
Can Friction Improve Mouse-Based Text Selection?
Dusty Phillips

Dept. of Computer Science & Engineering
York University, Toronto, Canada

Wolfgang Stuerzlinger
Dept. of Computer Science & Engineering

York University, Toronto, Canada

Abstract— Text selection via caret positioning is a common task
in modern word processing interfaces. It is a difficult task as
target size – the distance between characters – is very small. We
adapt Baudisch's snap-and-go technique for target acquisition to
insert additional motor space at such targets when the mouse is
decelerating. This increases the size of the target in motor space,
thus potentially reducing the difficulty of text selection tasks. We
expand this idea by introducing the concept of context-sensitive
friction to improve target acquisition for common targets. We
performed two pilot studies and a controlled user study to
evaluate the new techniques. Our results indicate that selectively
introducing friction into the interface can reduce total task time
in common text selection tasks.

Keywords: selection, snapping, control-display ratio, friction.

I. INTRODUCTION
Next to actually inserting and modifying text in a

document, positioning the text-editing caret is arguably the
most common task users undertake in text editing and word-
processing. Another common and related task is text selection,
which consists of two separate caret-positioning tasks: one each
for the beginning and end of the target. In modern word-
processing applications, two alternatives exist for caret
positioning tasks: mouse- and keyboard-based techniques, and
most applications support both. Mouse-based caret positioning
entails moving the mouse cursor to the target area (between
two characters) and clicking the button to position the caret.
Text selection can occur in one of two ways: positioning the
cursor at one end of the target, pressing the mouse button,
dragging to the other end and releasing the button. Or
alternatively positioning the cursor at one end, clicking the
button, holding a modifier key (typically Shift), moving the
cursor to the other end, and issuing a second click. Both
techniques require positioning the cursor twice before text
selection can occur and an error in either will require redoing
both positioning tasks [9].

The emphasis of this work is on improving the mouse-
based user interface for text selection. Most such tasks select
blocks of words, sentences, or paragraphs. Users rarely start or
end selection in the middle of a word. In contrast, other caret
positioning tasks, e.g. for editing, have a more equal
distribution of possible targets as editing may start anywhere.
While it may be possible to adapt some of our work to caret
positioning, this is beyond the scope of this paper.

A. Targets are Small and Numerous
In positioning the caret with a mouse, potential targets are

all locations between characters in the document. These
characters are tiled across the page with little space between
them – the whitespace after the end of a line or paragraph being

an exception. Since a page of English text can easily contain
5000 characters with a 10-point font, there is an equal number
of possible targets, and each is relatively small. The target area
for each caret position (between characters) is the line height
by the sum of half the width of each character; see Fig. 1.

On a 1280x960 display at 100% zoom, text in 10 pt Times
is about 15 pixels high, and characters are 4-10 pixels wide.
The average Fitts’ law index of difficulty for the caret
positioning tasks is then in the range of 5-7 bits. This is high,
especially for such a common pointing task, and finding ways
to make it easier is worthwhile. Note that not all targets in a
text are of equal interest to a user. Users generally select words
and sentences more often than characters within words.
Programmers generally select specific parameters, statements,
or code blocks rather than characters in source code.

B. Related Work
Cursor positioning for text selection was first evaluated by

Card [8], who compared four input devices including the
mouse and cursor keys for hitting text targets. However, this
was not a caret positioning task: targets were words, and a
selection was counted when any portion of the target was hit.
Mackenzie later revisited this data [11] and noted that 2D Fitts’
law experiments should either use the approach angle or choose
the smaller of width and height for target size [12]. Gillan
analyzed point-drag movements and pointed out that the targets
were the beginning and end of the target text [9]. Mackenzie
also analyzed the differences between pointing and dragging,
showing that Fitts law applies to both techniques [13].

Microsoft Word supports “select by words”. When enabled,
any selection that crosses a word boundary will automatically
extend from the beginning of the first word to the end of the
last. This is very useful for selecting whole words. However,
for partial selection of words, it can be distracting. The feature
can only be disabled via the “Options” dialog. Backtracking the
selection will undo the word expansion, but this is not obvious
and most users are unaware of it.

The idea of dynamically modifying the mouse cursor
position is not new. Snapping was introduced by Bier [5] and

978-1-4244-3878-5/09/$25.00 ©2009 IEEE

Figure 1. The target area when positioning the caret between two characters
(green). The apparent (visible) target is much smaller: the distance between

the two characters (purple).

has been used extensively in user interfaces. This snaps the
mouse cursor to “important” locations during each mouse
movement or drag. Semantic Pointing facilitates target
acquisition by modifying the control-display ratio – the amount
of distance covered by the mouse vs. the amount of distance the
cursor moves onscreen [7]. Baudisch [4] described how
control-display ratio adjustment can compensate for difficulties
in snapping and how this idea can be applied to target
acquisition. He introduced friction in the Snap-and-Go
technique and coined the word frixels, i.e. friction pixels. There
the trajectory of the mouse is adapted as it crosses important
boundaries. The cursor pauses momentarily on the screen,
while the mouse continues moving. Conceptually, the mouse
cursor crosses invisible frixels at the current target, making it
easier to acquire, without inhibiting the ability to target nearby
positions. “Object pointing” is also based on the idea that
certain pixels (“objects”) on the screen may be more important
than others [10]. Other mouse-adaptation techniques have been
presented [1],[2],[3],[17],[19]. Noy's implicit disambiguation
work [16] used a reversed Fitts’ Law to determine the size of a
target from movement time. This is useful when multiple
targets occupy the same area and Noy discussed text selection
as an obvious example: a character, a word, and a phrase all
occupy the same location. With this, selection can occur with a
single point-click movement, rather than a point-drag motion.
However, no follow-up work has been presented. Miller
described how a smart editor could intuit selections from
previous selections for batch-style processing [14],[15]. Bier
recently presented the Entity Quick Click system for rapid
copy-and pasting of text [6].

C. Contribution
In this paper we present an algorithm to improve mouse-

based text selection with friction. It offers two improvements
over existing algorithms. First, the amount of friction applied at
a specific target depends on the speed of the mouse as it crosses
that target; more friction is applied at lower speeds. Second, the
amount of friction applied at each target is context-sensitive,
depending on the text content and mouse motion.

II. IMPROVED TEXT SELECTION
To speed up text selection, we investigated techniques that

extend standard mouse-based techniques. The first is a
variation of snapping [5], where the cursor snaps only to
character boundaries to minimize both cursor and text caret
obfuscation. This is then similar to Object Pointing [10] in that
the mouse cursor only moves between points where the caret
can be placed. In practice, we found that snapping the cursor to
the nearest target in the presence of many nearby targets is
problematic, as the cursor frequently snaps back to the target
that the user has just passed during a motion, which is
undesirable. Accumulating the distance the mouse moved since
the last snap action fixes this problem.

A. Speed-dependent Friction
We also adapted the Snap-and-Go technique [4] to text

selection. This technique inserts frixels into motor space to
increase the motor target size, and thus reduce acquisition
difficulty. The main issue with adding friction to text editing or
any interface with densely tiled targets is that simply adding

friction at each target causes all nearby targets to function as
distractors. Hence, it is better to apply friction only during the
final fine-tuning movements of caret positioning. In our new
technique we adjust the amount of friction depending on speed.

B. Context-Sensitive Friction
To further improve text selection, we introduce the idea of

context-sensitive friction. Here, the number of frixels added
when the mouse passes over a target depends on the relative
importance of the target. This enables the user to more easily
acquire more salient targets while not limiting their ability to
acquire arbitrary ones. E.g. the beginning or end of a word, or
sentence, is more important than the space between two
characters of an arbitrary word, see Fig. 2. Target importance
can either be pre-computed or determined dynamically. There
are many possibilities for determining the importance of a
target. We implemented this with multiplicative factors for
simplicity. Each target type has a base amount of friction. This
is multiplied by a factor at certain locations depending on
context. Currently, this includes the type of boundary, the type
at which the drag operation began, if it is the complementary
boundary relative to the start of the drag operation, and the
direction of motion. E.g., if selection starts at the beginning of
a word, the ends of words are emphasized with additional
friction, and the end of the current word is emphasized by an
even higher factor. Taking the direction of motion into account
causes the beginnings of objects to be emphasized more when
the mouse is moving from left to right, and vice versa.

C. IMPLEMENTATION
We implemented the above snapping and friction

techniques in Python and PyGTK. The implementation of
snapping was straightforward. First, the nearest target is
identified. If the mouse is moving away from that target, the
distance moved is accumulated and added to the cursor location
when the next event is processed. We also use a threshold to
preclude snapping if the speed is high. This allows the user to
cover large areas of whitespace (specifically the distance from
the end of a line to the edge of the window) without snapping.

For friction, we track horizontal and vertical motion
separately and also insert frixels at character locations in both
dimensions independently. We first calculate the actual screen
distance the mouse has moved since the previous event. If the
mouse was previously in a friction location, we subtract the
number of frixels not yet accounted for. Otherwise, we search
all screen positions traversed by the mouse and subtract all
corresponding frixel values. This may leave the cursor in a
friction location, in which case, we store the number of frixels
not yet accounted. Pseudo code is shown in Figure 3.

Figure 2. The most salient targets in a paragraph of text are word,

sentence, and paragraph boundaries. Some salient targets overlap. Target
types are shown in different colours.

This basic friction algorithm is common, but an external
function is used to determine the amount of friction for a given
character location. The function implements either speed-
dependency or context-sensitivity. The first method inserts
fewer frixels when the mouse is moving quickly, and more
when it is slowing down. For this, we take the physical screen
distance moved since the previous motion event and compute
the percentage of this maximum value that should be inserted
into motor space. If the motion is less than a certain threshold,
full friction is inserted, if it is more than a second threshold, no
friction is inserted. Between these values, the amount of
friction is interpolated linearly. For context-sensitive friction,
we pre-parse the text at each character boundary into types (i.e.
start/end for word, sentence, block, etc) and use this as a
lookup table when the mouse crosses a specific character
location. Alternatively, one could integrate this into an editor's
syntax highlighting and tokenizing routines.

III. PILOT STUDIES
To investigate the new snapping and friction methods, we

performed two pilot studies. In each study, the basic task was
to select a text target by a click and drag sequence. The user
interface for all studies was a 600x600 pixel text view window,
with a 32x32 pixel task initialization button vertically centered
on the right, see Fig. 4. The purpose of the first pilot was to
compare both snapping- and speed-dependent friction-based
interfaces to traditional cursor positioning. The second
compared context sensitive to speed-dependent friction and the
traditional interface. The intent of both pilots was to explore
the domain and determine the potential of the techniques.

A. Task
The participants' task was to perform a series of selections

in each of four conditions. Each trial began with a click on the
initialization button. The target was highlighted, see Fig. 4.
Users then moved the mouse to either end of the target and
initiated a click-drag sequence to select it. Time, distance,
target size and errors were recorded separately for both the
click and the drag movement. We used four types of text: parts
of a Wikipedia article, lines from a classic play, HTML, and
Java source code. There were four types of selection target:
words, sentences, paragraphs, and targets starting and ending at
arbitrary positions. Participants were asked to perform each
trial as quickly and accurately as possible.

B. Conditions & Apparatus
There were four main conditions for each of the pilots. The

first compared traditional mouse motions, snapping, symmetric
and asymmetric friction-based positioning. The second
extended this and compared traditional positioning with a
revised symmetric friction-based positioning method along
with two variations of the context sensitive methods.

In the traditional method, mouse motion was unmodified.
In snapping, the cursor moves only to character boundaries.
The two basic friction conditions inserted frixels in each
dimension at all character boundaries, using speed-dependent
friction. The symmetric friction condition (Friction-1) inserted
the same number of frixels in each dimension, while the
asymmetric one (Friction-2) inserted more frixels for horizontal
than vertical. Caret targets are generally smaller in width than

in height, and the smaller of width and height has been shown
to be a good approximation for two-dimensional Fitts tasks
[11]. The two context-sensitive friction techniques for the
second pilot added friction only at word, sentence, and
paragraph boundaries. No friction was added for other targets.
Higher-level targets were considered more salient and therefore
received more friction. But as they are less frequent, this does
not add much distraction. One technique considered the
direction of mouse movement, the other did not.

Experiments were run on a Linux PC with two 19” 96dpi
monitors at 1280x1024@75Hz. The main window was
presented centered on the left-most monitor. A Microsoft
IntelliMouse was used as input device. The keyboard was
moved out of the way for the duration of the study.

C. Experimental Design
Both studies utilized a within-subjects 4x4x4 design

(Positioning Technique by Text Type by Selection Type),

function friction_motion(location):
 set pixelsMoved to distance to previous
 if pixelsMoved <= frictionLeft from last motion
 remove pixelsMoved from frictionLeft
 reposition cursor to previous location
 else: //need to account for extra friction
 remove frictionLeft from pixelsMoved
 reset frictionLeft to 0
 initialize actualToMove to 0
 //Check each pixel between previous and end
 while pixelsMoved > 0:
 //set pix to location we are checking next
 pix = previous + actualToMove + 1
 set frictionLoc to character nearest to pix
 increment actualToMove by one
 if pix is same as frictionLoc:
 extra = getNumFrixels(frictionLoc)
 if pixelsMoved more than extra to insert:
 remove extra from pixelsMoved
 else: //moved into a friction location
 reset frictionLeft for next motion
 reset pixelsMoved to 0
 else: //Crossed pixel with no friction
 decrement pixelsMoved by 1
 reposition cursor to previous + actualToMove
 reset previous to new location
 reposition cursor to previous + actualToMove
 reset previous to new location

Figure 3. Simplified pseudocode for friction

Figure 4. The user interface used in the study with selected text. The

task initialization button appears to the right of the text area.

where positioning technique was counterbalanced to account
for potential learning effects. Six different selections were
performed for each selection type, with no repetitions. Hence,
there were 96 trials for each technique for a total of 384 trials
per user. Task times and distances were recorded separately for
the click and drag portions of each trial. Task time for clicking
starts with the release of the initialization button and ends when
the mouse button is pressed over the text area. Drag time starts
with a mouse button press and ends on release. Distance is
calculated from the location of the mouse event to the center of
the target. Errors are logged independently.

D. Participants
Twelve paid volunteers were used for each pilot, recruited

from the local campus. In the first, 7 males and 5 females
between the ages of 21 and 34 (mean: 25) participated, in the
second, 4 males and 8 females between the ages of 18 and 31
(mean: 24). All participants had previous experience with
graphical user interfaces and mice and all were right handed.

E. Hypotheses
For the first pilot, we had three hypotheses: (1) Task times

for all four conditions would be about the same. The traditional
and snapping interfaces have roughly the same index of
difficulty. Friction-based targets have larger target size in
motor space but the mouse may also have to cover larger
distances; thus the index of difficulty should be roughly the
same. While the evaluation of Snap-and-go showed substantial
effects [4], we cannot expect to replicate this as our targets are
much denser. (2) Participants would have a lower error rate
with snapping. With less visual interference between mouse
cursor and characters, participants should be able to locate
targets more easily. (3) The error rate would be lower for
friction than for the other conditions. The larger target size in
motor space should make targets easier to acquire.

For the second pilot we had the following two hypotheses:
(4) The context sensitive conditions would show lower time for
common targets (words, sentences, and paragraphs), but not
for random targets. Friction emphasizes targets most likely to
be selected by users, thus making them easier to acquire. For
random targets, the context-sensitive method should not have a
noticeable effect because as its targets are separate from those
enhanced by friction. (5) Directional context sensitive friction
would be faster. Context sensitive friction may suffer from
nearby distracters, e.g. the end of the previous word when
selecting the beginning of the next. Making it dependent on
friction should reduce this effect.

F. Results
1) Selection Time

For the first pilot, a within-subjects ANOVA on selection
time shows a significant difference, F3,33=41.83, p<<0.01. A
Tukey-Kramer test revealed that snapping was significantly
slower than all other techniques. Mean times were Traditional:
3.39, Friction-1: 3.62, Friction-2: 4.00, Snap: 4.92 seconds.
Hence, hypothesis (1) did not hold. There was also a significant
effect in the second pilot, F3,33=10.09, p<<0.01, where the
traditional interface was significantly faster, but there was no
difference between the friction conditions. The mean times
were Traditional: 3.31, Context-Sensitive: 3.49, Directional:

3.59, Friction: 3.61 seconds. Analyzing the tasks by target type
for hypothesis (4), we found a significant effect only for
random selections, F3,33=10.40, p<<0.01. Mean times were:
Traditional: 3.39, Friction: 3.65, Context-Sensitive: 3.71,
Directional: 3.95 seconds. There was a main effect for selection
time on non-random targets (words, paragraphs, sentences),
F3,33=7.24, p<<0.01, and only the simple friction and
traditional interfaces were different. Average movement times
were Traditional: 3.29, Context-Sensitive: 3.42, Directional:
3.47, Friction: 3.60 seconds. Hence, Hypothesis (4) did not
hold. There was also no significant effect between the two
friction tasks and the directional interface tended to be slower,
disconfirming Hypothesis (5).

2) Error Rate
There was a slight main effect on error rate in the first pilot,

F3,33=3.00 p<0.05. The Tukey-Kramer test indicated that
snapping was significantly worse than the traditional interface.
The error rates are Traditional: 7.4%, Friction-1: 8.8%,
Friction-2: 8.9%, Snap: 12.9%. In the second pilot, there was
no main effect on error rate, with error rates Context-Sensitive:
9.9%, Directional: 9.9%, Traditional: 10.5%, Friction: 10.7%.
There was no main effect on error rate for the friction
conditions, so Hypothesis (2) and (3) did not hold. While error
rates appear to be high compared to the 4% expected for Fitts’
tasks, we note that each task is composed of two positioning
tasks, which increases the potential for errors substantially.

3) Other Effects
The plain text article was significantly slower than the

others in the first pilot, F3,33=7.65, p<<0.01. Means were:
Play: 3.8, Java: 3.92, HTML: 3.94, Plain Text: 4.26 seconds.
The text article was also significantly slower than HTML in the
second pilot, but a Tukey-Kramer test indicated no further
differences. We also noticed additional interesting effects in
our second pilot. There was a main effect for movement time
on target type, F3,33=33.34, p<<0.01, and on text type,
F3,33=20.97, p<<0.01. The former is to be expected, since
target size varies between the four target types and size has a
direct impact on movement time. The effect on text-type is
somewhat surprising, but can be explained by the fact that the
play and source code have more line breaks and hence more
easy-to-hit targets.

4) User Preferences
In the first pilot eleven of the twelve users preferred the

traditional interface, and eleven ranked the snap interface in
last place. Seven ranked symmetric friction ahead of
asymmetric. User preference in the second pilot varied more.
Half of the 12 users rated the traditional interface as their first
choice, and four preferred the context sensitive condition first.
Overall, the traditional and context sensitive techniques were
preferred over the friction and directional friction techniques.

G. Discussion
These pilots had several uncontrolled variables and the

results are somewhat inconclusive. The only fact we can derive
from the first pilot is that snapping is clearly inferior. Users had
a great deal of difficulty with this interface as the cursor tended
to jump between lines. We suspect that an interface that only
snaps in the X dimension might be better received. The
symmetric friction algorithm outperformed the asymmetric

friction algorithm. While significant, these results are not
conclusive; it is probable that the added friction in the
horizontal dimension caused more interference, and not
because asymmetry in friction is a bad idea per se. Without
taking context into account, speed-dependent friction performs
less effectively than the traditional method. However,
observations during the pilots indicate that this may be due to
inappropriate parameter settings (too much friction, wrong
speed-dependent thresholds, or multiplicative constants too
big). We also noticed that many users did not move the mouse
in a way that allows prediction of target type from direction.
Hence, we are uncertain if direction is a good design factor.

IV. USER STUDY: CONTEXT SENSITIVE FRICTION
Users are experienced with the traditional interface. As the

parameter settings emerged as a critical issue in our pilots, we
incorporated a tuning task in our main user study, where we
adjusted parameters for each user. This helps also to identify
which parameters are user-specific, and which can be set
globally. The results from our pilots could not be easily
analyzed as a Fitts’ task due to several issues, such as the
freedom of users to select text in either direction or the lack of
repeated indexes of difficulty. Hence, we designed the main
study to enable such analysis as well.
A. Task

The task was a restricted version of that used in the pilots.
In particular, users were asked to select only from left to right
in this study, to fix the indexes of difficulty. We only evaluated
two techniques in this study, traditional and a revised form of
context-sensitive text selection. Each trial was repeated four
times to enable users to learn the new technique. We used only
regular text, as this was the slowest condition in our pilots and
is also the most common task. This also allowed us to fix the
types of boundaries we targeted and reduced the potential for
interaction effects. We chose four different Wikipedia article
excerpts to alleviate participant boredom. We limited ourselves
to targets aligned to word boundaries. These are the most
common targets, and are easy to define and mark up in context.
Target lengths ranged from one three-letter word to half a
paragraph. Targets were selected to ensure they did not begin
or end on artificially large targets like line and paragraph
boundaries, as such targets are much easer to acquire and the
varying width complicates a Fitts’ analysis.
B. Experimental Design

This study was performed in three parts. We first performed
a 2x4x8x4 (condition by text by target by repetitions) within-
subjects experiment with counterbalanced conditions using
default parameters for the context sensitive algorithm. For five
minutes we then performed interactive parameter tuning.
Participants would make a few selections; we would adjust
parameters; have the user make more selections, etc. We based
tuning on user feedback as to how the adjustments felt, speed
and error measures, and observation of problems during
selection. Four parameters were modified. Speed thresholds:
The minimum and maximum speed at which friction is fully
applied or not applied at all, with linear interpolation between.
Defaults were 2 and 32 pixels per motion event. Line friction:
The amount of friction inserted at each line in the Y dimension.
Increasing this helps users stay on the same line. Initially set to

1 frixel. Word friction: the number of frixels to insert at the
beginnings and ends of words. Default was 5 frixels. Drag-
factor: A multiplicative friction factor to emphasize end-of-
word targets, once the beginning of a word had been selected.
The default was 2. Direction-factor: A multiplicative friction
factor to emphasize motion towards the beginning or end of a
word. The default was 1.5. In the third part of the study, we
again evaluated the traditional interface against the context
sensitive interface using the design of the first part, this time
using the custom parameters identified during tuning.

C. Participants
Ten paid volunteers (3 male, 7 female) between the ages of

20 and 28 (mean: 23) were recruited from our campus. All
participants had previous experience with graphical interfaces
and mice. All used the mouse with their right hand.

D. Hypotheses
We had 3 hypotheses. (6) Movement time for both initial

positioning and drag positioning tasks would be lower for the
context sensitive interface than for the traditional interface. A
larger target size in motor space gives friction an advantage,
and all targets are at friction boundaries. (7) Error rates would
be lower for the context sensitive. A larger target size in motor
space again makes targets easier to acquire. Blanch’s study on
Semantic Pointing showed improvements in both movement
time and error rate [7]. (8) Users would perform better on the
context sensitive task after tuning than before. Tuning was
designed to determine better parameter settings. Tuning also
gave users a chance to learn the interface better.

E. Results
1) Movement Time

An ANOVA on total selection time found a main effect,
F1,10=7.69, p<0.05. Mean movement times were Friction: 2.85,
Traditional: 3.00 seconds. We removed trials as outliers, if the
user gave up on the task due to an error in the initial press.
Interestingly, after optimizing the parameters selection time
had only a marginally significant effect, F1,10=4.24, p<0.1. The
means were Friction: 2.72, Traditional: 2.82 seconds. Breaking
times down, we found that the positioning time for the initial
click was not different, only the drag times showed an effect
both before and after optimization, F1,10=6.77, p<0.05 and
F1,10=7.55, p<0.05 respectively. Means before optimization
were Friction: 1.32, Traditional: 1.42 and after Friction: 1.25,
Traditional: 1.34 seconds. Hence, hypothesis (6) is supported.

2) Error Rate
The error rates for the first part of the study were Friction:

10%, Traditional: 11.6%, with no main effect. There was a
significant effect between error rates in the post-optimization
part of the study, F1,10=6.66, p<0.05. The error rates were
Friction: 8.7%, Traditional: 12%. Hypothesis (7) is therefore
supported. Both time and error rates were significantly lower
for the context-sensitive friction condition after optimization
and thus Hypothesis (8) is supported.

3) Fitts’ Analysis
We calculated the effective width and index of difficulty for

the press and drag events. We then calculated throughputs for
each trial and performed an ANOVA. There was no significant

difference in the throughputs for the press portion of the task
before optimization, but there was a main effect after the tuning
process, F1,10=5.43, p<0.05. There was a significant difference
for the drag portions both before and after optimization,
F1,10=6.27, p<0.06 and F1,10=18.17, p<<0.01, respectively.
The throughputs are summarized in Table 1.

4) Parameter Optimization
The factors for dragging and direction both converged

towards 1.5 during the tuning process. The amount of friction
at word boundaries did not vary much between users and
ranged from 3 to 7 frixels, most seemed to prefer 5. The speed
threshold ranged from 2 to 5 pixels for the minimum and from
32 to 64 for the maximum. We noticed that the minimum
tended to affect users more, and also that the setting seemed to
be deeply personal. Some users appreciated having the cursor
“stick” to the line via friction in the vertical dimension, but
most did not.

5) User Preferences
Data from the questionnaire on user preference does not tell

us much. Before optimization, two participants had no
preference and the remaining eight were divided equally. Most
indicated that the difference was not terribly noticeable. After
optimization, four participants indicated no preference, and the
remaining six were again divided equally. One user switched
from friction to traditional after optimization, but the remaining
nine either did not change their preference or migrated towards
friction after optimization.

F. Discussion
In this experiment, the context sensitive interface

outperformed the traditional interface, especially after
optimizing the parameters. Most of the parameters can be set to
default values, except the speed thresholds, which seems to be
individual. Also, we found evidence that the values we chose in
our pilot were indeed too “strong”. From our pilots we believe
that context sensitive friction does not interfere significantly
with other selection tasks. Therefore, context sensitive friction
can be added to text editing interfaces without noticeable
negative effects. The most common targets can be emphasized
without impeding the ability to select other arbitrary targets.

Possibly the most surprising result is the fact that the real
difference is in the dragging portion of the task. This suggests
that friction is more useful for text selection than it is for caret
positioning. Also, the throughput results support previous
findings that users tend to drag more slowly than they position
[9], [13]. We suspect that either the chosen friction parameters
or the friction idea in general does not work as well during the
(faster) positioning task. It is possible that different friction
speed thresholds are needed for the caret positioning and text
selection portions of the task.

V. CONCLUSION
This work targets the common task of mouse-based text

selection. We compared the traditional technique to snapping
and various new, iteratively designed, friction-based interfaces.
Our pilot studies indicated that snapping is inferior and that
simple friction methods do not work well. Our main study
showed that a well-tuned implementation of context sensitive

friction could significantly outperform traditional text selection
techniques for targets aligned at word boundaries. For future
work, we plan to investigate the concept of decreasing friction
over less important areas, i.e. introduce “anti-friction”, which
would speed the cursor up on such areas. Also, we will focus
on caret positioning separately from the text selection. Finally,
we want to investigate how syntax highlighting can coexist
with the identification of context-sensitive targets.

REFERENCES
[1] Aliakseyeu, D. Nacenta, M. A. Subramanian, S. and Gutwin, C., Bubble

Radar: Efficient Pen-Based Interaction, AVI 2006, 19–26.
[2] Asano, T. Sharlin, E. Kitamura, Y. Takashima, K. Kishino, F.,

Predictive Interaction Using the Delphian Desktop, UIST ‘05, 133-141.
[3] Balakrishnan, R., "Beating" Fitts' law: virtual enhancements for pointing

facilitation, Human-Computer Studies, 61(6): 857-874, 2004.
[4] Baudish, P. Cutrell, E. Hinckly, K. and Eversole, A., Snap-and-go:

Helping users align objects without the modality of traditional snapping,
CHI 2005, 301-310.

[5] Bier, E., Stone, M., Snap-dragging, SIGGRAPH 1986, 233-240.
[6] Bier, E. Ishak, E. Chi, E., Entity Quick Click: Rapid Text Copying

Based on Automatic Entity Extraction., CHI Abstracts 2006, 562-567.
[7] Blanch, R. Guiard, Y. and Beaudouin-Lafon, M., Semantic Pointing:

Improving Target Acquisition with Control-Display Ratio Adaptation,
CHI 2004, 519–526.

[8] Card, S. English, W. and Burr, B., Evaluation of Mouse, Rate-Controlled
Isometric Joystick, Step Keys, and Text Keys for Text Selection on a
CRT, Ergonomics 21(8): 601-613, 1978

[9] Gillan, D. Holden, K. Adam, S. Rudisill, M. and Magee, L., How Does
Fitts Law fit Pointing and Dragging?, CHI 1990, 227–234.

[10] Guiard, Y. Blanch, R. and Beaudouin-Lafon, M., Object Pointing: A
complement to Bitmap Pointing in GUIs, Graphics Interface 2004, 9-16.

[11] MacKenzie, I. S., Fitts' Law as a Research and Design Tool in Human-
Computer Interaction, Human-Computer Interaction, 7:91-139, 1992

[12] MacKenzie, I. S. and Buxton, W., Extending Fitts' Law to Two-
Dimensional Tasks, CHI 1992, 219–226.

[13] MacKenzie, I. S. Sellen, A. and Buxton, W., A Comparison of Input
Devices in Elemental Pointing And Dragging Tasks, CHI ‘91, 161–166.

[14] Miller, R. Myers, B., Multiple Selections in Smart Text Editing, IUI
2002, 103-110.

[15] Miller, R. and Myers, B., LAPIS: Smart Editing with Text Structures,
CHI 2002 Extended Abstract, 496–497.

[16] Noy, D., Predicting User Intentions in Graphical User Interfaces Using
Implicit Disambiguation, CHI 2001 Extended Abstract, 455–456.

[17] Rodgers, M. Mandryk, R. L. and Inkpen, K., Smart Sticky Widgets:
Pseudo-haptic Enhancements for Multi-Monitor Displays, Smart
Graphics 2006.

[18] Soukoreff, R. W. and MacKenzie, I. S. Towards a standard for pointing
device evaluaton, perspectives on 27 years of Fitts’ law research in HCI.
Human-Computer Studies, 61:751-789, 2004.

[19] Worden, A. Walker, N. Bharat, K. and Hudson, S., Making Computers
Easier for Older Adults to Use: Area Cursors and Sticky Icons, CHI
1997, 266–271.

Before
Optimization

After
Optimization

Press Drag Press Drag
Traditional 4.55 3.42 4.85 3.55

Friction 4.74 3.81 5.16 4.00

TABLE 1: GRAND THROUGHPUTS FOR THE TWO CONDITIONS BEFORE AND
AFTER OPTIMIZATION.

