
An Algorithm for Automated Fractal Terrain Deformation

S. Stachniak

Alias

Toronto, Canada

sstachniak@alias.com

W. Stuerzlinger

York University

Toronto, Canada

www.cs.yorku.ca/~wolfgang/

Abstract

Fractal terrains provide an easy way to generate realistic landscapes. There are

several methods to generate fractal terrains, but none of those algorithms allow the

user much flexibility in controlling the shape or properties of the final outcome. A

few methods to modify fractal terrains have been previously proposed, both

algorithm-based as well as by hand editing, but none of these provide a general

solution.

In this work, we present a new algorithm for fractal terrain deformation. We present

a general solution that can be applied to a wide variety of deformations. Our

approach employs stochastic local search to identify a sequence of local

modifications, which deform the fractal terrain to conform to a set of specified

constraints. The presented results show that the new method can incorporate

multiple constraints simultaneously, while still preserving the natural look of the

fractal terrain.

Keywords: (according to ACM CCS): I.3.7 [Computer Graphics, Three-Dimensional

Graphics and Realism]: Fractals, I.2.8 [Problem Solving, Control Methods, and Search]

Graph and tree search strategies

1. Introduction

Terrain modeling plays an important role in

computer graphics. The automatic

generation of terrains has many applications

in areas ranging from landscape generation

for media, the generation of random

environments for games, and the generation

of terrains for various kinds of training

simulators.

There are several ways to obtain terrain

data. One source is digital elevation models

(DEM’s) generated by surveys, but this

limits terrains to those that currently exist in

reality, not those that lie in our imaginations.

Another option is the automatic creation of

terrains by fractal methods [Man77,Lew87].

However, these algorithms are very

unpredictable in that the user has very little

control over the resulting terrain height map.

There is no easy way for the user to generate

a terrain that has a particular shape, or

provides the surroundings to a pre-specified

road track, deform a terrain to have exactly

one lake, a canyon, etc…

While several algorithms for terrain

deformation have been presented [ST89,

VML97, FOMC02], all suffer from the

abovementioned drawbacks. Currently, the

most widely employed method for fractal

terrain deformation is still modification by

hand. The application of terrain

deformations, such as a 2D Gaussian

multiplication on the terrain, requires a

decision as to where to deform the terrain,

and by how much. This task is not trivial, as

most humans cannot reliably predict the

exact effect of an operation let alone create a

sequence of such operations to satisfy their

goals. Often, modelers laboriously deform

terrains using a trial and error approach. The

computational power of today’s systems can

easily generate extremely complex models

with millions (or even billions) of polygons.

However the capacity of humans to generate

and modify such models does not increase

[Ebe96]. This means that although we can

expect humans to skillfully touch-up small

areas of a terrain, we cannot expect a user to

model entire planets or vast landscapes

without aid.

The existence of a robust algorithm for

automatic terrain deformation is of

considerable benefit to the graphics

community. Whereas previously, artists

often began by generating random fractal

terrains, trying to find one that approximates

the shape they are trying to model, they can

now spend their time refining a deformed

terrain.

This paper presents an algorithm for

automated fractal terrain deformation.

Because of its generality, it is highly flexible

and easily configurable. The algorithm

computes a near optimal sequence of local

and global modifications to deform a fractal

terrain so that it satisfies user-defined

constraints. No work to date has solved the

general problem of terrain deformation in

such a flexible manner. A star shaped island,

a landmass with a lake, self-tiling terrains,

and thousands of other types of terrains can

be generated automatically using a single

unified deformation algorithm.

2. Review of Related Work

Ever since Mandelbrot proposed the use of

fractals as a basis for simulating natural

scenes and phenomena [Man77], researchers

have tried to generate and render such

complex models. Although methods for the

synthesis of fractal terrains produce

realistic-looking data [Lew87], they do not

provide easy ways for modifying the results.

Solving the general problem of

constraining fractal terrains has been studied

previously. [ST89] present a method to

approximate a coarse spline mesh with a

fractal terrain. Due to the use of a coarse

spline mesh, only large-scale modifications

are possible. A more recent method has been

proposed for fractal deformation using

displacement vectors [FOMC02]. Given a

displacement grid, a fractal is deformed to

render into a particular shape. Although high

quality 2D fractal deformations are

presented, it is unclear if 3D deformations

would retain their natural look.

Displacement vectors in 3D are very similar

to the coarse spline meshes proposed in

[ST89] and have the same drawbacks.

Another approach based on a Gibbs

sampler [VML97] constrains fractal terrains

to pass through a set of pre-defined points.

However, there is no guarantee as to the

shape of the terrain between the points.

Hence it is hard to produce a precise result

(e.g. a completely flat road), without having

to provide a large number of points, which

in turn defeats the purpose of automated

deformation.

Solutions to specific types of deformations

have also been studied previously. One

approach for this uses a squig-curve model

to generate rivers during the fractal terrain

generation process [PH93]. Procedural

attempts to generate erosion effects that

simulate water flow in an existing terrain

have also been presented. There, physically

based models of hydraulic and thermal

erosion and sediment movement to simulate

the erosion due to water flow are used to

modify the terrain [KMN88, MKM89,

BF01, CMF98]. None of these solutions

extend past their specific domain.

Another related topic is texture synthesis.

These approaches use procedural techniques

for the generation of textures with varying

properties (see e.g. [HB95, GM85, NC99,

TZL*02]). However, all these approaches

work at local scales, whereas the problem

introduced in this paper may require changes

at all scales. Initial work to blend multiple

texture types for more global control has

been presented [ZZV*03], but even this

work is clearly not general enough to

address the problem introduced.

Furthermore, texture synthesis is not

designed for the creation of three-

dimensional terrains and in general textures

visualized as three-dimensional terrains do

not necessarily look realistic. One exception

is the work on hypertextures [PH89], which

are targeted at three-dimensional

applications. However, it is unclear how one

can modify this approach to adapt the result

to specified constraints.

Several three-dimensional modeling suites

allow the user to work with meshes.

Although such software allows the user to

modify a mesh at the vertex level, there is

very little support for modifying a fractal

terrain to conform to a predefined shape,

such as a road. This means that the user has

to adapt a trial and error approach as one

must first find a terrain that approximately

conforms to the desired criteria and then

modify that terrain by hand. Although one

can generate very realistic and convincing

results with such software, this is a laborious

endeavor.

In the artistic community, manual

approaches that use image-processing

methods to modify a terrain so that a road

can be inserted are well known. For example

[Fry04] employs posterization of fractal

terrains to insert a road into the terrain.

While the results look great, the approach is

limited by the random shape of the fractal

terrain and does not allow the insertion of a

road of a predefined shape (e.g. a road that

doesn’t exceed a certain gradient) into an

arbitrary terrain.

2.1.Contribution

In summary, we can say that no previous

work provides a method for general

deformation of fractal terrains. Although

algorithms exist, which can generate

approximate solutions to some of the

presented problems, no work to date has

successfully addressed general constrained

terrain deformation.

This paper presents a new method for

automatically deforming a fractal terrain to

satisfy a wide array of possible constraints.

Constraints are defined by using a highly

expressive mathematical framework. Our

algorithm’s strength lies in its generality,

and can produce a wider array of results than

any other work to date.

3. General deformation of terrains

with constraints

Our approach begins with a terrain defined

as a height map. This terrain is usually

obtained by fractal terrain generation and is

then deformed according to a set of

constraints. These constraints are expressed

as functions that define how close the terrain

has come to satisfying the constraint.

Our method requires two inputs. The first

is the terrain, T represented as a two-

dimensional array of height values.

Secondly, we require a fitness function F

defined over the terrain T, which expresses

the constraints to be imposed on the terrain.

More specifically, F(T) is a measure that

intuitively describes “how far” a terrain T is

from satisfying the constraint description.

All constraints in our algorithm are encoded

in this general fitness function, which allows

us to specify multiple constraints

simultaneously.

Our method also requires a deformation

operation. In general, it is desirable to

produce natural looking deformations and to

preserve the original terrain as much as

possible. While there are many options for

this, we choose multiplication with a

truncated Gaussian kernel as our

deformation operator to reduce potential

artifacts, while still allowing for efficiency –

the algorithm operates on terrains with

thousands or even millions of vertices. This

deformation is then applied to a region of

the terrain by first scaling the Gaussian

kernel to the desired amplitude and radius.

More precisely, given a vertex v, a desired

amplitude a, and a modification radius r, the

operator multiplies the terrain with a

Gaussian function of radius r centered at

terrain vertex v with amplitude (a–v.height).

This operation was chosen because the

distribution forces point v to the desired

height, while maintaining the overall shape

of the original terrain without introducing

artifacts. Other deformation operations

could be employed, but we have found that

the Gaussian kernel adequately satisfies our

needs.

Our algorithm is based on deforming the

original terrain T into a new terrain T’. T’ is

defined as a height map that fits the

constraints, i.e. it has the property:

F(T’) = 0

Because we have restricted deformations

to a single operation (the Gaussian

multiplication) the problem of finding a

general solution to terrain deformation is

reduced to a search for a sequence of

Gaussian multiplications that attempt to

minimize F. To further simplify this search

we parameterize a general Gaussian kernel

as a triple (location, amplitude, and radius).

Our goal is to search for an optimal

sequence of parameter triples that deform

the original terrain into T’. However, even

with these assumptions, the search space is

infinite, and a bounded search of any

practical size is intractable. There is also no

guarantee that a terrain can be deformed to

satisfy the fitness function. Therefore,

instead of concentrating on finding the

global optimum, we concentrate on finding

approximations that are within epsilon of the

ideal solution:

F(T’) <= epsilon

Our approach makes use of stochastic

local search to find a sequence of operations

that converge the fitness towards epsilon. In

the following sections, we discuss how we

define constraints via fitness functions, how

we search for deformation sequences, and

finally how we optimize the search.

3.1.Constraint Definition

Our algorithm searches for a sequence of

“good” deformations, where the definition

of a good deformation is how it relates to the

evaluation of the fitness function. In this

section we present how constraints are

encoded via fitness functions. Three distinct

examples are presented, illustrating the

generality and power of this method. First,

we discuss how a terrain can be modified to

match a predefined shape, then we modify a

terrain to match a predefined road, and

finally we discuss how we can adapt a

terrain to fit the edge of a second terrain.

While we present three specific examples,

they serve to emphasize the generality of the

approach. The range of deformation

examples presented in this paper should

make the generality of the approach clear.

For reasons of efficiency, we prefer fitness

functions that are computable in constant

time per vertex, because fitness functions

will be evaluated for a large number of

operation parameters during the search. For

practically interesting terrain sizes this

necessitates fast computations and makes

functions that take (much) more than

constant time per vertex undesirable. Hence,

we choose to define F as a distribution of

penalties per vertex, which is highly

expressive, yet easily computable in

constant time. More precisely we define

F(T) to be the sum of all penalties over all

vertices for the given terrain.

∑
∈

=
Tyx

yxFTF
,

),()((1)

A simple example is to modify a terrain to

match an existing height map. If the desired

heights are stored in a two-dimensional

array, we can simply penalize vertices by

their distance from the desired shape.

2])][[]][[(),(yxheightyxTabsyxF −= (2)

To present a more interesting example for

shape modification we introduce a function

that constrains a terrain to fit a particular

form (such as the shape of an island). If the

shape is defined as a two-dimensional bit-

mask that specifies which areas should be

above a water level, we define F to penalize

each vertex whose height does not conform

to the desired shape.









−⇒

⇒=∧<

⇒=∧>

=
2)]][[(

0)0]][[()]][[(

0)1]][[()]][[(

),(

waterLevelyxTotherwise

yxmaskwaterLevelyxT

yxmaskwaterLevelyxT

yxF
(3)

Every vertex is penalized if it is above or

below the water level when it should not. Bit

masks for more than one height threshold

could be applied to produce more

complicated terrains.

Figure 1: An arbitrary terrain deformed to

accommodate a flat S-shaped road using

fitness function 4.

Another class of constraints is the creation

of terrains for modeling specific roads or

rivers. The simplest idea is to generate a

random terrain, and then search for a section

that can easily accommodate a road. This

was already presented by previous work

(e.g. [Fry04]). A much more difficult task is

to modify a terrain to fit a particular

predefined road. As an example consider a

completely flat road with a predefined shape

that is set into a very hilly terrain (Figure 1).

The fitness function for this terrain required

that all vertices that form the road be

constrained to a constant height. All other

vertices are to retain their original shape as

much as possible (to avoid global flattening

of the terrain!). We consider all vertices

within a certain distance from the road as

path vertices. The constraint function then

takes the following form:





−⇒=

−⇒=
=

2

2

])][[]][[()0),((

)]][[()1),((
),(

yxorigTyxTyxpathif

roadHeightyxTyxpathif
yxF

(4)

Vertices along the road are penalized by

the square of their divergence from the

desired height of the road, whereas all other

vertices are penalized by the square of their

divergence from the original terrain. For a

more general application, one can define

arbitrary roads by creating a function that

looks at a constant set of neighboring path

nodes, while incorporating slope and

oscillation as a penalty measure (e.g. to get a

road with a predefined gradient).

Finally, we discuss how to adapt a terrain

T1 to match the edge of a second terrain T2,

e.g. to extend a terrain further or to create a

self-tiling terrain patch. To solve this task,

we need a function that compares height

values along the edge of T1 to height values

along the edge of T2 and penalizes badly

matched vertices.

()2

21]][[]][[*)(),(yxMINTyxMAXTyWyxF −= (5)

A simple weighting function W(y) is used

to ensure that values close to the edges are

scaled appropriated to yield an equal

distribution.

Fitness functions provide a mechanism for

defining terrain deformations with utmost

versatility. They can be as complex as

explicitly defining exact vertex heights for a

majority of terrain vertices, to simple

functions defining the approximate position

of just one point.

3.2.Multiple Simultaneous Constraints

The power of our algorithm lies in the

definition of fitness functions as terrain

constraints. It is simple to combine fitness

functions via mathematical means such as

multiplication to combine multiple

constraints. Fitness functions must be

normalized in order to ensure that the

algorithm equally addresses all constraints.

3.3.Stochastic-Local-Search for

Deformations

In our search for a sequence of deformation

operations, the fitness function is treated as a

quantitative measure that specifies how far a

terrain is from conforming to the desired

result. Solutions to automated terrain

deformation are computed with a search for

a series of deformation operations to

transform a terrain T to another T’, which

minimize the fitness function F. Given that

any one of thousands of vertices can be

modified by a deformation of arbitrary

radius and amplitude the search space is

clearly infinite. Sampling a finite set of

amplitudes and radii still produce search

trees that are have enormous numbers of

children.

A good method for approximating search

in such cases is stochastic local search (SLS)

[Gu92, SLM92], a method whose roots are

based in simulated annealing [KGV82].

Though SLS will not guarantee the perfect

result (a terrain that matches the constraints

perfectly), the method guarantees high

quality approximations using a greedy

approach. However, a naïve greedy search

can reach local minima. Also, in our case,

where the number of deformations is limited

by processing speed, a greedy search may

not yield uniform deformation distribution.

Furthermore, in rare cases deformation may

stall if deformation actions ping-pong

between each other. Some SLS techniques

solve these problems by introducing random

noise to the search. Our algorithm uses noise

to avoid these problems as well. We

introduce an empirically set constant, p,

which determines the amount of noise to be

added to the search.

Our method generates a search space by

first performing a large number of possible

deformations, i.e. all vertices multiplied by a

Gaussian kernel given for a set of

amplitudes and radii. A table of potential

deformations with resulting fitness values is

computed per iteration. SLS chooses a

deformation resulting in the best fitness with

probability p, whereas a sub-optimal choice

is selected with probability 1-p. To prevent

unrecoverable deformations, we limit sub-

optimal choices to a certain percentage of

best deformations. Unlike satisfiability

problems (for which SLS has been shown to

be quite effective and where many iterations

can be performed), the search for terrain

deformations must be limited to a relatively

small number of iterations because the

generation of even one level of the search

tree is computationally expensive. Fractal

terrain deformation, however, does not

impose the restrictions of satisfiability as the

definition of a satisfying terrain is one that

conforms to the high-level constraint, and

therefore we seek solutions only within

epsilon. The goal is to satisfy the fitness

function’s high-level constraint. In practice,

we either terminate iteration when the

approximation has reached epsilon, or when

the iteration count has breached some

threshold.

It is vital to reduce the search space in any

way possible. Given that the set of all

sequences of all possible operations is

infinite, we first reduce the infinite search

space to a finite one by sampling a finite

subset of possible amplitudes and radii. By

controlling the amount of sampling we can

empirically control the tradeoff between

accuracy and speed.

Since a deformation can be centered on

any terrain vertex, brute force search of any

reasonable domain would be prohibitively

slow. We therefore reduce vertex counts by

pruning vertices in terms of their ability to

influence F. For this we use a general

method for determining a set of good

candidates. We begin by sampling the grid

to provide a minimal and uniform

distribution across the terrain. We then add

vertices to this set by performing quad-tree

subdivision in areas of interest. Here, we

define certain regions to be modifiable, such

as vertices along a path or all vertices

surrounding a shape mask. We then

subdivide the domain one level further if the

partitioned space contains any area marked

modifiable. Figure 2 demonstrates how this

procedure identifies areas of interest.

Figure 2: We select candidate vertices by first

adding all vertices along interesting

features, in this case along a defined path

(black dots). Quad tree subdivision then

provides vertices concentrating around that

path (empty circles). A coarse sampling of

the entire grid ensures a uniform

distribution of vertices over the remaining

terrain (blue dots).

In this way we significantly reduce the

number of deformable vertices, while

ensuring that vertices capable of greatly

influencing deformation are included in the

candidate set. Even with this technique, the

search tree remains large. As an example,

consider that this technique may reduce the

potential number of deformations on a

terrain with 257
2
 vertices to only thousand

modifiable vertices. With 25 possible

amplitudes and 7 possible radii (empirical

values that we have found to produce good

results), a search tree of height 3 will still

contain roughly 30 billion nodes. The size of

this search tree justifies our use of stochastic

local search as a viable means of search.

3.4.Frequency Limitation

Although our method produces results that

are aesthetically sound, we hope that in the

future, systems that employ our method will

run at interactive rates. Without reduction in

computation time through pruning of

candidate vertices, even the simplest

deformation tasks can take upwards of

several hours to complete.

Figure 3: This terrain shows artifacts that can

occur if high frequency operations are

performed. On the right side of this terrain

the algorithm applied several local, high

frequency, operations, which result in

artificial bumps and dips.

Initial implementations of our algorithm

preferred to modify small regions

(corresponding to high frequencies), because

such modifications have little influence on

surrounding vertices and consequently

improve the fitness function at little cost.

However this is a problem, as high

frequency modifications may introduce

unwanted spikes in the terrain. Figure 3

demonstrates the corresponding artifacts.

We practically eliminate all such artifacts by

pruning all parameter combinations whose

displacement is greater than a fixed

proportion of the radius. A side effect of this

pruning is a large reduction in overall search

time.

3.5.Optimization with Prediction

In each iteration, a lot of work is performed

when computing the fitness values for each

possible deformation operation. The

probability that a deformation resulting in a

poor fitness value will be a top candidate in

the next iteration is very small. However,

removing such a deformation operation from

the set of candidates is not acceptable, as

that operation may be beneficial in future

iterations. In order to reduce the overall

amount of work when computing

deformation fitness values, we introduce a

technique that uses prediction to reduce

computation.

We introduce a confidence value mapped

to each possible deformation. This

confidence value represents the probability

that the specific operation will improve the

terrain enough that it will be considered as a

top candidate in the search. The first

iteration initializes the confidence of all

deformations to 1.0. It is unknown which

deformations rank highly, and which

deformations are poor. The confidence value

for the deformation in the next iteration is

computed as follows:

][*))
minmax

)min][(
,1min(1(][1 iconf

FF

FiFC
iconf tt

−

−+
−=

+
(7)

where conft[i] is the confidence of the

deformation operation i at iteration t. The

variables maxF and minF are the best and

worst fitness values computed for the

previous iteration. C is an empirically set

constant, which artificially increases the

probability, ensuring that top candidates are

always re-computed, and forcing all

deformations to be re-computed after some

time.

4. Results

The algorithm presented in this paper can

deform arbitrary terrains to conform to

specified constraints. In this section we

demonstrate results generated with the

constraints introduced in section 3. All

presented results were generated with a

noise value p = 0.65, which we found to

solve all attempted deformation tasks.

Amplitudes and radii were sampled to 25

heights and 7 radial distances.

In general, the use of predictions to speed

up the computations results in a speed-up of

approximately 400%. Furthermore, we

found that the use of this optimization

results in deformations that are nearly

identical to those generated without

prediction, and unnoticeably different to the

naked eye.

4.1.Shape Conforming Terrain

Deformation

The first example demonstrates the ability of

our method to modify terrain data at global

scales. Using fitness function (3), we can

generate terrains that fit arbitrary shapes.

Figure 6 shows a star shaped terrain

automatically deformed using our algorithm.

The bit-mask used was a five-pointed star

shape. Generation of this model took 45

minutes on a 1.7Ghz Intel PC.

4.2.Deforming a Terrain to Match a Path

Some manual modeling techniques can

produce natural looking terrain with

particular features, such as a path or road

[Fry04]. However these features are always

dependent on the terrain they modify. The

terrain has always dictated the shape of the

road.

Our method decouples this dependence.

As an example, we show how to deform a

terrain so that it has an S-shaped path. The

road shapes the terrain. For this we use the

fitness function defined in equation (4). The

result is shown in Figure 1. Effectively, the

method carved a space for the road to pass

through in the right hand side of the terrain

(which was a hill), and created a land bridge

in the top left corner (where there was sea),

to ensure a realistic looking road.

Deformation of this terrain model was

accomplished in under 25 minutes.

4.3.Terrain Blending

Current implementations of terrain blending

work on the principle of texture blending.

They involve the application of blending

functions to one or more textures. Our

algorithm can merge terrains by defining a

fitness function as in equation (5). This not

only produces terrains that merge seamlessly

but can also reduce artifacts along edges.

Our approach deforms terrains to match

terrain edges instead of terrain blending

which simply blends height maps and

creates artifacts on severely disjoint terrains.

Figure 7 depicts two terrain-merging results,

each of which took under 6 minutes to

compute.

4.4.Merging Fitness Functions

The generality of our approach is best

demonstrated by the fact that we can

combine fitness functions. To demonstrate

the ability to merge fitness functions, we

generated a star shaped terrain with a road

network passing through each star end-point.

Note that the fitness function for road

generation requires that the original terrain

be preserved as much as possible.

Figure 4: A star shaped terrain with roads

extending to each endpoint. Deformed using

a fitness function that combines shape and

road constraints.

We ran the combined fitness function for

200 iterations with prediction. The results

are presented in figure 4, and the terrain

took 1.25 hours to generate. As expected,

road paths are generated and hills are split to

allow the road to pass through to the end

points of the star.

Combined fitness functions clearly result

in more computational effort, as multiple

features need to be accommodated. This

requires that the search space be explored

more widely and in general more iterations

of the SLS algorithm are required.

4.5.Terrain compression

Another benefit of our algorithm is that it

provides an efficient way to store deformed

terrains. Compression requires the storage

the original terrain (e.g. via its random seed

and size) and the sequence of deformations

(location, amplitude, and radius) that

produced the final result. Reconstruction

involves parsing a list of Gaussian

deformations, and applying them to the

terrain. Such an operation is computed

extremely quickly, and therefore, terrain

reconstruction speeds are a non-issue.

We compared our compression scheme to

JPEG compression in Photoshop on

setting 9 of 12 (high compression rate).

Figure 5 depicts image compression sizes

for average terrain images using our

compression scheme, and the jpg

compression scheme.

Figure 5: File sizes for different methods of

terrain data compression.

Regenerating the original fractal terrain

from its seed and applying the recorded

sequence of deformations to the terrain

decompress it. A fixed random lookup table

is required for fractal terrain compression to

be effective.

5. Conclusion and Future Work

In this paper we present a novel algorithm

for automated deformation of fractal terrain

data using stochastic local search. We have

shown how simple functions can be used to

describe complex constraints on terrains.

Furthermore, we have demonstrated how

intelligent search methods can be employed

to minimize these constraint functions. A

side effect of this search is a deformed

terrain.

One of the drawbacks of our current

implementation is execution speed. This

reflects the tradeoff between the generality

of our algorithm and the speed of specific

solutions. In the future, we hope to exploit

the fact that our approach is highly

parallelizable. Because the fitness values

computed for each vertex are solely

dependant on the terrain at the given

iteration, fitness computations can be

computed independently of each other. With

modern advances in hardware and multi-

core processors, this algorithm should be

able to deform terrains with highly complex

constraints at interactive rates.

References

[BF01] Beneš B., Forsbach R.: Layered Data

Structure For Visual Simulation Of

Terrain Erosion. IEEE Spring

Conference on Computer Graphics,

2001, 80-86.

[CMF98] Chiba N., Muraoka K., Fujita

K.: An Erosion Model Based on

Velocity Fields for the Visual

Simulation of Mountain Scenery.

Journal of Visualization and Computer

Animation vol. 9 (1998), 185-194.

[Ebe96] Ebert D.S.: Advanced

Modeling Techniques for Computer

Graphics. ACM Computing Surveys,

1996, 153-156.

[Fry04] Fry R., Calyxa Bryce

tutorials,

http://calyxa.best.vwh.net/~calyxa/pear

l/tutor.html.

[FOMC02] T. Fujimoto, Y. Ohno, K.

Muraoka, N. Chiba: Fractal

Deformation Using Displacement

Vectors Based on Extended Iterated

Shuffle Transformation. The Journal

of the Society for Art and Science,

Vol.1, No.3, pp.134-146, 2002

[GM85] Gagalowicz A., Ma S.:

Model Driven Synthesis of Natural

Textures for 3-D Scenes,

Eurographics, 1985, 91-108.

[Gu92] Gu J.: Efficient Local Search for

Very Large-Scale Satisfiability

Problems. ACM SIGART Bulletin

1992, 3(1):8-12.

[HB95] Heeger D.J., Bergen J.R.:

Pyramid Based Texture

Analysis/Synthesis, SIGGRAPH ’95,

229-238.

[HN01] Hoffmann J., Nebel B.: FF:

The Fast-Forward Planning System. AI

magazine, 22(3), 2001, 57-62.

[KMN88] Kelly A.D., Malin M.C.,

Nielson G.M.: Terrain Simulation

Using a Model of Stream Erosion.

SIGGRAPH ‘88, 263-268.

[KGV82] Kirkpatrick S., Gelatt, C.D.,

Vecchi M.P.: Optimization by

Simulated Annealing. IBM Technical

Research Report RC 9335, 1982.

[Lew87] Lewis J.P.: Generalized

Stochastic Subdivision. ACM

Transactions on Graphics, 6(3), 1987,

167-190.

[Man77] Mandelbrot, B. The Fractal

Geometry of Nature. Freeman, San

Francisco, 1977.

[MKM89] Musgrave F.K, Kolb C.E,

Mace R.S.: The Synthesis and

Rendering of Eroded Fractal Terrains,

SIGGRAPH ‘89, 41-50.

[NC99] Neyret F., Cani M.P.:

Pattern-based texturing revisited,

SIGGRAPH ‘99, 235-22.

[PH89] Perlin K., Hoffert E.: Hypertexture,

SIGGRAPH ’89, 253-62.

[PH93] Prusinkiewicz P., Hammel M.: A

Fractal Model of Mountains with

Rivers. Graphics Interface 1993, 174-

180.

[SLM92] Selman B., Levesque H.,

Mitchell D.: A New Method for

Solving Hard Satisfiability Problems.

Proceedings of AAAI 1992, 440-446.

[ST89] Szeliski R., Terzopoulos D.: From

Splines to Fractals. SIGGRAPH ‘89,

51-60.

[TZL*02] Tong X., Zhang J., Liu L.,

Wang X., Guo B., Shum H.Y.:

SIGGRAPH 2002, 665-672.

[VML97] Vermuri B.C., Mandal C.,

Lai S.: A Fast Gibbs Sampler for

Synthesizing Constrained Fractals.

IEEE Transactions on Visualization

and Computer Graphics, 3(4), 1997,

337-351.

[ZZV*03] Zhang J., Zhou K., Velho L.,

Guo B., Shum H.Y.: Synthesis of

Progressivley-Variant Textures on

Arbitrary Surfaces. SIGGRAPH 2003,

295-302.

Figure 6: A Star shaped island obtained by deforming a randomly generated fractal terrain.

(a) (b)

Figure 7: 3D views of merged terrain data, each consisting of 257
2
 vertices. (a) Side view of

merged terrain, before and after merging. (b) A different view of the same terrain models. (A

3x1 mean filter kernel was used along seams to remove small-scale artifacts).

