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Abstract— Text selection via caret positioning is a common task 
in modern word processing interfaces. It is a difficult task as 
target size – the distance between characters – is very small. We 
adapt Baudisch's snap-and-go technique for target acquisition to 
insert additional motor space at such targets when the mouse is 
decelerating. This increases the size of the target in motor space, 
thus potentially reducing the difficulty of text selection tasks. We 
expand this idea by introducing the concept of context-sensitive 
friction to improve target acquisition for common targets. We 
performed two pilot studies and a controlled user study to 
evaluate the new techniques. Our results indicate that selectively 
introducing friction into the interface can reduce total task time 
in common text selection tasks. 
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I.  INTRODUCTION 
Next to actually inserting and modifying text in a 

document, positioning the text-editing caret is arguably the 
most common task users undertake in text editing and word-
processing. Another common and related task is text selection, 
which consists of two separate caret-positioning tasks: one each 
for the beginning and end of the target. In modern word-
processing applications, two alternatives exist for caret 
positioning tasks: mouse- and keyboard-based techniques, and 
most applications support both. Mouse-based caret positioning 
entails moving the mouse cursor to the target area (between 
two characters) and clicking the button to position the caret. 
Text selection can occur in one of two ways: positioning the 
cursor at one end of the target, pressing the mouse button, 
dragging to the other end and releasing the button. Or 
alternatively positioning the cursor at one end, clicking the 
button, holding a modifier key (typically Shift), moving the 
cursor to the other end, and issuing a second click. Both 
techniques require positioning the cursor twice before text 
selection can occur and an error in either will require redoing 
both positioning tasks [9]. 

The emphasis of this work is on improving the mouse-
based user interface for text selection. Most such tasks select 
blocks of words, sentences, or paragraphs. Users rarely start or 
end selection in the middle of a word. In contrast, other caret 
positioning tasks, e.g. for editing, have a more equal 
distribution of possible targets as editing may start anywhere. 
While it may be possible to adapt some of our work to caret 
positioning, this is beyond the scope of this paper. 

A. Targets are Small and Numerous 
In positioning the caret with a mouse, potential targets are 

all locations between characters in the document. These 
characters are tiled across the page with little space between 
them – the whitespace after the end of a line or paragraph being 

an exception. Since a page of English text can easily contain 
5000 characters with a 10-point font, there is an equal number 
of possible targets, and each is relatively small. The target area 
for each caret position (between characters) is the line height 
by the sum of half the width of each character; see Fig. 1. 

On a 1280x960 display at 100% zoom, text in 10 pt Times 
is about 15 pixels high, and characters are 4-10 pixels wide. 
The average Fitts’ law index of difficulty for the caret 
positioning tasks is then in the range of 5-7 bits. This is high, 
especially for such a common pointing task, and finding ways 
to make it easier is worthwhile. Note that not all targets in a 
text are of equal interest to a user. Users generally select words 
and sentences more often than characters within words. 
Programmers generally select specific parameters, statements, 
or code blocks rather than characters in source code. 

B. Related Work  
Cursor positioning for text selection was first evaluated by 

Card [8], who compared four input devices including the 
mouse and cursor keys for hitting text targets. However, this 
was not a caret positioning task: targets were words, and a 
selection was counted when any portion of the target was hit. 
Mackenzie later revisited this data [11] and noted that 2D Fitts’ 
law experiments should either use the approach angle or choose 
the smaller of width and height for target size [12]. Gillan 
analyzed point-drag movements and pointed out that the targets 
were the beginning and end of the target text [9]. Mackenzie 
also analyzed the differences between pointing and dragging, 
showing that Fitts law applies to both techniques [13]. 

Microsoft Word supports “select by words”. When enabled, 
any selection that crosses a word boundary will automatically 
extend from the beginning of the first word to the end of the 
last. This is very useful for selecting whole words. However, 
for partial selection of words, it can be distracting. The feature 
can only be disabled via the “Options” dialog. Backtracking the 
selection will undo the word expansion, but this is not obvious 
and most users are unaware of it. 

The idea of dynamically modifying the mouse cursor 
position is not new. Snapping was introduced by Bier [5] and 
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Figure 1.  The target area when positioning the caret between two characters 
(green). The apparent (visible) target is much smaller: the distance between 

the two characters (purple). 



has been used extensively in user interfaces. This snaps the 
mouse cursor to “important” locations during each mouse 
movement or drag. Semantic Pointing facilitates target 
acquisition by modifying the control-display ratio – the amount 
of distance covered by the mouse vs. the amount of distance the 
cursor moves onscreen [7]. Baudisch [4] described how 
control-display ratio adjustment can compensate for difficulties 
in snapping and how this idea can be applied to target 
acquisition. He introduced friction in the Snap-and-Go 
technique and coined the word frixels, i.e. friction pixels. There 
the trajectory of the mouse is adapted as it crosses important 
boundaries. The cursor pauses momentarily on the screen, 
while the mouse continues moving. Conceptually, the mouse 
cursor crosses invisible frixels at the current target, making it 
easier to acquire, without inhibiting the ability to target nearby 
positions. “Object pointing” is also based on the idea that 
certain pixels (“objects”) on the screen may be more important 
than others [10]. Other mouse-adaptation techniques have been 
presented [1],[2],[3],[17],[19]. Noy's implicit disambiguation 
work [16] used a reversed Fitts’ Law to determine the size of a 
target from movement time. This is useful when multiple 
targets occupy the same area and Noy discussed text selection 
as an obvious example: a character, a word, and a phrase all 
occupy the same location. With this, selection can occur with a 
single point-click movement, rather than a point-drag motion. 
However, no follow-up work has been presented. Miller 
described how a smart editor could intuit selections from 
previous selections for batch-style processing [14],[15]. Bier 
recently presented the Entity Quick Click system for rapid 
copy-and pasting of text [6]. 

C. Contribution 
In this paper we present an algorithm to improve mouse-

based text selection with friction. It offers two improvements 
over existing algorithms. First, the amount of friction applied at 
a specific target depends on the speed of the mouse as it crosses 
that target; more friction is applied at lower speeds. Second, the 
amount of friction applied at each target is context-sensitive, 
depending on the text content and mouse motion. 

II. IMPROVED TEXT SELECTION 
To speed up text selection, we investigated techniques that 

extend standard mouse-based techniques. The first is a 
variation of snapping [5], where the cursor snaps only to 
character boundaries to minimize both cursor and text caret 
obfuscation. This is then similar to Object Pointing [10] in that 
the mouse cursor only moves between points where the caret 
can be placed. In practice, we found that snapping the cursor to 
the nearest target in the presence of many nearby targets is 
problematic, as the cursor frequently snaps back to the target 
that the user has just passed during a motion, which is 
undesirable. Accumulating the distance the mouse moved since 
the last snap action fixes this problem. 

A. Speed-dependent Friction  
We also adapted the Snap-and-Go technique [4] to text 

selection. This technique inserts frixels into motor space to 
increase the motor target size, and thus reduce acquisition 
difficulty. The main issue with adding friction to text editing or 
any interface with densely tiled targets is that simply adding 

friction at each target causes all nearby targets to function as 
distractors. Hence, it is better to apply friction only during the 
final fine-tuning movements of caret positioning. In our new 
technique we adjust the amount of friction depending on speed. 

B. Context-Sensitive Friction  
To further improve text selection, we introduce the idea of 

context-sensitive friction. Here, the number of frixels added 
when the mouse passes over a target depends on the relative 
importance of the target. This enables the user to more easily 
acquire more salient targets while not limiting their ability to 
acquire arbitrary ones. E.g. the beginning or end of a word, or 
sentence, is more important than the space between two 
characters of an arbitrary word, see Fig. 2. Target importance 
can either be pre-computed or determined dynamically. There 
are many possibilities for determining the importance of a 
target. We implemented this with multiplicative factors for 
simplicity. Each target type has a base amount of friction. This 
is multiplied by a factor at certain locations depending on 
context. Currently, this includes the type of boundary, the type 
at which the drag operation began, if it is the complementary 
boundary relative to the start of the drag operation, and the 
direction of motion. E.g., if selection starts at the beginning of 
a word, the ends of words are emphasized with additional 
friction, and the end of the current word is emphasized by an 
even higher factor. Taking the direction of motion into account 
causes the beginnings of objects to be emphasized more when 
the mouse is moving from left to right, and vice versa. 

C. IMPLEMENTATION  
We implemented the above snapping and friction 

techniques in Python and PyGTK. The implementation of 
snapping was straightforward. First, the nearest target is 
identified. If the mouse is moving away from that target, the 
distance moved is accumulated and added to the cursor location 
when the next event is processed. We also use a threshold to 
preclude snapping if the speed is high. This allows the user to 
cover large areas of whitespace (specifically the distance from 
the end of a line to the edge of the window) without snapping. 

For friction, we track horizontal and vertical motion 
separately and also insert frixels at character locations in both 
dimensions independently. We first calculate the actual screen 
distance the mouse has moved since the previous event. If the 
mouse was previously in a friction location, we subtract the 
number of frixels not yet accounted for. Otherwise, we search 
all screen positions traversed by the mouse and subtract all 
corresponding frixel values. This may leave the cursor in a 
friction location, in which case, we store the number of frixels 
not yet accounted. Pseudo code is shown in Figure 3. 

 
Figure 2.  The most salient targets in a paragraph of text are word, 

sentence, and paragraph boundaries. Some salient targets overlap. Target 
types are shown in different colours. 



This basic friction algorithm is common, but an external 
function is used to determine the amount of friction for a given 
character location. The function implements either speed-
dependency or context-sensitivity. The first method inserts 
fewer frixels when the mouse is moving quickly, and more 
when it is slowing down. For this, we take the physical screen 
distance moved since the previous motion event and compute 
the percentage of this maximum value that should be inserted 
into motor space. If the motion is less than a certain threshold, 
full friction is inserted, if it is more than a second threshold, no 
friction is inserted. Between these values, the amount of 
friction is interpolated linearly. For context-sensitive friction, 
we pre-parse the text at each character boundary into types (i.e. 
start/end for word, sentence, block, etc) and use this as a 
lookup table when the mouse crosses a specific character 
location. Alternatively, one could integrate this into an editor's 
syntax highlighting and tokenizing routines.  

III. PILOT STUDIES  
To investigate the new snapping and friction methods, we 

performed two pilot studies. In each study, the basic task was 
to select a text target by a click and drag sequence. The user 
interface for all studies was a 600x600 pixel text view window, 
with a 32x32 pixel task initialization button vertically centered 
on the right, see Fig. 4. The purpose of the first pilot was to 
compare both snapping- and speed-dependent friction-based 
interfaces to traditional cursor positioning. The second 
compared context sensitive to speed-dependent friction and the 
traditional interface. The intent of both pilots was to explore 
the domain and determine the potential of the techniques. 

A. Task 
The participants' task was to perform a series of selections 

in each of four conditions. Each trial began with a click on the 
initialization button. The target was highlighted, see Fig. 4. 
Users then moved the mouse to either end of the target and 
initiated a click-drag sequence to select it. Time, distance, 
target size and errors were recorded separately for both the 
click and the drag movement. We used four types of text: parts 
of a Wikipedia article, lines from a classic play, HTML, and 
Java source code. There were four types of selection target: 
words, sentences, paragraphs, and targets starting and ending at 
arbitrary positions. Participants were asked to perform each 
trial as quickly and accurately as possible. 

B. Conditions & Apparatus 
There were four main conditions for each of the pilots. The 

first compared traditional mouse motions, snapping, symmetric 
and asymmetric friction-based positioning. The second 
extended this and compared traditional positioning with a 
revised symmetric friction-based positioning method along 
with two variations of the context sensitive methods. 

In the traditional method, mouse motion was unmodified. 
In snapping, the cursor moves only to character boundaries. 
The two basic friction conditions inserted frixels in each 
dimension at all character boundaries, using speed-dependent 
friction. The symmetric friction condition (Friction-1) inserted 
the same number of frixels in each dimension, while the 
asymmetric one (Friction-2) inserted more frixels for horizontal 
than vertical. Caret targets are generally smaller in width than 

in height, and the smaller of width and height has been shown 
to be a good approximation for two-dimensional Fitts tasks 
[11]. The two context-sensitive friction techniques for the 
second pilot added friction only at word, sentence, and 
paragraph boundaries. No friction was added for other targets. 
Higher-level targets were considered more salient and therefore 
received more friction. But as they are less frequent, this does 
not add much distraction. One technique considered the 
direction of mouse movement, the other did not. 

Experiments were run on a Linux PC with two 19” 96dpi 
monitors at 1280x1024@75Hz. The main window was 
presented centered on the left-most monitor. A Microsoft 
IntelliMouse was used as input device. The keyboard was 
moved out of the way for the duration of the study. 

C. Experimental Design 
Both studies utilized a within-subjects 4x4x4 design 

(Positioning Technique by Text Type by Selection Type), 

function friction_motion(location):  
  set pixelsMoved to distance to previous  
  if pixelsMoved <= frictionLeft from last motion  
    remove pixelsMoved from frictionLeft  
    reposition cursor to previous location  
  else: //need to account for extra friction  
    remove frictionLeft from pixelsMoved  
    reset frictionLeft to 0  
    initialize actualToMove to 0  
    //Check each pixel between previous and end  
    while pixelsMoved > 0:  
      //set pix to location we are checking next  
      pix = previous + actualToMove + 1  
      set frictionLoc to character nearest to pix  
      increment actualToMove by one  
      if pix is same as frictionLoc:  
        extra = getNumFrixels(frictionLoc)  
        if pixelsMoved more than extra to insert:  
          remove extra from pixelsMoved  
        else: //moved into a friction location  
          reset frictionLeft for next motion  
          reset pixelsMoved to 0  
      else: //Crossed pixel with no friction  
        decrement pixelsMoved by 1  
    reposition cursor to previous + actualToMove  
    reset previous to new location 
    reposition cursor to previous + actualToMove 
    reset previous to new location 

Figure 3.  Simplified pseudocode for friction 

 
Figure 4.  The user interface used in the study with selected text. The 

task initialization button appears to the right of the text area. 



where positioning technique was counterbalanced to account 
for potential learning effects. Six different selections were 
performed for each selection type, with no repetitions. Hence, 
there were 96 trials for each technique for a total of 384 trials 
per user. Task times and distances were recorded separately for 
the click and drag portions of each trial. Task time for clicking 
starts with the release of the initialization button and ends when 
the mouse button is pressed over the text area. Drag time starts 
with a mouse button press and ends on release. Distance is 
calculated from the location of the mouse event to the center of 
the target. Errors are logged independently. 

D. Participants 
Twelve paid volunteers were used for each pilot, recruited 

from the local campus. In the first, 7 males and 5 females 
between the ages of 21 and 34 (mean: 25) participated, in the 
second, 4 males and 8 females between the ages of 18 and 31 
(mean: 24). All participants had previous experience with 
graphical user interfaces and mice and all were right handed. 

E. Hypotheses 
For the first pilot, we had three hypotheses: (1) Task times 

for all four conditions would be about the same. The traditional 
and snapping interfaces have roughly the same index of 
difficulty. Friction-based targets have larger target size in 
motor space but the mouse may also have to cover larger 
distances; thus the index of difficulty should be roughly the 
same. While the evaluation of Snap-and-go showed substantial 
effects [4], we cannot expect to replicate this as our targets are 
much denser. (2) Participants would have a lower error rate 
with snapping. With less visual interference between mouse 
cursor and characters, participants should be able to locate 
targets more easily. (3) The error rate would be lower for 
friction than for the other conditions. The larger target size in 
motor space should make targets easier to acquire. 

For the second pilot we had the following two hypotheses: 
(4) The context sensitive conditions would show lower time for 
common targets (words, sentences, and paragraphs), but not 
for random targets. Friction emphasizes targets most likely to 
be selected by users, thus making them easier to acquire. For 
random targets, the context-sensitive method should not have a 
noticeable effect because as its targets are separate from those 
enhanced by friction. (5) Directional context sensitive friction 
would be faster. Context sensitive friction may suffer from 
nearby distracters, e.g. the end of the previous word when 
selecting the beginning of the next. Making it dependent on 
friction should reduce this effect. 

F. Results 
1) Selection Time 

For the first pilot, a within-subjects ANOVA on selection 
time shows a significant difference, F3,33=41.83, p<<0.01. A 
Tukey-Kramer test revealed that snapping was significantly 
slower than all other techniques. Mean times were Traditional: 
3.39, Friction-1: 3.62, Friction-2: 4.00, Snap: 4.92 seconds. 
Hence, hypothesis (1) did not hold. There was also a significant 
effect in the second pilot, F3,33=10.09, p<<0.01, where the 
traditional interface was significantly faster, but there was no 
difference between the friction conditions. The mean times 
were Traditional: 3.31, Context-Sensitive: 3.49, Directional: 

3.59, Friction: 3.61 seconds. Analyzing the tasks by target type 
for hypothesis (4), we found a significant effect only for 
random selections, F3,33=10.40, p<<0.01. Mean times were: 
Traditional: 3.39, Friction: 3.65, Context-Sensitive: 3.71, 
Directional: 3.95 seconds. There was a main effect for selection 
time on non-random targets (words, paragraphs, sentences), 
F3,33=7.24, p<<0.01, and only the simple friction and 
traditional interfaces were different. Average movement times 
were Traditional: 3.29, Context-Sensitive: 3.42, Directional: 
3.47, Friction: 3.60 seconds. Hence, Hypothesis (4) did not 
hold. There was also no significant effect between the two 
friction tasks and the directional interface tended to be slower, 
disconfirming Hypothesis (5). 

2) Error Rate 
There was a slight main effect on error rate in the first pilot, 

F3,33=3.00 p<0.05. The Tukey-Kramer test indicated that 
snapping was significantly worse than the traditional interface. 
The error rates are Traditional: 7.4%, Friction-1: 8.8%, 
Friction-2: 8.9%, Snap: 12.9%. In the second pilot, there was 
no main effect on error rate, with error rates Context-Sensitive: 
9.9%, Directional: 9.9%, Traditional: 10.5%, Friction: 10.7%. 
There was no main effect on error rate for the friction 
conditions, so Hypothesis (2) and (3) did not hold. While error 
rates appear to be high compared to the 4% expected for Fitts’ 
tasks, we note that each task is composed of two positioning 
tasks, which increases the potential for errors substantially. 

3) Other Effects 
The plain text article was significantly slower than the 

others in the first pilot, F3,33=7.65, p<<0.01. Means were: 
Play: 3.8, Java: 3.92, HTML: 3.94, Plain Text: 4.26 seconds. 
The text article was also significantly slower than HTML in the 
second pilot, but a Tukey-Kramer test indicated no further 
differences. We also noticed additional interesting effects in 
our second pilot. There was a main effect for movement time 
on target type, F3,33=33.34, p<<0.01, and on text type, 
F3,33=20.97, p<<0.01. The former is to be expected, since 
target size varies between the four target types and size has a 
direct impact on movement time. The effect on text-type is 
somewhat surprising, but can be explained by the fact that the 
play and source code have more line breaks and hence more 
easy-to-hit targets. 

4) User Preferences 
In the first pilot eleven of the twelve users preferred the 

traditional interface, and eleven ranked the snap interface in 
last place. Seven ranked symmetric friction ahead of 
asymmetric. User preference in the second pilot varied more. 
Half of the 12 users rated the traditional interface as their first 
choice, and four preferred the context sensitive condition first. 
Overall, the traditional and context sensitive techniques were 
preferred over the friction and directional friction techniques. 

G. Discussion 
These pilots had several uncontrolled variables and the 

results are somewhat inconclusive. The only fact we can derive 
from the first pilot is that snapping is clearly inferior. Users had 
a great deal of difficulty with this interface as the cursor tended 
to jump between lines. We suspect that an interface that only 
snaps in the X dimension might be better received. The 
symmetric friction algorithm outperformed the asymmetric 



friction algorithm. While significant, these results are not 
conclusive; it is probable that the added friction in the 
horizontal dimension caused more interference, and not 
because asymmetry in friction is a bad idea per se. Without 
taking context into account, speed-dependent friction performs 
less effectively than the traditional method. However, 
observations during the pilots indicate that this may be due to 
inappropriate parameter settings (too much friction, wrong 
speed-dependent thresholds, or multiplicative constants too 
big). We also noticed that many users did not move the mouse 
in a way that allows prediction of target type from direction. 
Hence, we are uncertain if direction is a good design factor.  

IV. USER STUDY: CONTEXT SENSITIVE FRICTION  
Users are experienced with the traditional interface. As the 

parameter settings emerged as a critical issue in our pilots, we 
incorporated a tuning task in our main user study, where we 
adjusted parameters for each user. This helps also to identify 
which parameters are user-specific, and which can be set 
globally. The results from our pilots could not be easily 
analyzed as a Fitts’ task due to several issues, such as the 
freedom of users to select text in either direction or the lack of 
repeated indexes of difficulty. Hence, we designed the main 
study to enable such analysis as well. 
A. Task  

The task was a restricted version of that used in the pilots. 
In particular, users were asked to select only from left to right 
in this study, to fix the indexes of difficulty. We only evaluated 
two techniques in this study, traditional and a revised form of 
context-sensitive text selection. Each trial was repeated four 
times to enable users to learn the new technique. We used only 
regular text, as this was the slowest condition in our pilots and 
is also the most common task. This also allowed us to fix the 
types of boundaries we targeted and reduced the potential for 
interaction effects. We chose four different Wikipedia article 
excerpts to alleviate participant boredom. We limited ourselves 
to targets aligned to word boundaries. These are the most 
common targets, and are easy to define and mark up in context. 
Target lengths ranged from one three-letter word to half a 
paragraph. Targets were selected to ensure they did not begin 
or end on artificially large targets like line and paragraph 
boundaries, as such targets are much easer to acquire and the 
varying width complicates a Fitts’ analysis. 
B. Experimental Design  

This study was performed in three parts. We first performed 
a 2x4x8x4 (condition by text by target by repetitions) within-
subjects experiment with counterbalanced conditions using 
default parameters for the context sensitive algorithm. For five 
minutes we then performed interactive parameter tuning. 
Participants would make a few selections; we would adjust 
parameters; have the user make more selections, etc. We based 
tuning on user feedback as to how the adjustments felt, speed 
and error measures, and observation of problems during 
selection. Four parameters were modified. Speed thresholds: 
The minimum and maximum speed at which friction is fully 
applied or not applied at all, with linear interpolation between. 
Defaults were 2 and 32 pixels per motion event. Line friction: 
The amount of friction inserted at each line in the Y dimension. 
Increasing this helps users stay on the same line. Initially set to 

1 frixel. Word friction: the number of frixels to insert at the 
beginnings and ends of words. Default was 5 frixels. Drag-
factor: A multiplicative friction factor to emphasize end-of-
word targets, once the beginning of a word had been selected. 
The default was 2. Direction-factor: A multiplicative friction 
factor to emphasize motion towards the beginning or end of a 
word. The default was 1.5. In the third part of the study, we 
again evaluated the traditional interface against the context 
sensitive interface using the design of the first part, this time 
using the custom parameters identified during tuning. 

C. Participants 
Ten paid volunteers (3 male, 7 female) between the ages of 

20 and 28 (mean: 23) were recruited from our campus. All 
participants had previous experience with graphical interfaces 
and mice. All used the mouse with their right hand. 

D. Hypotheses 
We had 3 hypotheses. (6) Movement time for both initial 

positioning and drag positioning tasks would be lower for the 
context sensitive interface than for the traditional interface. A 
larger target size in motor space gives friction an advantage, 
and all targets are at friction boundaries. (7) Error rates would 
be lower for the context sensitive. A larger target size in motor 
space again makes targets easier to acquire. Blanch’s study on 
Semantic Pointing showed improvements in both movement 
time and error rate [7]. (8) Users would perform better on the 
context sensitive task after tuning than before. Tuning was 
designed to determine better parameter settings. Tuning also 
gave users a chance to learn the interface better. 

E. Results 
1) Movement Time 

An ANOVA on total selection time found a main effect, 
F1,10=7.69, p<0.05. Mean movement times were Friction: 2.85, 
Traditional: 3.00 seconds. We removed trials as outliers, if the 
user gave up on the task due to an error in the initial press. 
Interestingly, after optimizing the parameters selection time 
had only a marginally significant effect, F1,10=4.24, p<0.1. The 
means were Friction: 2.72, Traditional: 2.82 seconds. Breaking 
times down, we found that the positioning time for the initial 
click was not different, only the drag times showed an effect 
both before and after optimization, F1,10=6.77, p<0.05 and 
F1,10=7.55, p<0.05 respectively. Means before optimization 
were Friction: 1.32, Traditional: 1.42 and after Friction: 1.25, 
Traditional: 1.34 seconds. Hence, hypothesis (6) is supported. 

2) Error Rate 
The error rates for the first part of the study were Friction: 

10%, Traditional: 11.6%, with no main effect. There was a 
significant effect between error rates in the post-optimization 
part of the study, F1,10=6.66, p<0.05. The error rates were 
Friction: 8.7%, Traditional: 12%. Hypothesis (7) is therefore 
supported. Both time and error rates were significantly lower 
for the context-sensitive friction condition after optimization 
and thus Hypothesis (8) is supported. 

3) Fitts’ Analysis 
We calculated the effective width and index of difficulty for 

the press and drag events. We then calculated throughputs for 
each trial and performed an ANOVA. There was no significant 



difference in the throughputs for the press portion of the task 
before optimization, but there was a main effect after the tuning 
process, F1,10=5.43, p<0.05. There was a significant difference 
for the drag portions both before and after optimization, 
F1,10=6.27, p<0.06 and F1,10=18.17, p<<0.01, respectively. 
The throughputs are summarized in Table 1. 

4) Parameter Optimization 
The factors for dragging and direction both converged 

towards 1.5 during the tuning process. The amount of friction 
at word boundaries did not vary much between users and 
ranged from 3 to 7 frixels, most seemed to prefer 5. The speed 
threshold ranged from 2 to 5 pixels for the minimum and from 
32 to 64 for the maximum. We noticed that the minimum 
tended to affect users more, and also that the setting seemed to 
be deeply personal. Some users appreciated having the cursor 
“stick” to the line via friction in the vertical dimension, but 
most did not.  

5) User Preferences 
Data from the questionnaire on user preference does not tell 

us much. Before optimization, two participants had no 
preference and the remaining eight were divided equally. Most 
indicated that the difference was not terribly noticeable. After 
optimization, four participants indicated no preference, and the 
remaining six were again divided equally. One user switched 
from friction to traditional after optimization, but the remaining 
nine either did not change their preference or migrated towards 
friction after optimization. 

F. Discussion 
In this experiment, the context sensitive interface 

outperformed the traditional interface, especially after 
optimizing the parameters. Most of the parameters can be set to 
default values, except the speed thresholds, which seems to be 
individual. Also, we found evidence that the values we chose in 
our pilot were indeed too “strong”. From our pilots we believe 
that context sensitive friction does not interfere significantly 
with other selection tasks. Therefore, context sensitive friction 
can be added to text editing interfaces without noticeable 
negative effects. The most common targets can be emphasized 
without impeding the ability to select other arbitrary targets. 

Possibly the most surprising result is the fact that the real 
difference is in the dragging portion of the task. This suggests 
that friction is more useful for text selection than it is for caret 
positioning. Also, the throughput results support previous 
findings that users tend to drag more slowly than they position 
[9], [13]. We suspect that either the chosen friction parameters 
or the friction idea in general does not work as well during the 
(faster) positioning task. It is possible that different friction 
speed thresholds are needed for the caret positioning and text 
selection portions of the task. 

V. CONCLUSION 
This work targets the common task of mouse-based text 

selection. We compared the traditional technique to snapping 
and various new, iteratively designed, friction-based interfaces. 
Our pilot studies indicated that snapping is inferior and that 
simple friction methods do not work well. Our main study 
showed that a well-tuned implementation of context sensitive 

friction could significantly outperform traditional text selection 
techniques for targets aligned at word boundaries. For future 
work, we plan to investigate the concept of decreasing friction 
over less important areas, i.e. introduce “anti-friction”, which 
would speed the cursor up on such areas. Also, we will focus 
on caret positioning separately from the text selection. Finally, 
we want to investigate how syntax highlighting can coexist 
with the identification of context-sensitive targets. 
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Before 
Optimization 

After 
Optimization 

 

Press Drag Press Drag 
Traditional 4.55 3.42 4.85 3.55 

Friction 4.74 3.81 5.16 4.00 

TABLE 1: GRAND THROUGHPUTS FOR THE TWO CONDITIONS BEFORE AND 
AFTER OPTIMIZATION. 


