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Abstract 

Fractal terrains provide an easy way to generate realistic landscapes. There are 

several methods to generate fractal terrains, but none of those algorithms allow the 

user much flexibility in controlling the shape or properties of the final outcome. A 

few methods to modify fractal terrains have been previously proposed, both 

algorithm-based as well as by hand editing, but none of these provide a general 

solution. 

In this work, we present a new algorithm for fractal terrain deformation. We present 

a general solution that can be applied to a wide variety of deformations. Our 

approach employs stochastic local search to identify a sequence of local 

modifications, which deform the fractal terrain to conform to a set of specified 

constraints. The presented results show that the new method can incorporate 

multiple constraints simultaneously, while still preserving the natural look of the 

fractal terrain. 

 

Keywords: (according to ACM CCS): I.3.7 [Computer Graphics, Three-Dimensional 

Graphics and Realism]: Fractals, I.2.8 [Problem Solving, Control Methods, and Search] 

Graph and tree search strategies 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

1. Introduction 

Terrain modeling plays an important role in 

computer graphics. The automatic 

generation of terrains has many applications 

in areas ranging from landscape generation 

for media, the generation of random 

environments for games, and the generation 

of terrains for various kinds of training 

simulators. 

There are several ways to obtain terrain 

data. One source is digital elevation models 

(DEM’s) generated by surveys, but this 

limits terrains to those that currently exist in 

reality, not those that lie in our imaginations. 

Another option is the automatic creation of 

terrains by fractal methods [Man77,Lew87]. 

However, these algorithms are very 

unpredictable in that the user has very little 

control over the resulting terrain height map. 

There is no easy way for the user to generate 

a terrain that has a particular shape, or 

provides the surroundings to a pre-specified 

road track, deform a terrain to have exactly 

one lake, a canyon, etc… 

While several algorithms for terrain 

deformation have been presented [ST89, 

VML97, FOMC02], all suffer from the 

abovementioned drawbacks. Currently, the 

most widely employed method for fractal 

terrain deformation is still modification by 

hand. The application of terrain 

deformations, such as a 2D Gaussian 

multiplication on the terrain, requires a 

decision as to where to deform the terrain, 

and by how much. This task is not trivial, as 

most humans cannot reliably predict the 

exact effect of an operation let alone create a 

sequence of such operations to satisfy their 

goals. Often, modelers laboriously deform 

terrains using a trial and error approach. The 

computational power of today’s systems can 

easily generate extremely complex models 

with millions (or even billions) of polygons. 

However the capacity of humans to generate 

and modify such models does not increase 

[Ebe96]. This means that although we can 

expect humans to skillfully touch-up small 

areas of a terrain, we cannot expect a user to 

model entire planets or vast landscapes 

without aid. 

The existence of a robust algorithm for 

automatic terrain deformation is of 

considerable benefit to the graphics 

community. Whereas previously, artists 

often began by generating random fractal 

terrains, trying to find one that approximates 

the shape they are trying to model, they can 

now spend their time refining a deformed 

terrain. 

This paper presents an algorithm for 

automated fractal terrain deformation. 

Because of its generality, it is highly flexible 

and easily configurable. The algorithm 

computes a near optimal sequence of local 

and global modifications to deform a fractal 

terrain so that it satisfies user-defined 

constraints. No work to date has solved the 

general problem of terrain deformation in 

such a flexible manner. A star shaped island, 

a landmass with a lake, self-tiling terrains, 

and thousands of other types of terrains can 

be generated automatically using a single 

unified deformation algorithm. 

2. Review of Related Work 

Ever since Mandelbrot proposed the use of 

fractals as a basis for simulating natural 

scenes and phenomena [Man77], researchers 

have tried to generate and render such 

complex models. Although methods for the 

synthesis of fractal terrains produce 

realistic-looking data [Lew87], they do not 

provide easy ways for modifying the results. 



 

Solving the general problem of 

constraining fractal terrains has been studied 

previously. [ST89] present a method to 

approximate a coarse spline mesh with a 

fractal terrain. Due to the use of a coarse 

spline mesh, only large-scale modifications 

are possible. A more recent method has been 

proposed for fractal deformation using 

displacement vectors [FOMC02]. Given a 

displacement grid, a fractal is deformed to 

render into a particular shape. Although high 

quality 2D fractal deformations are 

presented, it is unclear if 3D deformations 

would retain their natural look. 

Displacement vectors in 3D are very similar 

to the coarse spline meshes proposed in 

[ST89] and have the same drawbacks. 

Another approach based on a Gibbs 

sampler [VML97] constrains fractal terrains 

to pass through a set of pre-defined points. 

However, there is no guarantee as to the 

shape of the terrain between the points. 

Hence it is hard to produce a precise result 

(e.g. a completely flat road), without having 

to provide a large number of points, which 

in turn defeats the purpose of automated 

deformation. 

Solutions to specific types of deformations 

have also been studied previously. One 

approach for this uses a squig-curve model 

to generate rivers during the fractal terrain 

generation process [PH93]. Procedural 

attempts to generate erosion effects that 

simulate water flow in an existing terrain 

have also been presented. There, physically 

based models of hydraulic and thermal 

erosion and sediment movement to simulate 

the erosion due to water flow are used to 

modify the terrain [KMN88, MKM89, 

BF01, CMF98]. None of these solutions 

extend past their specific domain. 

Another related topic is texture synthesis. 

These approaches use procedural techniques 

for the generation of textures with varying 

properties (see e.g. [HB95, GM85, NC99, 

TZL*02]). However, all these approaches 

work at local scales, whereas the problem 

introduced in this paper may require changes 

at all scales. Initial work to blend multiple 

texture types for more global control has 

been presented [ZZV*03], but even this 

work is clearly not general enough to 

address the problem introduced. 

Furthermore, texture synthesis is not 

designed for the creation of three-

dimensional terrains and in general textures 

visualized as three-dimensional terrains do 

not necessarily look realistic. One exception 

is the work on hypertextures [PH89], which 

are targeted at three-dimensional 

applications. However, it is unclear how one 

can modify this approach to adapt the result 

to specified constraints. 

Several three-dimensional modeling suites 

allow the user to work with meshes. 

Although such software allows the user to 

modify a mesh at the vertex level, there is 

very little support for modifying a fractal 

terrain to conform to a predefined shape, 

such as a road. This means that the user has 

to adapt a trial and error approach as one 

must first find a terrain that approximately 

conforms to the desired criteria and then 

modify that terrain by hand. Although one 

can generate very realistic and convincing 

results with such software, this is a laborious 

endeavor. 

In the artistic community, manual 

approaches that use image-processing 

methods to modify a terrain so that a road 

can be inserted are well known. For example 

[Fry04] employs posterization of fractal 

terrains to insert a road into the terrain. 

While the results look great, the approach is 

limited by the random shape of the fractal 

terrain and does not allow the insertion of a 

road of a predefined shape (e.g. a road that 



 

doesn’t exceed a certain gradient) into an 

arbitrary terrain. 

2.1.Contribution 

In summary, we can say that no previous 

work provides a method for general 

deformation of fractal terrains. Although 

algorithms exist, which can generate 

approximate solutions to some of the 

presented problems, no work to date has 

successfully addressed general constrained 

terrain deformation. 

This paper presents a new method for 

automatically deforming a fractal terrain to 

satisfy a wide array of possible constraints. 

Constraints are defined by using a highly 

expressive mathematical framework. Our 

algorithm’s strength lies in its generality, 

and can produce a wider array of results than 

any other work to date.  

3. General deformation of terrains 

with constraints 

Our approach begins with a terrain defined 

as a height map. This terrain is usually 

obtained by fractal terrain generation and is 

then deformed according to a set of 

constraints. These constraints are expressed 

as functions that define how close the terrain 

has come to satisfying the constraint. 

Our method requires two inputs. The first 

is the terrain, T represented as a two-

dimensional array of height values. 

Secondly, we require a fitness function F 

defined over the terrain T, which expresses 

the constraints to be imposed on the terrain. 

More specifically, F(T) is a measure that 

intuitively describes “how far” a terrain T is 

from satisfying the constraint description. 

All constraints in our algorithm are encoded 

in this general fitness function, which allows 

us to specify multiple constraints 

simultaneously. 

Our method also requires a deformation 

operation. In general, it is desirable to 

produce natural looking deformations and to 

preserve the original terrain as much as 

possible. While there are many options for 

this, we choose multiplication with a 

truncated Gaussian kernel as our 

deformation operator to reduce potential 

artifacts, while still allowing for efficiency – 

the algorithm operates on terrains with 

thousands or even millions of vertices. This 

deformation is then applied to a region of 

the terrain by first scaling the Gaussian 

kernel to the desired amplitude and radius. 

More precisely, given a vertex v, a desired 

amplitude a, and a modification radius r, the 

operator multiplies the terrain with a 

Gaussian function of radius r centered at 

terrain vertex v with amplitude (a–v.height). 

This operation was chosen because the 

distribution forces point v to the desired 

height, while maintaining the overall shape 

of the original terrain without introducing 

artifacts. Other deformation operations 

could be employed, but we have found that 

the Gaussian kernel adequately satisfies our 

needs. 

Our algorithm is based on deforming the 

original terrain T into a new terrain T’. T’ is 

defined as a height map that fits the 

constraints, i.e. it has the property:  

F(T’) = 0 

Because we have restricted deformations 

to a single operation (the Gaussian 

multiplication) the problem of finding a 

general solution to terrain deformation is 

reduced to a search for a sequence of 

Gaussian multiplications that attempt to 

minimize F. To further simplify this search 

we parameterize a general Gaussian kernel 

as a triple (location, amplitude, and radius). 

Our goal is to search for an optimal 

sequence of parameter triples that deform 



 

the original terrain into T’. However, even 

with these assumptions, the search space is 

infinite, and a bounded search of any 

practical size is intractable. There is also no 

guarantee that a terrain can be deformed to 

satisfy the fitness function. Therefore, 

instead of concentrating on finding the 

global optimum, we concentrate on finding 

approximations that are within epsilon of the 

ideal solution: 

F(T’) <= epsilon 

Our approach makes use of stochastic 

local search to find a sequence of operations 

that converge the fitness towards epsilon. In 

the following sections, we discuss how we 

define constraints via fitness functions, how 

we search for deformation sequences, and 

finally how we optimize the search. 

3.1.Constraint Definition 

Our algorithm searches for a sequence of 

“good” deformations, where the definition 

of a good deformation is how it relates to the 

evaluation of the fitness function. In this 

section we present how constraints are 

encoded via fitness functions. Three distinct 

examples are presented, illustrating the 

generality and power of this method. First, 

we discuss how a terrain can be modified to 

match a predefined shape, then we modify a 

terrain to match a predefined road, and 

finally we discuss how we can adapt a 

terrain to fit the edge of a second terrain. 

While we present three specific examples, 

they serve to emphasize the generality of the 

approach. The range of deformation 

examples presented in this paper should 

make the generality of the approach clear. 

For reasons of efficiency, we prefer fitness 

functions that are computable in constant 

time per vertex, because fitness functions 

will be evaluated for a large number of 

operation parameters during the search. For 

practically interesting terrain sizes this 

necessitates fast computations and makes 

functions that take (much) more than 

constant time per vertex undesirable. Hence, 

we choose to define F as a distribution of 

penalties per vertex, which is highly 

expressive, yet easily computable in 

constant time. More precisely we define 

F(T) to be the sum of all penalties over all 

vertices for the given terrain. 
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A simple example is to modify a terrain to 

match an existing height map. If the desired 

heights are stored in a two-dimensional 

array, we can simply penalize vertices by 

their distance from the desired shape. 
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To present a more interesting example for 

shape modification we introduce a function 

that constrains a terrain to fit a particular 

form (such as the shape of an island). If the 

shape is defined as a two-dimensional bit-

mask that specifies which areas should be 

above a water level, we define F to penalize 

each vertex whose height does not conform 

to the desired shape. 
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Every vertex is penalized if it is above or 

below the water level when it should not. Bit 

masks for more than one height threshold 

could be applied to produce more 

complicated terrains. 



 

 

 

Figure 1:  An arbitrary terrain deformed to 

accommodate a flat S-shaped road using 

fitness function 4. 

Another class of constraints is the creation 

of terrains for modeling specific roads or 

rivers. The simplest idea is to generate a 

random terrain, and then search for a section 

that can easily accommodate a road. This 

was already presented by previous work 

(e.g. [Fry04]). A much more difficult task is 

to modify a terrain to fit a particular 

predefined road. As an example consider a 

completely flat road with a predefined shape 

that is set into a very hilly terrain (Figure 1). 

The fitness function for this terrain required 

that all vertices that form the road be 

constrained to a constant height. All other 

vertices are to retain their original shape as 

much as possible (to avoid global flattening 

of the terrain!). We consider all vertices 

within a certain distance from the road as 

path vertices. The constraint function then 

takes the following form: 
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Vertices along the road are penalized by 

the square of their divergence from the 

desired height of the road, whereas all other 

vertices are penalized by the square of their 

divergence from the original terrain. For a 

more general application, one can define 

arbitrary roads by creating a function that 

looks at a constant set of neighboring path 

nodes, while incorporating slope and 

oscillation as a penalty measure (e.g. to get a 

road with a predefined gradient). 

Finally, we discuss how to adapt a terrain 

T1 to match the edge of a second terrain T2, 

e.g. to extend a terrain further or to create a 

self-tiling terrain patch. To solve this task, 

we need a function that compares height 

values along the edge of T1 to height values 

along the edge of T2 and penalizes badly 

matched vertices. 
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A simple weighting function W(y) is used 

to ensure that values close to the edges are 

scaled appropriated to yield an equal 

distribution. 

Fitness functions provide a mechanism for 

defining terrain deformations with utmost 

versatility. They can be as complex as 

explicitly defining exact vertex heights for a 

majority of terrain vertices, to simple 

functions defining the approximate position 

of just one point. 

3.2.Multiple Simultaneous Constraints 

The power of our algorithm lies in the 

definition of fitness functions as terrain 

constraints. It is simple to combine fitness 

functions via mathematical means such as 

multiplication to combine multiple 

constraints. Fitness functions must be 

normalized in order to ensure that the 

algorithm equally addresses all constraints. 



 

3.3.Stochastic-Local-Search for 

Deformations 

In our search for a sequence of deformation 

operations, the fitness function is treated as a 

quantitative measure that specifies how far a 

terrain is from conforming to the desired 

result. Solutions to automated terrain 

deformation are computed with a search for 

a series of deformation operations to 

transform a terrain T to another T’, which 

minimize the fitness function F. Given that 

any one of thousands of vertices can be 

modified by a deformation of arbitrary 

radius and amplitude the search space is 

clearly infinite. Sampling a finite set of 

amplitudes and radii still produce search 

trees that are have enormous numbers of 

children.  

A good method for approximating search 

in such cases is stochastic local search (SLS) 

[Gu92, SLM92], a method whose roots are 

based in simulated annealing [KGV82]. 

Though SLS will not guarantee the perfect 

result (a terrain that matches the constraints 

perfectly), the method guarantees high 

quality approximations using a greedy 

approach. However, a naïve greedy search 

can reach local minima. Also, in our case, 

where the number of deformations is limited 

by processing speed, a greedy search may 

not yield uniform deformation distribution. 

Furthermore, in rare cases deformation may 

stall if deformation actions ping-pong 

between each other.   Some SLS techniques 

solve these problems by introducing random 

noise to the search. Our algorithm uses noise 

to avoid these problems as well. We 

introduce an empirically set constant, p, 

which determines the amount of noise to be 

added to the search. 

Our method generates a search space by 

first performing a large number of possible 

deformations, i.e. all vertices multiplied by a 

Gaussian kernel given for a set of 

amplitudes and radii. A table of potential 

deformations with resulting fitness values is 

computed per iteration. SLS chooses a 

deformation resulting in the best fitness with 

probability p, whereas a sub-optimal choice 

is selected with probability 1-p. To prevent 

unrecoverable deformations, we limit sub-

optimal choices to a certain percentage of 

best deformations. Unlike satisfiability 

problems (for which SLS has been shown to 

be quite effective and where many iterations 

can be performed), the search for terrain 

deformations must be limited to a relatively 

small number of iterations because the 

generation of even one level of the search 

tree is computationally expensive. Fractal 

terrain deformation, however, does not 

impose the restrictions of satisfiability as the 

definition of a satisfying terrain is one that 

conforms to the high-level constraint, and 

therefore we seek solutions only within 

epsilon. The goal is to satisfy the fitness 

function’s high-level constraint. In practice, 

we either terminate iteration when the 

approximation has reached epsilon, or when 

the iteration count has breached some 

threshold. 

It is vital to reduce the search space in any 

way possible. Given that the set of all 

sequences of all possible operations is 

infinite, we first reduce the infinite search 

space to a finite one by sampling a finite 

subset of possible amplitudes and radii. By 

controlling the amount of sampling we can 

empirically control the tradeoff between 

accuracy and speed. 

Since a deformation can be centered on 

any terrain vertex, brute force search of any 

reasonable domain would be prohibitively 

slow. We therefore reduce vertex counts by 

pruning vertices in terms of their ability to 

influence F. For this we use a general 

method for determining a set of good 



 

candidates. We begin by sampling the grid 

to provide a minimal and uniform 

distribution across the terrain. We then add 

vertices to this set by performing quad-tree 

subdivision in areas of interest. Here, we 

define certain regions to be modifiable, such 

as vertices along a path or all vertices 

surrounding a shape mask. We then 

subdivide the domain one level further if the 

partitioned space contains any area marked 

modifiable. Figure 2 demonstrates how this 

procedure identifies areas of interest. 

 

 

Figure 2: We select candidate vertices by first 

adding all vertices along interesting 

features, in this case along a defined path 

(black dots). Quad tree subdivision then 

provides vertices concentrating around that 

path (empty circles). A coarse sampling of 

the entire grid ensures a uniform 

distribution of vertices over the remaining 

terrain (blue dots). 

In this way we significantly reduce the 

number of deformable vertices, while 

ensuring that vertices capable of greatly 

influencing deformation are included in the 

candidate set. Even with this technique, the 

search tree remains large. As an example, 

consider that this technique may reduce the 

potential number of deformations on a 

terrain with 257
2
 vertices to only thousand 

modifiable vertices. With 25 possible 

amplitudes and 7 possible radii (empirical 

values that we have found to produce good 

results), a search tree of height 3 will still 

contain roughly 30 billion nodes. The size of 

this search tree justifies our use of stochastic 

local search as a viable means of search. 

3.4.Frequency Limitation 

Although our method produces results that 

are aesthetically sound, we hope that in the 

future, systems that employ our method will 

run at interactive rates. Without reduction in 

computation time through pruning of 

candidate vertices, even the simplest 

deformation tasks can take upwards of 

several hours to complete. 

 

 

Figure 3: This terrain shows artifacts that can 

occur if high frequency operations are 

performed. On the right side of this terrain 

the algorithm applied several local, high 

frequency, operations, which result in 

artificial bumps and dips. 

Initial implementations of our algorithm 

preferred to modify small regions 

(corresponding to high frequencies), because 

such modifications have little influence on 

surrounding vertices and consequently 

improve the fitness function at little cost. 

However this is a problem, as high 

frequency modifications may introduce 



 

unwanted spikes in the terrain. Figure 3 

demonstrates the corresponding artifacts. 

We practically eliminate all such artifacts by 

pruning all parameter combinations whose 

displacement is greater than a fixed 

proportion of the radius. A side effect of this 

pruning is a large reduction in overall search 

time.  

3.5.Optimization with Prediction 

In each iteration, a lot of work is performed 

when computing the fitness values for each 

possible deformation operation. The 

probability that a deformation resulting in a 

poor fitness value will be a top candidate in 

the next iteration is very small. However, 

removing such a deformation operation from 

the set of candidates is not acceptable, as 

that operation may be beneficial in future 

iterations. In order to reduce the overall 

amount of work when computing 

deformation fitness values, we introduce a 

technique that uses prediction to reduce 

computation. 

We introduce a confidence value mapped 

to each possible deformation. This 

confidence value represents the probability 

that the specific operation will improve the 

terrain enough that it will be considered as a 

top candidate in the search. The first 

iteration initializes the confidence of all 

deformations to 1.0. It is unknown which 

deformations rank highly, and which 

deformations are poor. The confidence value 

for the deformation in the next iteration is 

computed as follows: 
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where conft[i] is the confidence of the 

deformation operation i at iteration t. The 

variables maxF and minF are the best and 

worst fitness values computed for the 

previous iteration. C is an empirically set 

constant, which artificially increases the 

probability, ensuring that top candidates are 

always re-computed, and forcing all 

deformations to be re-computed after some 

time. 

4. Results 

The algorithm presented in this paper can 

deform arbitrary terrains to conform to 

specified constraints. In this section we 

demonstrate results generated with the 

constraints introduced in section 3. All 

presented results were generated with a 

noise value p = 0.65, which we found to 

solve all attempted deformation tasks. 

Amplitudes and radii were sampled to 25 

heights and 7 radial distances. 

In general, the use of predictions to speed 

up the computations results in a speed-up of 

approximately 400%. Furthermore, we 

found that the use of this optimization 

results in deformations that are nearly 

identical to those generated without 

prediction, and unnoticeably different to the 

naked eye. 

4.1.Shape Conforming Terrain 

Deformation 

The first example demonstrates the ability of 

our method to modify terrain data at global 

scales. Using fitness function (3), we can 

generate terrains that fit arbitrary shapes. 

Figure 6 shows a star shaped terrain 

automatically deformed using our algorithm. 

The bit-mask used was a five-pointed star 

shape. Generation of this model took 45 

minutes on a 1.7Ghz Intel PC.  

4.2.Deforming a Terrain to Match a Path 

Some manual modeling techniques can 

produce natural looking terrain with 

particular features, such as a path or road 

[Fry04]. However these features are always 

dependent on the terrain they modify. The 



 

terrain has always dictated the shape of the 

road. 

Our method decouples this dependence. 

As an example, we show how to deform a 

terrain so that it has an S-shaped path. The 

road shapes the terrain. For this we use the 

fitness function defined in equation (4). The 

result is shown in Figure 1. Effectively, the 

method carved a space for the road to pass 

through in the right hand side of the terrain 

(which was a hill), and created a land bridge 

in the top left corner (where there was sea), 

to ensure a realistic looking road. 

Deformation of this terrain model was 

accomplished in under 25 minutes. 

4.3.Terrain Blending 

Current implementations of terrain blending 

work on the principle of texture blending. 

They involve the application of blending 

functions to one or more textures. Our 

algorithm can merge terrains by defining a 

fitness function as in equation (5). This not 

only produces terrains that merge seamlessly 

but can also reduce artifacts along edges. 

Our approach deforms terrains to match 

terrain edges instead of terrain blending 

which simply blends height maps and 

creates artifacts on severely disjoint terrains. 

Figure 7 depicts two terrain-merging results, 

each of which took under 6 minutes to 

compute. 

4.4.Merging Fitness Functions 

The generality of our approach is best 

demonstrated by the fact that we can 

combine fitness functions. To demonstrate 

the ability to merge fitness functions, we 

generated a star shaped terrain with a road 

network passing through each star end-point. 

Note that the fitness function for road 

generation requires that the original terrain 

be preserved as much as possible. 

 

 

 

Figure 4: A star shaped terrain with roads 

extending to each endpoint. Deformed using 

a fitness function that combines shape and 

road constraints. 

We ran the combined fitness function for 

200 iterations with prediction. The results 

are presented in figure 4, and the terrain 

took 1.25 hours to generate. As expected, 

road paths are generated and hills are split to 

allow the road to pass through to the end 

points of the star. 

Combined fitness functions clearly result 

in more computational effort, as multiple 

features need to be accommodated. This 

requires that the search space be explored 

more widely and in general more iterations 

of the SLS algorithm are required. 

4.5.Terrain compression 

Another benefit of our algorithm is that it 

provides an efficient way to store deformed 

terrains. Compression requires the storage 

the original terrain (e.g. via its random seed 

and size) and the sequence of deformations 

(location, amplitude, and radius) that 

produced the final result. Reconstruction 

involves parsing a list of Gaussian 

deformations, and applying them to the 

terrain. Such an operation is computed 



 

extremely quickly, and therefore, terrain 

reconstruction speeds are a non-issue. 

We compared our compression scheme to 

JPEG compression in Photoshop on 

setting 9 of 12 (high compression rate). 

Figure 5 depicts image compression sizes 

for average terrain images using our 

compression scheme, and the jpg 

compression scheme. 

 

 

Figure 5: File sizes for different methods of 

terrain data compression. 

Regenerating the original fractal terrain 

from its seed and applying the recorded 

sequence of deformations to the terrain 

decompress it. A fixed random lookup table 

is required for fractal terrain compression to 

be effective. 

5. Conclusion and Future Work 

In this paper we present a novel algorithm 

for automated deformation of fractal terrain 

data using stochastic local search. We have 

shown how simple functions can be used to 

describe complex constraints on terrains. 

Furthermore, we have demonstrated how 

intelligent search methods can be employed 

to minimize these constraint functions. A 

side effect of this search is a deformed 

terrain. 

One of the drawbacks of our current 

implementation is execution speed. This 

reflects the tradeoff between the generality 

of our algorithm and the speed of specific 

solutions. In the future, we hope to exploit 

the fact that our approach is highly 

parallelizable. Because the fitness values 

computed for each vertex are solely 

dependant on the terrain at the given 

iteration, fitness computations can be 

computed independently of each other. With 

modern advances in hardware and multi-

core processors, this algorithm should be 

able to deform terrains with highly complex 

constraints at interactive rates. 
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Figure 6: A Star shaped island obtained by deforming a randomly generated fractal terrain. 

 

(a)      (b) 

Figure 7: 3D views of merged terrain data, each consisting of 257
2
 vertices. (a) Side view of 

merged terrain, before and after merging. (b) A different view of the same terrain models. (A 

3x1 mean filter kernel was used along seams to remove small-scale artifacts). 


