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(a) Constant- and Dual-Threshold Dwell keyboards (CTD and DTD) (b) Multi-Threshold Dwell keyboard (MTD)

Figure 1: We compared three keyboard designs: (a) The conventional Constant-Threshold Dwell (CTD) keyboard uses a single
dwell threshold of 450 ms. The Dual-Threshold Dwell (DTD) keyboard reduces the dwell threshold for the first selection of
a letter to 300 ms but increases the threshold to 500 ms for immediately following selections of that same letter, avoiding
unintentional “double clicks” of the same letter. (b) The Multi-Threshold Dwell (MTD) keyboard additionally uses a third,
further reduced, dwell threshold of 200 ms for up to three letters that are likely next targets. These keys are highlighted and
enlarged. The spacebar is also assigned an even shorter threshold of 100 ms.

Abstract
Dwell-based text entry seems to peak at 20 words per minute
(WPM). Yet, little is known about the factors contributing to this
limit, except that it requires extensive training. Thus, we con-
ducted a longitudinal study, broke the overall dwell-based selec-
tion time into six different components, and identified several
design challenges and opportunities. Subsequently, we designed
two novel dwell keyboards that use multiple yet much shorter
dwell thresholds: Dual-Threshold Dwell (DTD) andMulti-Threshold
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Dwell (MTD). The performance analysis showed that MTD (18.3
WPM) outperformed both DTD (15.3 WPM) and the conventional
Constant-Threshold Dwell (12.9 WPM). Notably, absolute novices
achieved these speeds within just 30 phrases. Moreover, MTD’s
performance is also the fastest-ever reported average text entry
speed for gaze-based keyboards. Finally, we discuss how our chosen
parameters can be further optimized to pave the way toward more
efficient dwell-based text entry.

CCS Concepts
• Human-centered computing→ Text input; Interaction tech-
niques; Pointing devices; Virtual reality.
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1 Introduction
Entering text with one’s eye gaze, which we call simply gaze here,
has been investigated for a long time and is widely used in assistive
gaze technologies [40, 59]. The most natural and common selection
technique used in gaze keyboards and other gaze selection systems
is dwelling, i.e., fixating one’s gaze on a target for a certain dwell
time [21, 29, 53, 59, 60, 79]. We refer to the required fixation time
as the dwell (time) threshold. However, compared to button-based
interfaces, dwell requires substantially more time to make a success-
ful selection [62] and is thus typically perceived to be unnaturally
slow [45, 81]. Although a longer dwell threshold slows down selec-
tion, shorter dwell results in unintentional non-target selections,
i.e., increases the Midas Touch problem [34, 67, 88].

While previous work demonstrated text entry speeds of up to
∼20 words per minute (WPM), this speed was only achievable with
a fairly low dwell threshold of 300 ms, which required extensive
training of users to shorten their fixations accordingly [53, 59, 60,
72]. Even after significant training, this speed still came at the cost of
unintentional selections, requiring participants to make substantial
error corrections as indicated by the high keystrokes per character
(KSPC) measure (> 1.18) [21, 53, 72]. More importantly, there are
indications that 20 WPM seems to be the maximum reachable for
dwell-based text entry systems [31, 38, 53, 72], as evidenced by the
plateauing performance of such systems and the shifting focus of
researchers toward swipe-based gaze typing, e.g., [16, 31, 38, 41].

Still, we believe there is more to dwell than meets the eye as little
is known about what factors contribute to the 20 WPM limit. It is
well known that dwell selection performance is constrained by the
need to fixate on the target for the duration of the dwell threshold
[32]. Thus, previous work has explored different avenues to reduce
this threshold. This includes but is not limited to adjusting the dwell
threshold based on users’ preference [21, 53, 72], their characteris-
tics and performance [32, 59, 64, 66, 77, 89], and different features
of the user interface [28, 59, 64, 69, 70]. To better understand dwell,
researchers have also explored the components of dwell selection
time, e.g., the time taken to point at the target [10, 24, 60, 72], to
activate it with dwell [60], and then to exit the target [89]. How-
ever, these different components were investigated independently
of each other, and the findings of the respective works are hard
to compare due to differences in methodology, e.g., using dwell
with or without varying dwell threshold, considering text entry
or other applications, and/or testing either novice or trained users
[10, 24, 60, 72, 89]. Thus, there is a gap in the literature as no one
has systematically explored at a granular level how components of
dwell selection time improve with training.

To address this gap, we conducted an 8-day longitudinal text
entry study with a static dwell threshold of 450 ms, i.e., the con-
ventional Constant-Threshold Dwell (CTD) keyboard shown in

Figure 1a, with novices. In contrast to previous dwell-based longitu-
dinal text entry studies [53, 59, 72], we kept the dwell time constant
throughout the eight days to separate the learning associated with
dwell selection without confounding it by the learning required for
a variable/adjustable dwell time. Through the longitudinal study,
we identified several design opportunities around challenges asso-
ciated with the different components of the dwell selection time.
For example, we verified that the burden of the (unnaturally long)
450 ms dwell threshold [45, 81] becomes more and more dominant
as time progresses. We also verified that the time required to exit
a key after successful selection with dwell can be substantial for
novices and even approaches the dwell threshold. This, in turn,
makes inadvertent “double clicks” more likely, particularly when
the dwell threshold is reduced to 300 ms, making 300 ms dwell text
entry systems practically unusable for novices, as demonstrated by
our results and previous work [21, 44, 53, 59, 67, 72, 73].

By identifying suitable dwell thresholds that could prevent un-
intentional double clicks, we then designed two novel keyboards:
Dual-Threshold Dwell (DTD) and Multi-Threshold Dwell (MTD;
Figure 1). DTD, similar to CTD, uses a static dwell threshold. How-
ever, DTD increases the dwell threshold for repeated selections of
the same letter: while the first selection of a letter uses a dwell
threshold of 300 ms, any immediately successive selections of the
same letter require an increased dwell threshold of 500 ms. This
means that to select two ‘O’s (e.g., to type “ZOOM”), the first ‘O’
takes 300ms, but the second ‘O’ takes 500ms to select. MTD extends
DTD by reducing the dwell threshold for the most likely letters:
up to three such letters are highlighted and enlarged based on a
word prediction algorithm. These likely letters can be selected in
just 200 ms, while for other letters (except for repetitions of the last
letter) the dwell time threshold is still 300 ms. For the spacebar, the
threshold is also reduced even further to 100 ms.

Finally, we compared the CTD, DTD, and MTD keyboards in
a user study. Absolute novices could type with an average dwell
threshold of 313.4 ms and 233.9 ms, reaching 15.3 WPM and 18.3
WPM with DTD and MTD, respectively. Not only were DTD and
MTD significantly faster than CTD (12.9 WPM) while also requir-
ing fewer error corrections compared to previous work [21, 53, 72],
but it took novices only 30 phrases to reach this level of performance.
MTD’s exhibited performance is also the fastest among previous
gaze-based keyboards in terms of its average text entry speed, with a
last session/block WPM that is competitive even with multimodal
approaches (Table 4). Thus, our results highlight the importance
of better understanding the components of dwell to improve text
entry performance. In summary, we make the following main con-
tributions:

(1) A longitudinal analysis of dwell selection, which systemati-
cally investigates the different components of selection time
and how they are affected by training.

(2) Two novel designs for dwell-based keyboards, Dual-Threshold
Dwell (DTD) and Multi-Threshold Dwell (MTD), which ad-
dress common problems and bottlenecks of conventional
Constant-Threshold Dwell (CTD) keyboards.

(3) Evaluation results illustrating the utility of using multiple
thresholds in dwell keyboards.

https://doi.org/10.1145/3706598.3713781
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2 Literature Review
2.1 The Apparent 20 WPM Typing Speed Limit
Here, we review previous work on gaze-based text entry and its
learnability.

2.1.1 Dwell-Based Text Entry. Dwell-based gaze keyboards for
novices typically use dwell thresholds of 450–1000 ms, resulting
in typing speeds between 5-10 WPM [44, 59]. To enhance their
efficiency, Špakov and Miniotas [89] analyzed the time it takes for
users to exit a key after it has been selected with different dwell
thresholds, ranging from 300-900 ms. They found substantial varia-
tion in the exit time across users. Thus, they proposed an algorithm
to select a user’s dwell threshold based on their previous exit times,
resulting in an average dwell threshold of 533 ms and 12.1 WPM.
We also measure Exit Time (ET) in Study 1. However, instead of
measuring the ET for different dwell thresholds, we analyzed how
training with the same dwell threshold affects ET and then used
this to guide the design of two novel keyboards, DTD and MTD.
EyeBoard [66] and EyeBoard++ [77] changed dwell thresholds dy-
namically for the entire keyboard based on a user’s performance.
Yet, the demonstrated speed was just 5.02 WPM for EyeBoard and
9.63 WPM for EyeBoard++.

Majaranta et al. [53] conducted a longitudinal study where par-
ticipants were allowed to adjust the dwell threshold according to
their preference. Eleven participants typed on a QWERTY keyboard
over ten separate days, with each day/session lasting 15 minutes.
The findings demonstrated a notable improvement in typing speed,
increasing from 6.9 WPM in the initial session to 19.9 WPM in
the final one. Furthermore, the average dwell threshold decreased
substantially from an initial average of 876 ms to 282 ms in the
10th session. Even more extensive training in a longitudinal study
with 19 fifteen-minute sessions over several days was conducted
by Räihä and Ovaska [72]. Similar to Majaranta et al.’s study [53],
their [72] participants were allowed to adjust the dwell threshold in
the first 10 sessions, also yielding similar results: an average typing
speed of about 20 WPM with dwell thresholds set between 240 and
340 ms.

Although decreasing the dwell time achieved a speed of 20 WPM
[53, 72], the shorter dwell thresholds increased the Midas Touch
problem, i.e., the unintentional selection of non-targets [57, 67].
This, in turn, increased the KSPC from 1.09 in the first to 1.18 in the
last session [53] as users needed more corrective actions to fix the
typos. An even higher average KSPC of about 1.25 was reported by
Räihä and Ovaska [72].

Räihä and Ovaska [72] also discovered that the slack, i.e., the
time needed to find and fixate on a key, remains relatively consis-
tent across different dwell times, accounting for a portion of the
total key selection time. The slack was ∼300 ms for users undergo-
ing training and ∼250 ms for trained users. However, the authors
imposed “slack”, i.e., a minimum wait time, of 150 ms between
consecutive selections of the same key to avoid inadvertent double
clicks of that key. Similarly, we also make consecutive selections
of the same key harder in DTD and MTD by increasing the dwell
threshold of these consecutive selections to 500 ms.

Diaz-Tula and Morimoto [21] also allowed participants to adjust
their dwell time. However, their main contribution was the AugKey

system that “augments” keys with a prefix, allowing continuous
review of the text typed, and suffixes, providing word predictions to
speed up typing. In an evaluation, participants typed significantly
faster (16.7 WPM) while requiring fewer corrections (∼0.8 KSPC)
with AugKey compared to two other baseline conditions.

To improve the performance of dwell-based systems, Mott et al.
[59] experimented with dynamically adjusting the dwell threshold
proportional to the likelihood of a given key. Their approach made
it more difficult to select keys that are less likely while making
it easier to select more likely keys. The authors argue that this
should not disrupt users’ typing rhythm, despite the dwell threshold
changing for every key press. Yet, even after training participants
in a longitudinal study, the maximum average speed of 13.7 WPM
(334 ms dwell threshold) stayed far below the 20 WPM mark. This
suggests that an always-changing dwell threshold may potentially
be disruptive. In contrast, our MTD keeps the dwell thresholds
more consistent by using a 200 ms threshold for a few likely letters
and 300 ms for all others.

2.1.2 Dwell-Free Text Entry. Addressing the apparent plateauing of
the performance of dwell-based systems, and to avoid the burden of
a lengthy dwell threshold, several dwell-free approaches have been
proposed. Urbina and Huckauf’s pEYEwrite [87] used bigrams and
word prediction, which yielded 13.47WPM. Patidar et al.’s improved
pEYE (pie) layout [67] demonstrated 6.1 WPM. Bee and Andre’s
Quikwriting [8] yielded 7.8 WPM. Sarcar et al.’s EyeK [78] achieved
6 WPM. Morimoto and Amir’s context switching (CS) interface [57]
with a duplicated QWERTY keyboard yielded 12 WPM. In later
work [58], the original CS keyboard (13.4 WPM) outperformed two
alphabetically ordered CS keyboards: single-line (8.7 WPM) and
dual-line (9.5 WPM).

Dasher [90] is a popular text entry method in the literature.
However, there is currently no consensus on its speed [41]. Previous
studies [38, 76] report a range of 16–26 WPM, where 26 WPM
was achieved by just a single user. Averaging across the range of
results, we agree with previous work [38] in that Dasher’s typical
maximum performance is most likely comparable to the 20 WPM
demonstrated by previous dwell-based studies [53, 72].

Recent gaze-based text entry research has shifted focus to gaze-
based swipe typing. The primary reason for this shift is the work by
Kristensson and Vertanen [38], where the authors showed that if a
“perfect recognizer” is employed, swipe typing can reach 46 WPM.
In swipe typing, users have to look at or near the vicinity of the
target key, then move over to the next target key, and so on, without
having to stop to dwell over each key. In other words, looking at
each letter of the target word one key at a time enters that word.
However, without a “perfect recognizer”, the challenge for such
systems is to identify when the gaze path started and ended during
typing [16].

Pedrosa et al.’s [68] solution to this problem was to filter out
letters inadvertently chosen from the sequence of letters the user
gazed at. This filtering was done with the help of a word prediction
algorithm. Evaluation of this dwell-free system, Filteryedping, re-
sulted in participants typing at an average of 15.95 WPM. EyeSwipe
[41] took a different approach by requiring users to explicitly mark
the first and last letters of the intended word using target reverse
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crossing [24]. Similar to Filteryedping [68], the system then short-
lists and suggests a set of candidate words using the gaze path and
the first and last letters. A user study demonstrated 11.7 WPM after
30 minutes of practice. A similar study [39] with gaze and press-
ing a button on a touchscreen device for the first/last characters,
named TAGSwipe, showed that TAGSwipe achieved a typing speed
of 15.5 WPM in comparison to EyeSwipe (8.84 WPM) and dwell
(8.48 WPM).

Several other solutions to identify the first/last character have
been proposed. This includes pressing and holding a physical but-
ton [92], employing probabilistic algorithms [16], ‘nod’ and ‘shake’
head gestures [25], and dwell and context switching [42]. So far, the
fastest speed in the literature was achieved by Hedeshy et al. [31]:
in Hummer, users signpost word boundaries by humming continu-
ously from the start to the end of their gaze path. Hummer showed
a commendable speed of 20.5 WPM, outperforming EyeSwipe (12.0
WPM) after participants typed just 30 phrases with each technique.

Yet, users are limited by the word prediction algorithm with
swipe keyboards and thus can only type dictionary/corpus words.
While we also use word predictions like swipe keyboards and other
work [1, 2, 28, 51, 59, 70], users can still type whatever they need
withMTD at relatively high speeds (i.e., similar to the speed of DTD),
including but not limited to names, passwords, special characters,
numbers, and transliterations of a different language. In swipe
keyboards, users must also constantly switch their attention back
and forth between typing and searching for the target word in the
list of predicted words. Not only does this switching and searching
add cognitive load [9], but users also waste valuable time in the
process [1]. In contrast, MTD compensates for this time loss by
implicitly incorporating word predictions into the natural flow of
typing.

2.2 Improving Dwell Selection Efficiency
Dwell selection performance is limited by the requirement of dwelling
the gaze over the target for the entirety of the dwell threshold [32].
Thus, and as discussed in the previous subsection, researchers have
investigated how this dwell threshold can be reduced by adjusting
it based on different criteria [21, 28, 53, 59, 66, 70, 72, 77, 89].

Researchers have also attempted to reduce dwell thresholds be-
yond text entry systems. Penkar et al. [69] adjusted the dwell thresh-
old depending on the size of the buttons. In addition to adapting
to the type of the button, Nayyar et al. [64] took a user-specific
approach to dynamically adjust the dwell threshold. Isomoto et
al. [32] used Fitts’ law estimates to reduce the dwell threshold. An
evaluation of their technique revealed an average dwell threshold
of just 86.7 ms but at the cost of an error rate of 10.0%. This high
error rate limits the applicability of this technique for many use
cases, including text entry.

To reduce the Midas Touch problem, i.e., unintentional selec-
tions, Becker [7] suggested assigning higher dwell thresholds for
similar-looking targets. Isomoto et al. [33] investigated machine
learning techniques to predict users’ intent to avoid inadvertent
dwell activations. MacKenzie and Zhang [51] used letter prediction
to predict and highlight 3 letters, similar to our MTD. They used
this prediction to steer the gaze cursor away from unlikely letters

and toward likely letters to improve pointing and, therefore, reduce
typos.

2.3 Learnability in Text Entry
Human learning substantially improves text entry performance
over time [35]. For this reason, the most valid way to evaluate text
entry systems is to train participants over a significant period, i.e.,
through longitudinal studies [61]. Analyzing the learnability of a
system by fitting a regression based on the power law of learning
through the longitudinal WPM data and using this learning curve to
predict expert user performance is also common in the literature [13,
14, 35, 47, 49, 61, 63, 65]. The other approach to predicting expert
performance is model-based approaches, such as those building on
the KLM model [12] or similar variants [46, 74]. However, these
works primarily focus on movement time, and therefore text entry
speed by modeling visual search [35, 50, 80], human memory [3],
and other factors [17–20]. Instead of directly focusing on typing
speed overall, we focus on the different components of each dwell
interaction, i.e., at a more granular level, with the overall objective
of designing better dwell-based (text entry) systems.

3 User Study 1 – Longitudinal
As mentioned, little is known about what factors contribute to the
20 WPM limit achievable by dwell-based text entry systems [38, 53,
72]. To address this issue, we systematically investigated the time
components of dwell-based selection and how these components
improve with training by conducting an 8-day longitudinal study in
Virtual Reality (VR). We chose to conduct the study in VR because
the eye trackers in today’s VR headsets are fairly easy to use and
calibrate, while also providing overall good performance. Moreover,
previous work [73] found that gaze-based text entry is a viable
input method for VR, with a novice typing speed (9.36 WPM) that is
in line with findings of non-VR-based gaze typing studies (typically
5-10 WPM) [44, 59].

3.1 Keyboard Design
Figure 1a shows our keyboard design. This keyboard layout was
designed based on related work [29, 58, 61, 71, 73, 79]. The width
and height of each keywere set to 3°, andwe decided to use a 1.5° gap
between keys to avoid unintended triggering of neighboring keys
in case of low tracking accuracy [61, 73]. Like in some smartphone
keyboard layouts, the backspace key was added next to the ‘M’ key
in the QWERTY layout. The spacebar was 43.5° wide and 3° high.
The keyboard was world-fixed in VR and its center was placed two
meters away from the participant at eye level, i.e., well out of arms’
reach.

We consistently used a novice-friendly dwell time threshold of
450 ms [44, 59] throughout the 8-day experiment. Whenever the
user’s gaze cursor came in contact with a key, the system high-
lighted that key in blue and started an animation showing the
progress of the dwell timer [55]. When the dwell threshold was
reached, the key was selected, and users were given confirmatory
auditory and visual feedback, highlighting the key in green for
100 ms [85]. To encourage participants to improve their speed, we
showed them the typing speed for their last completed phrase.
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3.2 Apparatus
The study was conducted on a computer with an i7-12700H pro-
cessor, 16 GB RAM, and an RTX 4060 graphics card using Unity.
We used the Meta Quest Pro VR headset, which has a resolution
of 1800×1920 pixels per eye, 95.57° (diagonal) FOV, and a 90 Hz re-
fresh rate. Before every session, the eye tracker was calibrated and
validated using Meta’s built-in calibration and validation methods.

3.3 Procedure
On the first day, participants signed a consent form and completed
a demographic questionnaire about their age, gender, and QW-
ERTY typing experience. Subsequently, they performed their first
15-minute session, where they typed randomly selected phrases
from MacKenzie and Soukoreff’s corpus [48] (500 phrases with
minimum, maximum, and average phrase lengths of 16, 43, and
28.6 characters, respectively). These 15-minute training sessions
continued for seven more days, with the last session being on the
eighth day. To account for weekends, we allowed gaps of up to two
days between sessions within a 12-day window.

If the participants were in the middle of typing a phrase when
the 15-minute timer expired, the session was ended by the software
only upon the completion of that phrase. Participants ended every
phrase by typing an extra “space”. They were instructed to correct
any mistakes they noticed immediately, i.e., within the current
word, but to ignore errors that occurred two or more words back
[53, 58, 61, 63, 87]. Also, to speed up the typing process, participants
were discouraged from looking back at the (partially) typed phrase,
i.e., they were instructed to keep in mind what they had typed so
far and what to type next. We also told them to take as long as
they needed to memorize each target phrase and (if needed) its
spelling before entering it (and this time was not counted). Once
they started typing the phrase, they were asked to finish it as fast
as possible.

Following previous work [53, 72, 76, 86] and to minimize partic-
ipants’ (eye) fatigue, we limited a session to 15 minutes. The eight
15-minute sessions yielded a total training time of (8 × 15 = 120
minutes =) 2 hours, which is comparable to related works (Table 4).

3.4 Performance Metrics
We chose the following metrics to evaluate performance in the
longitudinal study:

• Words per minute (WPM), which is the average number of
words typed every minute. Here, the definition of a word is
the sequence of any five characters [4] including spaces but
excluding backspaces. For example, “A DAY” is one word,
and “THE” is 0.6 words.

• Keystrokes per character (KSPC) represents the average num-
ber of keys selected to (correctly) type a single character.
More precisely, KSPC is the ratio of the total number of keys
selected to the length of the typed text [83]. This means that
KSPC includes the number of times the backspace key was
hit.

• Minimum String Distance Error Rate (MSD ER), where MSD
is the minimum amount of changes required – insertions,
deletions, and substitutions – to convert one string to another.
Here, we use the MSD ER metric formulation proposed by

Figure 2: The Components of Dwell Selection — Exit Time
(ET; yellow), Pointing Time (PT; green), OnTarget Time (OTT;
blue), Drop-off Time (DOT; red), and Drop-offs (DOs). Here,
‘R’ and ‘G’ are the last and next selected keys, respectively,
e.g., while typing “TARGET”. Exactly one DO is shown.

Soukoreff et al. [84] to compute the difference between the
target and the typed text.

In addition to the above metrics commonly used to evaluate text
entry systems, we further analyzed the data by breaking down the
actions involved in a dwell-based selection of each letter, step-by-
step (Figure 2):

(1) Exit Time (ET): ET, following previous work [89], is defined
as the time taken to exit the key after it has been selected.
Technically, this is the time from when a key was selected
until the first time the gaze leaves the key.

(2) Pointing Time (PT): The next step is pointing at the next key.
Thus, PT represents the time participants take to point to the
next selected key after the gaze cursor has left the previously
selected key. Unlike previous work [10, 24, 60, 72], we do
not include the ET in the PT to enable more fine-grained
analysis. Note that, because participants could have made
one or more mistakes, the two selected keys might not be
the same as the target keys.

(3) Activation Time (AT): The final step in key selection is acti-
vation. AT represents the time taken to activate a key after
the first time the gaze reached that key. We break AT down
into On Target Time (OTT) and Drop-Off Time (DOT), with

𝐴𝑇 = 𝑂𝑇𝑇 + 𝐷𝑂𝑇 (1)

where,
(a) On Target Time (OTT) is the whole time spent by par-

ticipants dwelling on a key to select it. The motivation
for measuring the OTT is that jitter is inevitable in eye-
tracking [9] and is the primary cause for (undesired) reset-
ting of the (450 ms) dwell timer [30]. Thus, the time users
have to dwell on a key can, in reality, be larger than the
(450 ms) dwell threshold.

(b) Drop-off Time (DOT) is the time participants lost due to
jitter. In other words, this is the time lost due to involun-
tarily falling off the selected key after the gaze cursor had
reached the key for the first time.
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(a) (b) (c)

Figure 3: Study 1 results for (a) WPM, (b) KSPC, and (c) MSD ER by Sessions. The error bars show the standard error of means.

Further, Total Time (TT) is the combined time required to select
a key and is defined as:

𝑇𝑇 = 𝐸𝑇 + 𝑃𝑇 +𝐴𝑇 = 𝐸𝑇 + 𝑃𝑇 + (𝑂𝑇𝑇 + 𝐷𝑂𝑇 ) (2)

Finally, to better understand how eye-tracking jitter affects se-
lection time, we also analyzed:

• Drop-Offs (DOs), i.e., how many times the gaze fell off the
selected key after reaching it.

3.5 Participants
We recruited 9 novice participants (6 males, 3 females), aged 28.2
± 4.99 years, who all had no visual impairments or corrected-to-
normal vision and at least 9 years of QWERTY typing experience.
None of the participants had prior experience with eye-tracking.
They were remunerated with the equivalent of US $15 in the local
currency for every set of four 15-minute sessions and an additional
$15 for completing the study.

3.6 Results
3.6.1 WPM, KSPC, andMSDER. Participants’ average typing speed
started at 11.6 ± 1.77 WPM (mean ± SD) in the first session and

reached 14.8 ± 1.63 WPM in the last one (see Figure 3a). The fastest
participant typed at 16.9 ± 1.30 WPM in session 7.

The data was analyzed in SPSS 29 using repeated measures (RM)
ANOVA with Session as the independent variable and 𝛼 = .05.
The data was considered to be normal when Skewness (S) and
Kurtosis (K) values were between ±1.5 [27, 56]. Upon violation of
Mauchly’s sphericity test, we applied Huynh-Feldt correctionwhere
𝜖 < 0.75. We transformed the data using ART [91] for dependent
variables that did not have a normal/log-normal distribution. Post-
hoc analyses were conducted using the Bonferroni method.

One-way RM ANOVA identified a significant difference between
the sessions for WPM (𝐹4.26,34.1 = 21.4, 𝑝 < .001, 𝜂2 = 0.728). While
post-hoc analysis revealed several significant differences between
sessions, we highlight that there was no significant improvement in
typing speed starting from the 6th session onwards, i.e., we started
to see signs of the performance plateauing.

Participants improved their average KSPC from 1.043 ± 0.082
in the first session to 1.013 ± 0.045 in the last session (Figure 3b),
with the differences being overall significant (𝐹7,56 = 2.52, 𝑝 < .05,
𝜂2 = 0.240). However, post-hoc analysis did not identify signifi-
cant differences between sessions. MSD ER improved from 1.32 ±
3.30% to 0.32 ± 1.14% (Figure 3c), with overall significant differences

Table 1: Study 1 results for average Exit Time (ET), Pointing Time (PT), On Target Time (OTT), Drop-off Time (DOT), Activation
Time (AT), Total Time (TT), and Drop-offs (DOs) over the eight sessions.

Exit
Time (ET)

Pointing
Time (PT)

On Target
Time (OTT)

Drop-off
Time (DOT)

Activation
Time (AT)

Total
Time (TT)

Drop-offs
(DOs)

Session Time
(s)

% of
TT

Time
(s)

% of
TT

Time
(s)

% of
TT

Time
(s)

% of
TT

Time
(s)

% of
TT

Time
(s) #

1 0.220 ± 0.10 22.1% 0.168 ± 0.24 16.8% 0.531 ± 0.16 53.2% 0.079 ± 0.21 7.87% 0.609 ± 0.34 61.1% 0.997 ± 0.43 0.498 ± 1.09
2 0.229 ± 0.09 23.9% 0.139 ± 0.20 14.5% 0.524 ± 0.16 54.5% 0.068 ± 0.19 7.11% 0.592 ± 0.32 61.6% 0.961 ± 0.40 0.478 ± 1.08
3 0.230 ± 0.09 24.0% 0.133 ± 0.19 13.9% 0.527 ± 0.16 54.9% 0.070 ± 0.21 7.27% 0.597 ± 0.35 62.1% 0.961 ± 0.42 0.518 ± 1.19
4 0.208 ± 0.09 22.7% 0.129 ± 0.19 14.1% 0.519 ± 0.15 56.7% 0.059 ± 0.19 6.47% 0.578 ± 0.31 63.2% 0.915 ± 0.40 0.444 ± 1.08
5 0.203 ± 0.08 23.7% 0.107 ± 0.16 12.4% 0.507 ± 0.13 59.2% 0.040 ± 0.13 4.71% 0.547 ± 0.24 63.9% 0.857 ± 0.30 0.339 ± 0.87
6 0.188 ± 0.08 22.3% 0.102 ± 0.14 12.1% 0.508 ± 0.13 60.2% 0.046 ± 0.15 5.44% 0.554 ± 0.26 65.6% 0.844 ± 0.32 0.376 ± 0.99
7 0.177 ± 0.08 21.7% 0.096 ± 0.13 11.8% 0.503 ± 0.12 61.7% 0.039 ± 0.13 4.79% 0.542 ± 0.24 66.5% 0.815 ± 0.29 0.317 ± 0.84
8 0.171 ± 0.08 21.4% 0.095 ± 0.13 11.9% 0.499 ± 0.12 62.4% 0.034 ± 0.12 4.27% 0.533 ± 0.23 66.7% 0.799 ± 0.27 0.280 ± 0.81

𝑆1 − 𝑆8 0.049 24.7% 0.073 36.7% 0.032 16.1% 0.044 22.4% 0.076 38.5% 0.199 0.218
Average 0.203 22.8% 0.121 13.6% 0.515 57.6% 0.054 6.09% 0.569 63.7% 0.894 0.406



Toward Better Gaze-Based Text Entry Systems With Multi-Threshold Dwell CHI ’25, April 26-May 1, 2025, Yokohama, Japan

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4: Study 1 results for average (a) Exit Time (ET), (b) Pointing Time (PT), (c) On Target Time (OTT), (d) Drop-off Time
(DOT), (e) Activation Time (AT), (f) Total Time (TT), (g) Drop-offs (DOs), and (h) WPM over the eight sessions along with an
extrapolation of the learning curve to the 25th session.

(𝐹7,56 = 3.58, 𝑝 < .01, 𝜂2 = 0.309). Except for session 2 being signifi-
cantly different from session 8 (𝑝 < .01), there were no significant
differences between sessions.

3.6.2 Components of Dwell Selection. As shown in Table 1 and
Figure 4, all the seven components involved in the dwell selection
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Figure 5: Study 1 results for On Target Time (OTT), Drop-off
Time (DOT), Activation Time (AT), and Total Time (TT) over
Drop-offs (DOs). The error bars show the standard error of
means.

of each key exhibited a decreasing trend. In otherwords, the training
made participants faster in terms of ET, PT, OTT, and DOT (and,
therefore, AT and TT), as well as decreased DOs.

Total Time (TT) decreased from 0.997 s to 0.799 s, with the highest
contributor to this decrease being PT which improved by 0.073 s
(i.e., 36.7% of the overall improvement of TT). ET and DOT were
the two next highest contributors, improving by 0.049 s and 0.044
s, corresponding to 24.7% and 22.4% of the overall improvement,
respectively. The least improvement was observed for OTT, which
improved by 0.032 s, i.e., 16.1% of TT’s change. DOs reduced by
about 44%, going hand in hand with reduced OTT and DOT, and
therefore, AT and TT (Figure 5).

The results in Table 1 also showwhat percentage each of the com-
ponents contributes toward TT. All components show a decreasing
trend across sessions except for ET, OTT, and AT. An increasing
trend is observed for OTT and AT. However, ET roughly stays the
same, i.e., around 22% throughout.

3.6.3 Learning Curves. Using the regression function of SPSS 29,
we fitted power law learning curves to the WPMs and the selection
time components [35, 47, 49] (Figure 4). This yielded Equations
3-10, where 𝑠𝑒𝑠𝑠𝑖𝑜𝑛 is the number of 15-minute typing sessions and
𝑅2 is the coefficient of determination, i.e., a measure of model fit
describing the proportion of the variation in the respective depen-
dent variable that can be explained by 𝑠𝑒𝑠𝑠𝑖𝑜𝑛. All 𝑅2 values, except
for ET and DOs, are “substantial” [15], suggesting that the learning
curves describe the changes in the variables well.

ET = 0.2414 × session−0.134, 𝑅2 = 0.6362 (3)
PT = 0.1731 × session−0.283, 𝑅2 = 0.9461 (4)
OTT = 0.5357 × session−0.03, 𝑅2 = 0.8357 (5)
DOT = 0.0893 × session−0.405, 𝑅2 = 0.8045 (6)
AT = 0.6205 × session−0.066, 𝑅2 = 0.8505 (7)
TT = 1.0328 × session−0.112, 𝑅2 = 0.8701 (8)
DOs = 0.5704 × session−0.273, 𝑅2 = 0.6448 (9)
WPM = 11.277 × session0.1209, 𝑅2 = 0.915 (10)

3.7 Study 1 Discussion
We investigated how the components of dwell selection improve
with training over eight days. The results show that participants’
performance improved across all seven components of dwell selec-
tion (Table 1 and Figure 4), leading to an improvement in text entry
speed from 11.6 WPM to 14.8 WPM (Figures 3a and 4h).

Pointing Time (PT) showed the largest improvement (Table 1),
suggesting that participants learned the exact locations of the keys
and required fewer corrective secondary saccades [79]. Exit Time
(ET) also improved substantially, suggesting participants’ antici-
pation of when the dwell threshold was reached got better with
training, and they could anticipate more accurately when they could
move toward the next key. Interpolating the ET for a 450 ms dwell
threshold from the corresponding figure in previous work [89] to
range between ∼210 ms and ∼ 250 ms, our observed ETs are still
∼40 ms and ∼30 ms faster for trained and novice users, respectively.
We attribute this difference to the fact that only four phrases had
been typed in each of the seven different dwell threshold conditions
in said previous work [89]. In contrast, our result of 266 ms “slack”,
i.e., 𝐸𝑇 + 𝑃𝑇 in the last session, is quite similar to the previously
reported value of ∼250 ms for trained users [72], suggesting our
findings are representative and reliable.

Based on our observations, participants also learned to better in-
teract with dwell selection more generally, such as learning how to
deal with eye-tracking jitter and accuracy limitations, and learning
how to control their eyes for not just perceiving the environment
but also for interacting with it [54]. Moreover, eye-tracking im-
proved because participants learned to position the VR headset
more appropriately on their heads, resulting in better eye-tracking
calibration. Improved calibration contributed to the reduction in
Drop-offs (DOs) (Table 1), which in turn improved Drop-off Time
(DOT), On Target Time (OTT), and therefore, Activation Time (AT)
and Total Time (TT). Besides illustrating improvements through
training, Study 1 also highlighted some challenges and opportuni-
ties in dwell keyboard design:

ET While ET decreases with training, it can still be substantial for
novices and come close to the dwell threshold. For example,
in the first three sessions, ET was longer than 250 ms and 300
ms for ∼50% and ∼20% of the total selections, respectively.
Thus, the ET can easily surpass the dwell threshold and lead
to inadvertent double clicks of letters, especially if the dwell
threshold is set to, e.g., 300 ms [53, 59, 72]. This could result
in making mistakes ∼20% of the time, which is too high for
practically relevant text entry solutions [5]. This points to
a potential design opportunity by preventing the naturally
longer ET from causing inadvertent double clicks.

PT PT for novices was still substantial, likely because quickly find-
ing the right key with the gaze is quite different from finding
it with the fingers. This raises the question of whether visual
search can be aided in situations where some keys are much
more likely than others.

OTT Although OTT improved over the sessions, it contributed
more heavily toward TT as the sessions progressed, because
improvements in the other components overshadowed the
improvement for OTT. Themain “culprit” for this is the dwell
threshold. This highlights the importance of reducing the
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dwell threshold whenever possible but judiciously without
compromising typing rhythm or accuracy.

DOs Unsurprisingly, fewer DOs resulted in better Drop-off Time
(DOT) and, as the dwell timer was reset less frequently, also
led to shorter OTT and therefore, AT and TT (Figure 5), thus
identifying another design opportunity.

For the learning curves in Equations 3-10, a linear regression
results in a better fit for a few of thesemeasures. Yet, we are skeptical
that any of these measures could reach zero, as it is unrealistic to
expect a linear behavior for human learning.

To more directly compare our results with previous work [53, 72]
we also calculated an estimated typing speed based on a dwell
threshold of 282 ms and an additional KSPC of 1.18. We estimated
the average time per character by subtracting the difference in
dwell thresholds from TT for each key press and multiplying it by
1.18. This calculation predicted an average last-day typing speed
of 19.5 ± 3.17 WPM. This result is very close to the ∼20 WPM
reported by previous work [53, 72], suggesting that our findings
are comparable.

4 The Dual-Threshold and Multi-Threshold
Dwell Keyboards

Guided by the results of Study 1, we designed two novel dwell key-
boards, Dual-Threshold Dwell (DTD) and Multi-Threshold Dwell
(MTD). DTD addresses the challenge of the ET, reducing the chance
of inadvertent double clicks of a letter by introducing a second,
larger dwell threshold for repeated clicks. In addition, MTD ad-
dresses the challenges of the PT by highlighting likely keys, and
the OTT by offering reduced dwell thresholds for likely keys and
the spacebar. The reduced dwell threshold for a key also addresses
the DO challenge as a shorter threshold typically means fewer DOs
[30]. These two new designs improve the design of the conventional
Constant-Threshold Dwell (CTD) keyboard by judiciously intro-
ducing new types of well-defined and predictable dwell thresholds.

4.1 Dual-Threshold Dwell (DTD)
For the Dual-Threshold Dwell (DTD) keyboard, we chose a static
dwell threshold of 300 ms, a threshold previously known to be
impractical for novices [21, 44, 53, 59, 67, 72, 73]. As found in Study
1, one reason behind this issue is the inadvertent double clicks of the
same key due to the naturally longer ET of novices. To address this,
we averaged across the ETs of all the sessions of Study 1 (Table 1)
and increased the dwell threshold for successive selections of the
same key by an additional 200 ms, i.e., (300 + 200 =) 500 ms (see
Figure 1a). We found during our early pilots (that followed the same
experimental design as in Study 2, involving the research team and
some novice users) that this 200 ms delay worked well with novices.

We also observed in such pilots that changes in the dwell thresh-
old between successive backspace selections confused participants
as to howmany characters that action deleted, especially when they
attempted to delete multiple characters to fix typos. When using
a larger threshold for repeated backspace selections, users tended
to go back and forth between checking the typed text and using
the backspace key, thus wasting time. Consequently, we chose a
constant dwell threshold of 450 ms for backspaces, even for repeated
clicks.

4.2 Multi-Threshold Dwell (MTD)
To further reduce the dwell time threshold, we experimented with
dwell thresholds below 300ms during early design testing. However,
even for trained users (from our research team), this led to frequent
unintentional non-target selections when looking for and attempt-
ing to select the next target key. Thus, inspired by text entry systems
that rely on word predictions [2, 9, 16, 21, 31, 39, 41, 52, 68, 90] we
explored a different avenue: reducing the dwell threshold of only
a few, clearly highlighted keys that are most likely to be the next
target.

The MTD keyboard primarily involves two different static dwell
thresholds — 300 ms and 200 ms. The first letter of any word must
be selected by dwelling on the corresponding key for 300 ms. Then,
unlike Dasher [90] and SliceType [9] that both allow only the selec-
tion of the next probable characters, our system highlights [52, 61]
and enlarges [26] (at most) the 3 most probable letters, while still
keeping all the other keys the same size, color and, more impor-
tantly, “selectable” as well. Similar to related work [51], these 3
letters are the corresponding next characters of the most probable
words predicted by a word prediction algorithm. For example, if
the user has typed “C”, the next probable words are (in order of
frequency) “COULD, CAN, CAME, COME, CALLED, COUNTRY,
COURSE, CANNOT, CERTAIN, ...”. Thus, the 3 unique predicted
letters, and therefore, highlighted and enlarged keys, are ‘O’, ‘A’,
and ‘E’. Only these 3 letters can then be selected within just 200 ms.
For all other letters (except space and backspace), the user has to
dwell for 300 ms.

MTD shares the design features of DTD. For consecutive se-
lections of the same key, all characters (except backspace) again
use an increased dwell threshold of 500 ms (Figure 1b). We also
consistently use a dwell threshold of 450 ms for the backspace
key. However, to enable faster selection of the spacebar, the most
frequently typed key [49, 82], we reduced its dwell threshold for
MTD to 100 ms but set it to 500 ms for repeated space selections.
In short, if the predicted letters in MTD are always incorrect, e.g.,
while typing passwords, other than the spacebar and distractions
from highlighting keys, MTD is (in essence) the same as DTD. Thus,
DTD and its performance can be regarded as a baseline for MTD.

For the word predictions, we used Python’s Fast Autocomplete
0.9.0 library1, which relies on a Directed Word Graph (DWG) and
Levenshtein distance. We populated this DWGwith the 40,000 most
frequent words from project Gutenberg2. Since our keyboards and
the experimental task were implemented using Unity, we set up a
UDP connection to send the word that is being typed to and receive
the predictions from Python.

To clearly show the user which (up to) three keys have a shorter
dwell threshold of 200 ms, we initially experimented with just high-
lighting the corresponding keys [26, 52, 61]. However, participants
were unable to identify the predicted keys sufficiently easily during
early pilot testing. The reason was that whenever the gaze cursor
hovered over a key, the highlight disappeared, as hovering turned
the key blue and also simultaneously started the dwell timer anima-
tion (Figure 1). Thus, we decided to also enlarge the predicted keys
by 33% to 4°, i.e., 1° larger than the other keys. Besides making the

1https://pypi.org/project/fast-autocomplete
2https://en.wiktionary.org/wiki/Wiktionary:Frequency_lists/English/Project_Gutenberg
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multiple dwell thresholds easier to see and more predictable to the
user, highlighting and enlarging the most likely keys potentially
also addresses the challenges of PT and DOs, and, therefore DOT.

In small pilots of the study design detailed in the next section, we
experimented with highlighting and enlarging 1, 3, and 5 keys with
100 ms, 150 ms, 200 ms, and 250 ms dwell thresholds, respectively.
We found that all novices struggled with too many unintentional
selections below a dwell threshold of 200 ms, making typing imprac-
tical. Similarly, when the number of predicted letters was set to 5,
some of the other short-dwell-time keys got too often in the way of
the user’s gaze when moving from one key to another. This resulted
in too many incorrect selections of non-desired but still predicted
keys. In contrast, when only a single prediction was offered to the
user, this letter did not turn out to be the desired one sufficiently
often. Thus, to provide enough realistic options and, at the same
time, enable faster typing for novice users, we chose to present (at
most) 3 predicted letters that can be selected by dwelling on them
for 200 ms.

5 User Study 2 – Evaluating Dual-Threshold and
Multi-Threshold Dwell Keyboards

We evaluated the performance of DTD and MTD against the con-
ventional Constant-Threshold Dwell (CTD) baseline, using a 3 × 5
within-subjects design with the two independent variables being
Keyboard (CTD, DTD, and MTD) and Block (1-5), where each
block comprises typing 5 phrases. Our dependent variables were
WPM, KSPC, and MSD ER. Furthermore, we compared the different
time components of dwell for the different keyboards.

5.1 Procedure
After giving informed consent, participants provided demographic
information, including QWERTY experience, age, and gender. After
a demonstration of the keyboards, the study task, and eye-tracking
calibration, participants typed with each of the three keyboards
(CTD, DTD, andMTD) in a counterbalanced order. Similar to related
work [31, 39], participants entered 6 blocks of 5 phrases each with
each keyboard, with short breaks between blocks. The first block
(i.e., the 0th block) was considered as practice and was discarded
before analysis [31, 39, 94].

For all other aspects, we followed the same procedure as Study 1:
using phrases from MacKenzie and Soukoreff’s corpus [48], mem-
orizing the target phrase and spelling of the words, focusing on
correcting errors only within the last word, typing an extra “space”
at the end of every phrase, and encouraging participants to beat
their text entry speed on every new phrase.

Afterward, participants completed a post-questionnaire where
they were asked about their preferences and for feedback on aspects
such as ease of interaction, mental and physical fatigue, frustration,
perceived precision, and perceived speed for each of the three key-
board layouts using 7-point Likert scales. Each keyboard condition
lasted about 10-15 minutes and the entire experiment took about
an hour.

5.2 Hypotheses
A 300 ms dwell threshold for text entry is known to be impractical
for novices [21, 44, 53, 59, 67, 72, 73]. In Study 1, we identified that

one reason for this is the (too) many inadvertent repeated selec-
tions caused by the naturally higher ET of novices. Thus, effectively
reducing the ET requires substantial training, e.g., [21, 53, 72]. Still,
if (an adapted version of a) shorter dwell threshold of 300 ms were
practical and usable, i.e., did not create too many inadvertent se-
lections, such a system should perform better than those with a
higher dwell threshold, e.g., 450 ms as in CTD.

Given our design of an increased dwell threshold for repeated
selections of the same key in DTD and MTD, we hypothesize that a
reduction of the potential of such repeated selections not only improves
the text entry performance but also the usability of 300 ms dwell
threshold text entry systems without requiring extensive participant
training. Given the judicious use of even lower dwell thresholds in
MTD, we expect the reductions in the dwell threshold further improve
text entry performance.

Given that the benefits of a system with less potential for inad-
vertent repeated selections should be visible with little training, we
designed a single-day experiment similar to many previous stud-
ies [22, 25, 31, 38, 39, 43, 44, 57, 58, 61, 93]. Since we designed the
new keyboards specifically for novices, we evaluated them with
a representative group of participants, i.e., a group that is not as
extensively trained as in a longitudinal study.

5.3 Apparatus
We conducted the study on a computer with a 13th Gen Intel(R)
Core(TM) i9-13900KF processor running at 3.0 GHz, 32 GB RAM,
and an NVIDIA GeForce RTX 4070 graphics card. We again used
Unity, the Meta Quest Pro VR headset, and its built-in eye-tracking
calibration method.

5.4 Participants
15 novice participants (10 males, 5 females), aged 25 ± 2 years, took
part in this study. They all had no visual impairments or corrected-
to-normal vision. 11 participants had over nine years of experience
typing on a QWERTY keyboard and the other four had 7-9 years. 8
participants had never experienced eye-tracking systems while the
others had experienced it at most 1-2 times before the experiment.
However, this was the first time all participants used dwell-based
keyboards. The participants were paid the equivalent of US $15 in
the local currency for their time.

5.5 Results
As in Study 1, we analyzed the quantitative data using RM ANOVAs
with post-hoc tests. The results are presented in Tables 2-3, and
Figures 6-8. For brevity, we focus on the statistically significant
results.

5.5.1 WPM, KSPC, and MSD ER. While there is substantial vari-
ability in the literature, text entry studies typically report either
the average results for all the blocks, one block at a time (to show
the learnability of the system), or both (Table 4). To support compa-
rability with other work, we report here both the overall average
and for each block separately.

Participants’ average typing speed across all blocks was 12.7
± 2.02 WPM for CTD, significantly slower than DTD (15.2 ± 3.00
WPM) and MTD (17.8 ± 3.12 WPM). DTD was also significantly
slower than MTD (Figure 6a).
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Figure 6: Study 2 results for average WPM, KSPC, and MSD ER across all blocks (a-c) and for each block separately (d-f) for the
Constant- (CTD), Dual- (DTD), and Multi-Threshold Dwell (MTD) keyboards. Significance levels are shown as *** for 𝑝 < .001, **
for 𝑝 < .01, and * for 𝑝 < .05. In (d) and (f) the asterisks above the blue line represent the difference between CTD and DTD, the
red line between DTD and MTD, and the green line between CTD and MTD keyboards. The error bars show the standard error
of means.

For CTD, participants’ text entry speed started at 12.6 ± 2.08
WPM in block 1 and ended at 12.8 ± 2.11 WPM on the 5th block
(fastest: 12.9 ± 1.85 WPM in block 4). For DTD, participants con-
sistently typed at about 15 WPM throughout the five blocks: 15.2
± 2.99 WPM in block 1 and the fastest speed of 15.3 ± 3.23 WPM
in block 5. Finally, with MTD, participants started at 17.0 ± 3.26
WPM, quickly improved to 18.3 ± 2.89 WPM in block 3, and ended
at the fastest speed of 18.3 ± 2.71 WPM in the final block. DTD and
MTD consistently exhibited significantly faster text entry speeds
than the baseline CTD in every block. Similarly, MTD significantly

Table 2: RM ANOVA results for the three dwell Keyboards
and Blocks.

Keyboard Block Keyboard × Block

WPM
𝑭2,28 = 71.9
𝒑 < .001
𝜼2 = 0.837

𝑭4,56 = 4.58
𝒑 < .01

𝜼2 = 0.247

𝐹5.1,71.9 = 1.34
𝑛.𝑠.

𝜂2 = 0.088

MSD ER
𝑭2,28 = 6.59
𝒑 < .01

𝜼2 = 0.320

𝐹4,56 = 1.29
𝑛.𝑠.

𝜂2 = 0.085

𝐹7.02,98.3 = 0.75
𝑛.𝑠.

𝜂2 = 0.051

outperformed DTD in every block (Figure 6d). The fastest a partic-
ipant was able to type in a single block was 15.5 ± 0.32 WPM in
block 4, 18.6 ± 0.74 WPM in block 5, and 21.8 ± 1.45 WPM in block
3, for CTD, DTD, and MTD, respectively.

The average KSPC over all blocks was 1.018± 0.047, 1.053± 0.102,
and 1.052 ± 0.107 for CTD, DTD, and MTD, respectively (Figure 6b).
In the first and last block, participants’ average KSPC were 1.016
± 0.046 and 1.024 ± 0.051 for CTD, 1.049 ± 0.096 and 1.046 ± 0.118
for DTD, and 1.059 ± 0.138 and 1.034 ± 0.060 for MTD, respectively
(Figure 6e). Yet, two-way RM ANOVA did not reveal significant
differences for Keyboard, Block, or their interaction for KSPC.

The average MSD ER across all blocks was 0.91 ± 2.24 for CTD,
1.32 ± 2.72 for DTD, and 2.00 ± 3.31 for MTD. Participants’ average
MSD ERs were 0.82 ± 1.75 and 0.99 ± 2.72 for CTD, 1.49 ± 2.98
and 1.09 ± 2.22 for DTD, and 2.38 ± 3.67 and 1.92 ± 2.86 for MTD,
in the 1st and 5th block, respectively (Figure 6f). Post-hoc analysis
revealed significant differences between CTD and MTD for the
average MSD ER across all blocks (Figure 6c). However, further
analysis revealed that only the differences for block 1 are different
between CTD and MTD (Figure 6f).
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Table 3: Study 2 results for average Exit Time (ET), Pointing Time (PT), On Target Time (OTT), Drop-off Time (DOT), Activation
Time (AT), Total Time (TT), and Drop-offs (DOs) for each of the three dwell keyboards.

Exit
Time (ET)

Pointing
Time (PT)

On Target
Time (OTT)

Drop-off
Time (DOT)

Activation
Time (AT)

Total
Time (TT)

Drop-offs
(DOs)

Keyboard Time
(s)

% of
TT

Time
(s)

% of
TT

Time
(s)

% of
TT

Time
(s)

% of
TT

Time
(s)

% of
TT

Time
(s) #

CTD 0.235 ± 0.09 24.8% 0.129 ± 0.197 13.6% 0.516 ± 0.164 54.3% 0.069 ± 0.240 7.28% 0.585 ± 0.381 61.6% 0.949 ± 0.456 0.428 ± 1.209
DTD 0.236 ± 0.10 30.0% 0.135 ± 0.238 17.1% 0.356 ± 0.122 45.2% 0.060 ± 0.232 7.63% 0.416 ± 0.325 52.8% 0.787 ± 0.435 0.355 ± 1.055
MTD 0.237 ± 0.11 35.8% 0.130 ± 0.215 19.7% 0.255 ± 0.133 38.5% 0.040 ± 0.165 6.05% 0.295 ± 0.251 44.5% 0.663 ± 0.338 0.284 ± 0.799

RM ANOVA
𝐹2,28 = 0.13

𝑛.𝑠.

𝜂2 = 0.009

𝐹2,28 = 0.60
𝑛.𝑠.

𝜂2 = 0.041

𝑭2,28 = 1088.6
𝒑 < .001
𝜼2 = 0.987

𝑭2,28 = 6.55
𝒑 < .01

𝜼2 = 0.319

𝑭2,28 = 247.3
𝒑 < .001
𝜼2 = 0.946

𝑭2,28 = 81.0
𝒑 < .001
𝜼2 = 0.853

𝑭2,28 = 6.06
𝒑 < .01

𝜼2 = 0.302

5.5.2 Components of Dwell Selection. The results for the different
components of dwell selection for each of the three keyboards are
presented in Table 3. MTD exhibited significantly fewer DOs than
CTD, resulting in MTD being significantly faster than CTD in terms
of DOT. For OTT and therefore also AT and TT, all three keyboards
were significantly different from each other (Figure 7). All other
differences were not significant.

5.5.3 Effective Dwell Threshold. We also computed the effective
dwell threshold by averaging the dwell thresholds that the system

used across all entered keys over all blocks. This resulted in an
effective average dwell threshold of 454.7 ± 4.13 ms for CTD, 313.4
± 39.3 ms for DTD, and 233.9 ± 89.6 ms for MTD.

5.5.4 Subjective Results. Most (9 of 15) participants preferred MTD,
4 participants DTD, and just 2 participants CTD. Typical comments
of participants who chose MTD as their preferred keyboard were
“Highlighted letters helped me type faster”, “Suggested letters helps
me type faster although correcting my mistakes was a painful task”,
“Easier to type with it...”, and “It was very quick ... and reduced the

(a) (b)

(c) (d) (e)

Figure 7: Study 2 results for (a) Drop-off Time (DOT), (b) Drop-offs (DOs), (c) On Target Time (OTT), (d) Activation Time (AT),
and (e) Total Time (TT) for Constant- (CTD), Dual- (DTD), and Multi-Threshold Dwell (MTD) keyboards. Significance levels are
shown as *** for 𝑝 < .001, ** for 𝑝 < .01, and * for 𝑝 < .05. The error bars show the standard error of means.



Toward Better Gaze-Based Text Entry Systems With Multi-Threshold Dwell CHI ’25, April 26-May 1, 2025, Yokohama, Japan

Figure 8: Subjective results for the three keyboards. Signifi-
cance levels are shown as *** for 𝑝 < .001, ** for 𝑝 < .01, and *
for 𝑝 < .05. The error bars show the standard error of means.

cognitive load.” Representative comments for the choice of DTD
were “I felt like with short selection time it was easier and smooth
experience, I did not like [CTD] as it was tiring and boring and also
[MTD] made me confused”, “same speed helps me focus and make
[it] a habit...’, and “I think I performed better [with DTD]. For [MTD],
it was confusing sometimes because of the big white squares. I think
I mistakenly entered some letters when I was just passing by.” Par-
ticipants who chose CTD stated that “Since it takes time for the
selection, eye movement between the letters won’t be captured fast
and can easily point to the correct letter and avoid mistakes” and
“[CTD] is less prone to mistakes.”

When asked about the ease of interaction, frustration, mental
and physical fatigue, and perceived speed and precision on a 7-point
Likert scale, with 7 signifying very easy, frustrating, fatiguing, fast,
and precise, respectively, participants rated MTD to be better on
average than CTD and DTD for all subjective measures except
perceived precision (Figure 8). However, only the differences for
frustration (𝐹2,28 = 7.77, 𝑝 < .01, 𝜂2 = 0.357), perceived speed (𝐹2,28
= 13.0, 𝑝 < .001, 𝜂2 = 0.481), and physical fatigue (𝐹2,28 = 4.26, 𝑝 <

.05, 𝜂2 = 0.233) were significant. Post-hoc analysis showed only
MTD to be significantly better than CTD in terms of frustration,
perceived speed, and physical fatigue, but no significant differences
between CTD and DTD, nor DTD and MTD.

5.6 Study 2 Discussion
In Study 2, we evaluated two novel dwell keyboards—Dual-Threshold
Dwell (DTD) and Multi-Threshold Dwell (MTD) — against the con-
ventional Constant-Threshold Dwell (CTD) keyboard baseline with
novice users. MTD (18.3 WPM) was significantly faster than DTD
(15.3 WPM), which in turn was significantly faster than CTD (12.9
WPM). Although participants made significantly more errors with
MTD over CTD in terms of the overall average MSD ER, further
analysis suggested that, as the difference was only noteworthy in
the first block (Figure 6f), participants were still getting used to
MTD. The MSD ER for all keyboards was well below 3% throughout
the five blocks. This level of mistakes is typically deemed (some-
what) acceptable for gaze-based text entry systems [31].

The computed effective average dwell threshold of 233.9 ms for
MTD is the shortest dwell threshold ever published for a dwell-based
text entry system [21, 53, 59, 72]. Moreover, according to Table 3, the

OTT, i.e., the actual average (measured) time participants dwelled
on the selected keys, was 516 ms for CTD (∼60 ms longer than the
454.7 ms effective average dwell threshold), 356 ms for DTD (∼40
ms longer than the 313.4 ms threshold), and only 255 ms for MTD
(∼20 ms longer than the threshold of 233.9 ms). The reduced dwell
threshold of MTD also resulted in fewer DOs than CTD which
in turn significantly improved MTD’s DOT (Figures 7a and 7b).
These results suggest that our MTD design substantially reduced
both the OTT and DO challenges identified in the first study. The
short dwell thresholds for both DTD and MTD also did not result in
significantly higher KSPC compared to CTD. We found 1.046 KSPC
for DTD and 1.034 KSPC for MTD, both of which are substantially
lower than the previously reported KSPC of 1.18 (or more) for text
entry systems that use a dwell threshold of ∼300 ms [21, 53, 72].

Most importantly, our participant pool comprised only novice
eye-tracking users and they typed just 30 phrases (10-15 minutes)
on each keyboard. Thus, our results provide evidence that the rea-
son why a 300 ms dwell threshold was deemed suitable only for
experienced users [60] seems to be mainly due to the naturally
longer ET of novice users (Table 1). In other words, our results
suggest that the Exit Time seems to be the key factor why text entry
systems that utilize a 300ms dwell threshold were deemed unusable for
novices. Without the suggested DTD mechanism, such short dwell
thresholds often result in unintentional double clicks of the same
key, and in the process, require more error corrections [21, 53, 72].
DTD thus makes a dwell threshold of 300 ms (or lower) substantially
more usable, especially for novices.

The further improvement of dwell-based text entry system us-
ability with MTD resulted in very high text entry speeds, enabling
novices to approach the 20 WPM limit. Thus, the results support our
hypotheses that reducing inadvertent repeated selections improves
the performance and usability of 300 ms dwell threshold text entry
systems and also requires little training. Moreover, as exhibited in
Table 4, MTD is the fastest gaze-based keyboard in terms of average
text entry speed, and its text entry speed in the last block seems to
even be competitive with multimodal approaches. Thus, we believe
that if participants were trained as extensively as in other work
[53, 72], MTD might even surpass the 20 WPM mark. However,
further work is required to verify this speculation.

Although most participants (9 of 15) preferred MTD, three par-
ticipants noted that MTD was confusing. The most common reason
given was situations where two neighboring keys were predicted
by the prediction algorithm. For example, if the user had typed
“EXP”, the predicted words were “EXPRESSION, EXPECTED, ...,
EXPLAINED, ...”, and thus the next predicted letters were ‘R’, ‘E’,
and ‘L’. Attempting to type ‘E’, e.g., as in “EXPENSIVE”, could then
result in an accidental selection of ‘R’. Yet, since the dwell threshold
was so low, it was sometimes hard to tell which letter got selected
other than by looking at the typed text, which we discouraged.
Such instances of confusion are a probable reason why participants’
Pointing Time (PT) was not significantly faster for MTD, i.e., was
similar to the other two keyboards, thus (somewhat) contradicting
our expectation that highlighting/enlarging the predicted letters
would improve PT. As the dwell threshold for some keys was so
low, participants were likely slightly more careful with MTD and
took their time to point more accurately to the next key. Adding
autocorrect features [2, 68] and/or using Mott et al.’s probabilistic
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Table 4: Summary of text entry speeds and study characteristics reported in the literature. This table is an extended version of
the one shown in previous work [31]. Some entries are estimated based on figures and data from the original papers, indicated
by the ‘∼’ symbol. Unavailable entries are marked with the ‘–’ symbol. Certain papers report only the mean performance from
the last session(s)/block(s), with the session/block count noted in parentheses. A few studies provide WPM solely from the last
session/block, which is listed in the “Last WPM” column. Some works report the maximum WPM of a single participant or the
fastest session/block averaged over all participants. We listed whichever is higher and clarified in parentheses. The practice
time reflects the approximate effort participants needed to reach the entry rate observed in the last session/block.

Authors Method Multimodal Average
WPM

Last
WPM

Maximum
WPM Practice Time

Tuisku
et al. [86] Dasher No – 17.26 ∼23.11

(participant) 150 min

Rough
et al. [76]

Dasher with
adjustable

dwell threshold
No – 14.2 ∼19.5

(participant) ∼7.5 hours

Mott
et al. [59]

Cascading
dwell time No 12.39 ∼12.5 13.7

(session/block) 20 phrases + ∼150 min

Urbina &
Huckauf [87]

pEYEWrite
with bigrams
and word
prediction

No 13.47 (last 3
sessions/blocks) – 17.26

(participant) 15 min + ∼150 phrases

Majaranta
et al. [53]

Adjustable
dwell threshold No ∼15 19.9 ∼23

(participant) 10 days (∼150 min)

Räihä &
Ovaska [72]

Adjustable
dwell threshold No – ∼19 ∼24

(participant) 150 min + 6 days (135 min)

Diaz-Tula &
Morimoto [21] AugKey No 16.72 (last 3

sessions/blocks) ∼17 ∼17
(session/block) 72+ min

Morimoto &
Amir [57]

Context
switching No 12 ∼13 ∼22

(participant) 5 min + 70 min

Morimoto
et al. [58]

Context
switching with
dynamic targets

No 13.1 13.42 ∼14
(session/block) 5 min + ∼35 phrases

Pedrosa
et al. [68] Filteryedping No 14.75 15.95 19.28

(participant) 100 min

Kurauchi
et al. [41] EyeSwipe No 10.68 11.7 20.6

(author) 2 phrases + 30 min

Kurauchi
et al. [42] Swipe&Switch No 13.74 – 33

(participant) 80 min

Kumar
et al. [39] TAGSwipe Yes, Gaze +

Touch 15.46 ∼16 20.5
(participant) 5 + 25 phrases

Hedeshy
et al. [31] Hummer Yes, Gaze +

Humming 15.48 20.45 30.64
(mean of users’ max.) 5 + 25 phrases

Our work Multi-Threshold
Dwell No 17.8 18.3 21.8

(participant) 5 + 25 phrases

solution for adjacent keys [59] in the future could potentially mit-
igate some of the confusion by making such errors less likely to
occur.

Unsurprisingly, the differences in dwell threshold between the
keyboards resulted in all keyboards being significantly different
from each other in terms of On Target Time (OTT), and therefore
Activation Time (AT) and Total Time (TT). Although the number
of Drop-offs (DOs) and thus the Drop-off Time (DOT) decreased
for DTD, DTD was not significantly different from either of the
other two keyboards. This suggests that small differences in the
effective dwell thresholds, in this case, ∼140 ms with CTD and ∼80

ms with MTD, do not significantly affect DOs and DOT. Yet, this
also requires further investigation.

6 General Discussion, Limitations, and Future
Work

In this work, we empirically investigated the factors that contribute
to the apparent limit of 20 WPM for dwell-based text entry sys-
tems with eye gaze. Toward this goal, we analyzed the different
components of the dwell selection time in a longitudinal study.
We identified design opportunities around challenges arising from
Exit Time (ET), Pointing Time (PT), On Target Time (OTT), and
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Drop-offs (DOs). Guided by this, we designed two novel keyboards
with lower dwell thresholds — Dual-Threshold Dwell (DTD) and
Multi-Threshold Dwell (MTD) (Figure 1). These new keyboards im-
prove the performance of the conventional Constant-Threshold
Dwell (CTD) keyboard by judiciously introducing new types of
well-defined and predictable dwell thresholds, targeting in partic-
ular the challenges encountered by novices. Tested with novice
users and within just 30 phrases of practice, MTD (18.3 WPM) out-
performed DTD (15.3 WPM), which in turn outperformed CTD
(12.9 WPM). Despite our participants being novices and having
received comparatively little training, MTD’s demonstrated text
entry speed is the fastest gaze-based keyboard reported to date in
terms of its average text entry speed, with a last text entry speed
that is competitive even with multimodal approaches (Table 4).

Although participants’ Pointing Time (PT) in MTD (0.130 s) was
not significantly faster than CTD (0.129 s) and DTD (0.135 s) in
Study 2, MTD’s PT is somewhat similar to participants’ PT with
CTD in the early sessions, i.e., 2-4, of Study 1 (∼0.130 s). Moreover,
Exit Time (ET) was similar across all keyboards in Study 2, which
in turn is similar to the first three sessions in Study 1 (i.e., ∼0.230
s). Thus, to estimate MTD’s potential long-term performance, we
applied the learning curves for ET and PT (Equations 3 and 4) to
extrapolate our results. Using the observed On Target Time (OTT;
0.255 s) and Drop-off Time (DOT; 0.040 s) for MTD in Study 2, and
assuming thirteen 15-minute training sessions (i.e., the 15-minute
sessions employed by previous work [53, 72, 76, 86] and Study
1), this resulted in a predicted average Total Time (TT) of 0.550 s
and typing speed of ∼22 WPM, which indicates that this approach
might even exceed the 20 WPM limit. Note that our extrapolation
assumes that OTT and DOT for MTD do not improve, i.e., it likely
still underestimates the maximum typing speed. Additionally, this
does not account for potential further dwell threshold reductions
that likely become feasible with increased training.

Thus, instead of training participants on the 300/200 ms dwell
thresholds in MTD to beat the current limit of 20 WPM, we encour-
age future work to investigate whether the two dwell thresholds
for normal/predicted keys can be further reduced through training
while appropriately accounting for ET, i.e., ≥ 200 ms for novices
and similarly, ≥ 150 ms for trained users (Figure 4a and Tables
1 and 3). Other than normal/predicted key dwell thresholds and
ET, there is also much scope for improvement of the other aspects
of MTD. This includes but is not limited to the number of letters
predicted, whether to highlight/enlarge the predicted letters and by
howmuch they should be highlighted/enlarged, whether to shorten
the dwell time threshold for two adjacent keys even though both are
in the predicted set, the dwell threshold for the space and backspace
keys, a better word prediction algorithm and/or corpus, a better
layout than QWERTY, e.g., OPTI II [75], and different keyboard
dimensions including key sizes and the gaps between them.

One feature of MTD that limits its performance is that the first
character of every word always requires a dwell threshold of 300
ms. This limitation could be addressed by incorporating word- or
phrase-level predictions instead of just letter predictions, e.g., based
on the recent advances in large language models (LLMs) [36]. Fur-
ther, LLMs alongside autocorrection [2, 68] could also reduce the
delay for intentional consecutive same-character selection, e.g.,

by completely disabling the potential for double clicks in some
situations and relying on autocorrect to add the second character.

In short, while our MTD parameters for Study 2 were guided
by our design process, we acknowledge that they may not yet be
optimal. Yet, identifying optimal settings was beyond the scope of
this work. Our primary goal for Study 2 was to evaluate specific
design ideas that were informed by Study 1, i.e., by insights into
the different time components of dwell selection, which potentially
have far-reaching implications beyond just dwell-based (text entry)
systems.

Thus, another exemplar application of our results could be gaze-
based swipe keyboards [16, 31, 39, 41]. Swipe-based typing also
relies on some implicit dwelling, in the form of saccade latencies
(i.e., the natural wait time in between two saccades [23]), over (or
near the vicinity of) each key. Our results could thus contribute
to improving the gaze gesture recognition algorithm, a critical
component for such keyboards. Moreover, while swipe typing has
been demonstrated to be better than tap typing for touchscreen
devices [75], the same may not be true for gaze-based typing. In
touch-based tap typing, the physical movement of raising a finger
and bringing it back down every time to select a key is a potential
reason why swipe typing achieves faster speeds, as the up-and-
down finger movement in swipe typing is required only once every
word. However, no such physical movement is involved with eye
gaze. In essence, the difference between dwell typing and swipe
typing with gaze is how long the user has to dwell over each key.
We hope that our findings, specifically the need to account for the
ET, will encourage the investigation of a combination of dwell- and
swipe-based text entry systems with gaze. Yet, we reiterate that
all this is speculation, and the ideas presented in this paragraph
need to be verified in future work. Still, beyond our comparison
presented in Table 4, it would be interesting to compare MTD with
swipe keyboards, too.

Although previous work [73] found VR to be a viable option
for gaze-based text entry, the vergence-accommodation conflict [6]
could still pose a potential limitation of such systems if the gaze
has to (repeatedly) jump between different visual depths. Another
possible shortcoming is the limited number of participants in our
two studies. Still, the significant differences exhibited large effect
sizes (𝜂2 > 0.14) in both studies. More importantly, our number of
participants is consistent with much other work [11, 37] indicating
robust findings and suggesting that our results are likely replicable.
Finally, we acknowledge that, like most text entry studies [22],
our results are also limited to the transcription typing task, which
is not always representative of real-world typing. Moreover, we
discouraged participants from going back and forth to verify the
typed text while typing, which is again different from actual typing.
We encourage future work to investigate these limitations.

7 Conclusion
In this paper, we examined which factors limit the speed of dwell-
based text entry systems, analyzing the time components of dwell
selection in a longitudinal study. Driven by an increasing domi-
nance of the dwell threshold as users become more accustomed to
a system, our results highlight challenges and design opportunities
around Exit Time, Pointing Time, On Target Time, and Drop-offs.
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Guided by these observations, we designed two novel keyboards —
Dual-Threshold Dwell (DTD) and Multi-Threshold Dwell (MTD),
which feature multiple and substantially shorter dwell thresholds
compared to a typical Constant-Threshold Dwell (CTD) keyboard
(Figure 1). With a speed of 18.3 WPM, MTD substantially outper-
formed DTD and CTD, making it the fastest gaze-based keyboard
in terms of its average text entry speed, with a last text entry
speed competitive even with multimodal approaches. Remarkably,
this performance was achieved by novice users within only 30
phrases. These results highlight the benefits of using multiple judi-
ciously chosen dwell thresholds. This approach opens up the way
for further optimizations addressing the performance impacts of
the different components of dwell selection time.
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