utilization. Shade et al. resolved intra-scene 
occlusions by using Layered Depth Images (LDIs), which 
store multiple samples per source pixel [20]. Due to the 
nature of the data structure, implementations of LDIs 
suffer from bad cache-coherency and are hard to port to 
hardware [20]. Oliveira et al. decomposed the warping 
function into two steps, pre-warping and texture mapping, 
where the last step can be performed via graphics 
hardware. The simplicity of this method enables a very 



cache-coherent implementation. However, this method 
cannot represent images with more that one layer of 
samples. In summary, most of the image-based rendering 
works employ occlusion-compatible image traversals [10, 
20, 4, 13, 16]. 
Pfister et al. represented objects as sets of surfels [15], i.e. 
point primitives without explicit connectivity, organized 
them into an octree, and rendered them with a warping 
algorithm. Holes in the generated images are filled with 
interpolation and an algorithm similar to z-buffering. 
Grossman et al. represented objects as collections of points 
in 3D [6]. They used a hierarchy of z-buffers and 
employed an algorithm that detects and fills holes in the 
images. Rusinkiewicz et al. present a system for rendering 
large scenes using a point rendering system (QSplat) that 
targets large point-sampled datasets [17, 7]. The object is 
stored as a hierarchy of bounding spheres, which allows 
for level-of-detail control and efficient frustum culling, 
and provides a compact dataset. Visibility is resolved 
using z-buffering. The randomized Z-buffer approach by 
Wand et al.’s approach randomly selects a set of samples 
on the primivites of the scene, with the number of samples 
proportional to projected area. The samples are then 
projected using z-buffering to resolve visibility [22]. Most 
point-based rendering systems use z-buffering to resolve 
visibility [8, 6, 15, 17, 22, 3, 14]. The main disadvantage 
of this apprach is the necessity to store and update depth 
information per pixel. 
The discussed approaches are summarized in table 1, 
which considers the cost of rasterization, the cost of 
computing visibility in terms of the number of primitives. 
For cache-coherency, 4WR indicates that linear access 
patterns can be achieved by replicating the data and 
storing it in four different orders. Furthermore, the table 
lists is the algorithm suffers from visibility artifacts. The 
rest of the table provides data for a comparison of 
performance. McMillan’s work was mostly theoretical, 
therefore performance data is not available. 
 3D 

IBRW 
LDI/LDI 
Trees 

Relief 
Textures 

3D HIC Rand Z-
buffer 

QSplat Surfels Z-buf Our 
approach 

Complete scene  
representation 

No Yes No Yes Yes Yes Yes Yes Yes 

Cost of 
rasterization 

O(n) O(n)/O(plogn) O(n) O(plogn) O(plogn) O(plogn) O(plogn) O(n) O(plogn) 

Per-frame 
visibility 
computation 
cost 

Const Const/O(logn) Const O(logn+p) O(logn+p) O(logn+p) O(logn+p) O(n) O(logn+p) 

Streaming 
source data 
reads 

4WR No 4WR Yes No No No Yes Yes 

Cache-coherent 
frame buffer 
access 

No No Yes No No No No No Yes 

Guaranteed 
correct images 

Almost Almost Almost Almost Almost Yes Yes Yes Can be 
guaranteed 

Potential 
hardware 
implementation 

Hard Hard Easy Hard Easy Hard Moderate Done Easy 

Largest model 
size (samples) 

N/A 5.0*106 6.5*104 1.0*105 
tris 

4.1*108 
tris 

1.0*109 5.4*105 N/A 2.7*1011 

Performance 
(Msamples/sec) 

N/A 1.4 0.7 N/A 1.5 2.5 1.3 40,000 58 

Hardware 
platform 

N/A 300/250 MHz 
CPUs 

PII 400 
MHz 

R3000 PIII 800 
MHz 

SGI 
Onyx2 

PIII 700 
MHz 

GeForce4 12xR12000 
300 MHz 

Table 1: Comparison of image-based and point-sampled 
rendering approaches. p is the number of rendered 
samples, n is the number of samples in the scene. 

1.2. Contributions 
The fundamental idea of the new visibility algorithm 
presented here is the same as Newell, Newell, and 

Sancha’s [5] and Seitz and Dyer’s [19], only applied to 
point samples. The samples are first ordered in decreasing 
depth and are then rendered back-to-front. The samples 
drawn later then cover those drawn earlier [5]. 
In this work we present a new multi-view visibility sorting 
algorithm, which orders samples in a particular way. Once 
established, that ordering stays correct for nearby camera 
positions. Because samples are pre-ordered, they can be 
rendered by sequential traversal, which results in spatially 
and temporally coherent memory access patterns, and thus 
improves cache-hit ratios and makes simple and efficient 
hardware implementations possible. Whenever the camera 
moves too far, the algorithm efficiently re-sorts the 
samples in linear time to re-establish the ordering. 

2. Visibility determination 
We first discuss a theoretical, ideal, case, and prove the 
existence of correct multi-view orderings for point 
samples. We then analyze the difficulties that arise in 
practice, and propose a method to solve them. 

2.1. Multi-view visibility orderings for point 
samples 
For simplicity, we consider only the case of a planar 
perspective pinhole camera separated by a plane from the 
set of point samples. For the purpose of determining 
visibility, we define a point sample as an indication of the 
presence of a surface within a small neighbourhood of the 
point sample. In the ideal case, this neighbourhood is 
negligibly small, and the samples are thus infinitesimal. In 
this section, we also assume a continuous image, as 
opposed to a pixel grid. Note that even though the samples 
are infinitesimal and the image is continuous this situation 
can still give rise to occlusion problems (see Figure 1b). 

          
 (a)    (b) 

Figure 1: (a) Illustration of separating plane α 
(b) Visibility ordering constraints. Lines passing through 
any pair of points may or may not impose restrictions on 

the visibility ordering. Ray rab intersects the viewing 
volume, forcing a to be rendered before b. Ray rbc does not 

intersect the viewing volume, and hence places no 
restriction on the order in which b and c can be rendered. 

It is then possible to render the samples in a particular 
order, such that the correct visibility is resolved by 
painter’s algorithm [5]. Moreover, we claim that there 
exist orderings such that the same order is valid for a 



whole set of camera positions. Such orderings are called 
multi-view visibility orderings. 
Proposition 1: Assume a set S={si} of point samples, a 
volume V, in which the camera used to render the scene is 
located, and a separating plane Π such that V ⊂ Π– and 
S ⊂ Π+, where Π– is the negative half-space, and Π

+ is the 
positive half-space, with respect to Π. It is possible to 
order S in a way such that the primitives correctly occlude 
each other when rendered as seen from any position in V 
(Figure 1a). 
Proof of proposition 1: Consider a plane α, which 
separates two points, a and b. Similar to BSP-trees, the 
order in which the points should be drawn depends on the 
half-space in which the observer is located [1]. For points 
that are a finite distance from each other, it is always 
possible to select such a separating plane α', such that α' 
does not intersect the volume V. In this case, no matter 
where in V the camera is, the order of the points a and b 
w.r.t. visibility stays the same. QED.  
One way to establish correct orderings, is to consider a ray 
rab = vab + tab(a-b), passing through a and b such that vab ∈ 
V and t ≠ 0. For t > 0, the correct order is <a,b>. For t < 
0, the order is <b,a>. Moreover, if no such ray exists 
(samples b and c in Figure 1b), the order in which the 
points are rendered is not important, since points can 
occlude each other only along a ray passing through both 
of them. Thus, we can say that a ray imposes an ordering 
constraint (see Figure 1b). Note that in the absence of 
ordering constraints many orderings are possible (see 
below). In particular, points sorted in order of non-
increasing distance from the plane Π are always in a 
correct order. 
The above idea does not apply for non-infinitesimal 
primitives, such as clouds or surfels, as it may then be 
impossible to pick a separating plane that does not 
intersect V. Figure 2 illustrates a case, where all potential 
separating planes intersect V. Then, it is impossible to 
construct an ordering that is correct for the all of V. 

                
       (a)    (b) 

Figure 2: (a) A situation when it is impossible to pick a 
suitable separating plane for non-infinitesimal samples. 

(b) Occlusion graph. A directed edge a→b exists 
iff point b can occlude point a. 

The above assumes that the camera does not go to infinity, 
that is V is bounded, and that samples do not coincide. If 
the camera is allowed to go to infinity on a plane parallel 
to Π, then there may not exist a separating plane between 
the points lying on a line parallel to Π. These assumptions 
are not too strict. When the camera crosses the separating 

plane, a new order needs to be established. This 
corresponds to the case of picking another image or LDI, 
which samples the scene better [20]. 
Another assumption in the above is infinitesimal samples. 
In practice, samples have non-infinitesimal size and the 
size of a neighbourhood determines the size of the 
footprint the rendered sample will cover in the image. 
However, if we assume that each sample produces only a 
footprint of one pixel or less, the above still holds (see 
section 2.3). 

2.2. Visibility orderings in the ideal case 
Consider a graph (called an occlusion graph), with a 
vertex for each sample in the original dataset. In the graph, 
a directed edge a→b exists, iff there is an ordering 
constraint between a and b with t > 0. An undirected edge 
a―b exists, if a and b never occlude each other when the 
camera is within V. The transitive closure of this graph 
reflects all visibility dependencies. 
Any topological sort of such a graph then yields a correct 
occlusion compatible ordering of point samples. The fact 
that a topological sort is not unique in general implies that 
there are many possible orderings. Figure 2b presents the 
graph corresponding to the occlusion constraints for the 
points in Figure 1b. For this particular arrangement, 
correct orderings are <a,b,c,d> or <a,c,b,d>. 
As there may be multiple solutions to a given instance of 
the topological sort problem, there may be many correct 
orderings. In practice, any sorting algorithm will work, as 
long as the obtained solution is a correct solution of the 
topological sorting problem. For instance, it is sufficient to 
sort samples according to their distance from the observer. 
As there are many correct orderings, one can select the 
best one according to some criteria. For example, consider 
an image tiled into a set of rectangular tiles so that each 
one fits into one cacheline. One could assign weights to 
the edges of the occlusion graph proportional to the 
probability of two corresponding samples being projected 
into the same tile (for a camera within the viewing 
volume). Then a solution of the Traveling Salesperson 
Problem (TSP) on this graph would yield a correct 
ordering for which the cache-hit rate is close to the 
maximum. However, as we will see below, under certain 
assumptions it is possible to structure the data so that 
linear-time sorting methods can be used (see section 3.2). 

2.3. Visibility ordering computation in practice 
The above discussion is based on the assumptions of a 
continuous image, and infinitely small samples. However, 
real implementations need to quantize the image into 
pixels. Therefore, we assume the size of the 
neighbourhood of a sample to correspond to one pixel in 
the image or less. This can easily be guaranteed with level-
of-detail algorithms, see section 3. With pixel grids, two 
samples occlude each other when they are projected into 
the same pixel. This constraint is harder to deal with than 
the ideal case, as the points can occlude each other even 
though there is no line passing through both points and the 
image plane of the camera. 



The ideal case solution (section 2.2) did not place any 
constraints on the order of the samples on a plane parallel 
to the separating plane. Any ray through such samples is 
parallel to the separating plane and hence places no 
constraints on their visibility ordering. Thus, the ordering 
for such samples in the image plane is effectively random. 
As the ordering cannot identify the foremost sample the 
result may be arbitrarily bad in the sense that any sample 
may end up as the foremost in the pixel. The situation is 
illustrated in the Figure 3. Both camera A and camera B 
are located within Π–, and the order in which points a and 
b are handled is pre-determined by the ordering. However, 
as can be seen from the figure, for camera A the correct 
ordering is <b,a>, and for camera B the correct ordering is 
<a,b>. 

 

Figure 3: Occlusion errors due to image quantization. 

A way to mitigate this undesired effect is to introduce 
additional separating planes (see Figure 4). The idea is 
then to pick the plane most perpendicular to the current 
viewing direction and order samples with respect to this 
plane each time the image is generated. While the samples 
are then re-sorted more often than theoretically needed, the 
chances of encountering an incorrect ordering are lower. 
This is because we have decreased the chances of two 
points lying on a ray parallel to the separating plane being 
projected into the same pixel of the image. This means that 
one can control visibility artifacts by setting a threshold on 
how much the viewing direction is allowed to deviate from 
the direction in which the samples are sorted. 

 
Figure 4: Using multiple separating planes. Depending on 
the camera position and viewing direction, either Π1, Π2, 
or Π3 is a better choice for the current separating plane. 

For faster rendering, we are interested in performing as 
few re-sorts as possible. The minimal number of re-sorts 
corresponds to the maximal value of the visibility re-
sorting threshold. To determine the maximal value of the 
visibility re-sorting threshold that produces no artifacts, 
we performed a series of worst-case tests. For these tests 
we assumed that the density of the projected samples onto 
the image is at least as high as the image resolution. To 

facilitate computation of how closely samples can project 
we further assumed that samples are placed in an 
(arbitrarily dense) regular grid. If these constraints cannot 
be met, we assume that level-of-detail techniques are used 
(see section 3). The reader is also advised that sampling 
artifacts are outside the scope of this section (as opposed 
to visibility artifacts). 
For these worst-case tests, we generated a 3D-grid with 
samples at each grid point. A full cube of samples is the 
worst case, as (1) the samples are as close to each other as 
possible thus maximizing the potential for visibility errors, 
and (2) removing a sample results in no visual artifacts in 
the case when the existence of this sample would produce 
an artifact. For a regular grid of samples, it is easy to show 
that once a correct sorting order is established, visibility 
artifacts can occur only if the viewing angle deviates more 
than 45° from the normal of a face.  

 
Figure 5: Different views of a set of pre-ordered samples 
in a grid (shown in 2D for illustration). The grey arrow 
illustrates the sorting direction; numbers next to point 

samples show the order of samples in the sequence. B, C, 
D are worst case view points. See text for details. 

We fixed the ordering of samples to be according to the 
distance to one face of the cube (the sort-face). We then 
can view this cube from various viewing positions (Figure 
5) and consider the results: 

• Looking directly at the sort-face of the cube (camera 
A in the Figure 5) is the best case for the visibility 
sorting algorithm and no visibility artifacts can occur 
under the assumptions stated in the text until the 
camera reaches position B (or moves beyond E). 
Although some sampling artifacts are possible due to 
projection of samples from the front face of the cube 
onto a discrete grid of pixels in the image, these do 
not influence visibility. 

• Looking directly at an edge of the cube between the 
sort-face and one of the adjacent to it faces (camera 
B). Here it is possible that visibility artifacts start to 
appear and the closer the camera gets to positions C 
and D, the higher the probability for artifacts.  

In an implementation of this test we assigned each face of 
the cube a color, and the inside of the volume another to 
make artifacts easily noticeable. A correct image without 
visibility artifacts shows no pixels with the color of the 
inner volume of the cube. And indeed, as soon as the 
camera passes point B, the images start to show artifacts. 
Summarizing we can say that as long as the viewing 
direction does not deviate more than 45° from the sorting 



direction for a grid of samples there will be no visibility 
artifacts. For real, non-worst-case scenes, the threshold 
value can be somewhat increased, which may reduce the 
number of re-sorts necessary while maintaining a low 
probability of producing artifacts. We experimentally 
determined that setting the threshold to 70° for non-
synthetic datasets results in practically no visible artifacts. 
Another view of the problem is to observe that the ideal 
algorithm fails beyond camera B because of the finite size 
of the neighbourhood in which the surface sampled by the 
point sample is present. This was discussed at the 
beginning of this section. 

2.4. Convex-cell space partitioning and LOD 
The results of the previous section are only applicable for 
a viewer constrained to one side of a plane. To avoid this 
restriction on viewer motion, we resort to space 
partitioning methods (e.g. BSPs trees, octrees, etc.) Then, 
for an observer outside the current partition, the planes 
separating the cell from the rest of the volume can serve as 
separating planes. When the camera moves, it may cross 
such a separating plane, thus invalidating it. In this case, 
we have to pick another separating plane. With practically 
any spatial datastructure, we can use back-to-front 
traversals to resolve the visibility between the nodes. 
Inside a node, the visibility is resolved by sorting, as 
described above. 
As we need to control the level of detail, we choose an 
octree to partition space. Before rendering an octree node, 
we check if the current ordering of the samples within the 
node is valid, given the current camera position. If the 
order is valid, we render the samples, simply traversing the 
stream of samples in one forward loop. If the order is not 
valid, the samples need to be re-sorted. When re-sorting, 
we choose the new separating plane to be the side of the 
octree node cube with the normal vector most orthogonal 
to the viewing direction. The pseudocode for rendering the 
scene is presented in Figure 6. 
 
render_the_scene(a node) 
  traverse data structure back-to-front; 
  if current node has sufficient LOD 
    render_the_node(node); 
  else 
    recurse to children; 
 
render_the_node(node) 
  get normal to current separating plane; 
  compute view_vector to center of node; 
  if angle between normal and view_vector 
                             >= threshold 
    pick separating plane most orthogonal 
               to current view direction; 
    topological_sort(node.samples); 
  for all node.samples 
    project and draw sample 

Figure 6: Pseudocode for the rendering algorithm. 

3. Implementation and Optimization 
We implemented our system on a 16-processor SGI 
Onyx2 with 10GB of memory. Time-critical inner loops 
were fine-tuned manually. 

3.1. Pre-processing 
For generality, we assume that the source data is an 
unorganized point cloud, where its coordinates and color 
specify each point. We store these points in an axis-
aligned octree. Within each node, we arrange the samples 
into a regular 16x16x16 grid, which allows nodes to fit 
into the cache. The regular sampling inside each node 
allows us to (1) store data in a compact form, and (2) 
efficiently process the data. The octree construction 
algorithm has a complexity of O(nlogn) on the number of 
samples, for non-degenerate cases. 

3.2. Octree rendering and visibility sorting 
To render the scene, we visit the nodes in back-to-front 
order. Due to level of detail control, the number of the 
nodes rendered is proportional to the resolution of the 
image being generated, but only logarithmically 
proportional to the complexity of the scene. Therefore, our 
algorithm is output-sensitive [21]. 
The visibility between the samples for a given octree node 
is established by sorting as discussed in section 2.3. 
However, based on the fact that samples are stored in a 
grid in each node, we can use a counting sort, which 
orders samples in linear (!) time. Splitting the scene into 
octree nodes also allows us to amortize the cost of 
visibility sorting over a number of frames, by re-sorting 
only parts of the entire scene at each frame, as opposed to 
re-sorting the entire scene every few frames. 

3.3. Rendering a single node 
An octree node is implemented as structure containing the 
number of samples stored in the node, the array of samples 
(x,y,z and r,g,b for each sample), and up to eight pointers 
to children of the node. The samples are located on a 
16x16x16 regular grid and coordinates within each node 
are encoded in 4 bits. World-space coordinates are 
computed from the node size and its position in the world 
during the octree traversal. 
Due to the visibility sort, the samples in a node are 
traversed in one forward loop when rendering. This 
achieves the highest possible performance on cached 
memory architectures. Note, that this cache-coherency is 
achieved because once a correct visibility order is 
established, that sequence can be cached and re-used over 
a number of frames. All renderings using this order are 
then a simple traversal of an array. 

3.4. Image tiling, parallelization, and hole-filling 
For better cache utilization on pixel writes, we tile our 
output images in a way similar to texture swizzling used in 
modern graphics hardware [12]. We also run 12 parallel 
rendering processes to achieve real-time frame rates even 
on large data sets. For simplicity, each CPU in our system 



has its own copy of the entire scene. The output image is 
partitioned into 12 regions (1 per CPU), which are 
rendered in parallel and integrated into the whole image 
before displaying. The image rendered from point samples 
may break up into disjoint pixels at close zoom-ins. To 
avoid this, when we reach a leaf node with no children, we 
temporarily create 8 children by replicating samples from 
the current node. For details, refer to [11]. 

4. Results 
We tested our algorithm with several scenes, which are 
characterized in tables 2 and 3, and shown in figures 7 and 
9. The octree construction during preprocessing took less 
than 30 minutes on a 2GHz PC for each of the mentioned 
datasets. 

Scene Octree 
depth 

Total 
nodes 

% non-
empty 

% leaf 
nodes 

Cylinders 9 1.7*106 77.9 68.7 
Checkerboard 10 5.5*106 100.0 75.0 
Hand 7 3.4*104 79.7 62.6 
Stanford Toys 10 3.5*106 75.9 51.4 
Replicated Toys 16 1.4*1010 95.3 77.8 
Table 2: Octree statistics for test scenes (see Figure 7). 

Scene Samples 
in octree 

Samples in 
leaf nodes 

% samples 
in leaves 

Cylinders 1.7*106 9.9*106 20.6 
Checkerboard 2.2*107 4.1*106 18.8 
Hand 4.5*106 3.6*106 64.1 
Stanford Toys 6.8*107 1.9*107 27.6 
Replicated Toys 2.7*1011 1.7*1011 62.8 

Table 3: Sample counts for the test scenes. 

 
Figure 7: Test scenes. (a) Cylinders; (b) Checkerboard; 

(c) Hand; (d) Stanford Toys. 

The Cylinders scene is targeted at creating a large number 
of visibility event. It consists of 100 randomly placed 
interpenetrating cylinders and samples were generated by 
raytracing three orthogonal views at 1500x1500 pixel 
resolution. The Checkerboard scene is a classic computer 
graphics example for testing algorithms involving re-
sampling for severity of aliasing. The Hand scene is a 
laser-scan of a human hand model at 0.25 mm resolution. 

The Stanford Toys scene presents three complex objects, 
reconstructed from laser-scans of real objects at Stanford 
University. We ray traced the meshes for the Stanford 
Toys scene at high resolution from a number of viewpoints 
around it and then merged the results. The resulting point-
sampled representation consists of approximately 69 
million points. For large-scale tests we replicated this 
scene. 

4.1. Performance of visibility algorithm 
The visibility algorithm (1) traverses the octree, and (2) to 
re-sort the samples within a node, if needed. 
The octree traversals in our system consume less that 2% 
of the time, and do not influence the performance in a 
significant way. Since the visibility orderings are valid for 
a number of views, the samples within nodes do not have 
to be re-sorted at each frame. We set the value of the re-
sorting threshold to 70° in our experiments. This forces a 
re-sort only if the direction from the current viewpoint to 
the nodes is too different from the direction in which the 
samples within the node are sorted. The threshold was 
determined experimentally and can cause visibility 
artifacts that are at most 1 pixel wide. To guarantee no 
occlusion artifacts, the threshold value should be set to 
45°. With these settings, we measured the average number 
of node re-sorts per frame versus the number of visualized 
nodes. The measurements were done on a 360-frame fly-
around a scene, where the viewing direction was changing 
by 2° at each frame. Such settings approximately 
correspond to those expected during a high-frame-rate 
human-controlled navigation through a scene [2]. The 
results are summarized in Table 4. 

 Avg. nodes 
rendered 

Avg. nodes 
re-sorted 

% re-
sorted 

Cylinders 3790 92.9 2.5 
Hand 2728 108.0 4.0 
Stanford Toys 22650 1469.6 6.5 
Replicated Toys 70215 3510.0 5.0 

Table 4: Visibility sorting statistics (per frame) 

4.2. Performance of a single rendering process 
We timed the performance of the render code using the 
Stanford Toys scene in a fly-around sequence. We 
measured the time required to re-sort a node and the time 
required to render a node with an octree containing a 
single node with 256 samples, and ran the re-sorting and 
rendering 106 times on it. The re-sorts took 38 seconds, the 
rendering 25 seconds. Thus, re-sorting a node is 
approximately 50% slower than rendering it. However, 
with the re-sorts occurring for only ~5% of the rendered 
nodes per frame this incurs only approximately 12.5% 
overhead. This is a modest loss of time, compared to other 
alternatives. For example, occlusion-compatible traversals, 
producing incoherent memory-accesss patterns on writes, 
can potentially spend more time fetching data from 
memory than actually processing it [9]!  
We used the SGI performance analyzing tool perfex to 
collect more statistics. For 2.6*108 samples, the 



implementation took 24.7 seconds, for a rate of 1.0*107 
samples/second or 9.6*10-9 seconds/sample, which 
corresponds to 29 CPU cycles/sample. The L1 data cache 
hit rate was over 98% and the cache line reuse was 58.31. 
To test the performance on large scenes, we replicated the 
Stanford Toys scene 4096 times. This resulted in an octree 
of depth 16, with 2.7*1011 samples in 1.4*1010 nodes (see 
Figure 8). We rendered this scene using the same fly-
trough sequence. The average performance was about 10 
frames per second. This is a small decrease in the frame-
rate compared to the significant increase in the number of 
samples in the octree. This test demonstrates the ability of 
our system to render large point-sampled datasets in real-
time. 

 
Figure 8: Part of the replicated Stanford Toys scene 

5. Conclusions 
We demonstrated a system to render large point-sampled 
scenes in real-time. It utilizes a combination of methods, 
level of detail control, a new multiple-view visibility 
algorithm, and efficient and fine-tuned parallel 
implementation. The hierarchical representation of the 
scene resulted in an output-sensitive algorithm. Our 
visibility algorithm is an alternative to the existing 
algorithms. The main advantages of our algorithm are its 
simplicity and high performance. The system achieves 
very cache-coherent data access patterns and avoids frame 
buffer reads completely, which opens the possibility for 
hardware implementations. We used parallelization to 
achieve real-time framerates in practice. Hence, this work 
is a step towards high-performance rendering of extremely 
detailed scenes. 
Our approach can also be used to speed-up other forms of 
rendering. For example, an LDI can be partitioned into 
small regions, and the visibility order for each region re-
determined whenever necessary. Some recent work, 
including [3] and [14], could also directly benefit from 
using our approach with minimal changes. 
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