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Abstract
Eye-hand coordination training systems are used to im-
prove user performance during fast movements in sports
training. In this work, we explored gaze tracking in a Vir-
tual Reality (VR) sports training system with a VR headset.
Twelve subjects performed a pointing study with or with-
out passive haptic feedback. Results showed that subjects
spent an average of 0.55 s to visually find and another 0.25
s before their finger selected a target. We also identified
that, passive haptic feedback did not increase the perfor-
mance of the user. Moreover, gaze tracker accuracy signif-
icantly deteriorated when subjects looked below their eye
level. Our results also point out that practitioners/trainers
should focus on reducing the time spent on searching for
the next target to improve their performance through VR
eye-hand coordination training systems. We believe that
current VR eye-hand coordination training systems are
ready to be evaluated with athletes.
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Introduction
Virtual Reality (VR) systems provide a controllable virtual
environment (VE), allowing trainers to control and monitor
user performance in detail. All aspects of the VE, including
the speed and trajectory of an object, can be altered ac-
cording to user needs. This allows trainers to create virtual
scenes where a user can experience the same situation
over and over again. Moreover, VR enables users to col-
lect data in a safer environment. Trainees do not have to
interact with real world objects (e.g., fast balls, opponents),
which also reduces the number of injuries [12].
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Figure 1: (a) VR HMD with Leap
Motion, (b) the eye-tracker in the
VR HMD, and (c) the virtual hand
skeleton with the spherical cursor
on the tip of the index finger.

The eye-hand coordination training (EHCT) task, also called
reaction test, is one of the nine psychometric tasks in the
Nike SPARQ Sensory Station [24], a tool to enhance ath-
letes’ perceptual and visual–motor skills [34]. In this task,
trainees have to touch a sequence of randomly activated
targets as fast and accurately as possible, improving both
their reaction time and accuracy. Previously, this training
method was implemented with real world systems (e.g., a
wall or buttons) [8, 28] or 2D touchscreens [9, 34],

EHCT systems have been explored for different sports such
as American football [12] and hockey [25] and these studies
demonstrated that these systems can improve athletic per-
formance. However, none of the studies investigated and
assessed gaze performance in such systems.

Here, we extend previous work [5, 6] by using a gaze tracker
in our VR EHCT system to understand gaze behaviours
during a pointing task. We also ran the experiment with or
without (in mid-air) passive haptic feedback to further inves-
tigate finger movements in VR training applications.

Previous work
Fitts’ Law
Human movement time in pointing is modeled by Fitts’ law
[10]. Equation 1 shows its Shannon formulation [20]:

Movement Time = a+b∗log2
(
A

W
+ 1

)
= a+b∗ID (1)

In Equation 1, the movement amplitude is A and W is the
target size, while a and b are constants, empirically derived
via linear regression. The logarithmic term defines the in-
dex of difficulty (ID) and indicates the task difficulty.

Passive Haptic Feedback
Passive haptic feedback is a feedback mechanism where
user feels a physical surface [19]. Previous research showed
that user performance improves with passive haptic feed-
back since it also increases the sense of presence in VR
[14, 16, 29]. On the other hand, previous research on EHCT
found that passive haptic feedback does not improve user
performance [5, 6].

EHCT in Sports Training
EHCT systems with 2D screens have been studied, for ex-
ample in American football [12] and hockey [25]. These
studies showed that skill transfer is possible with such sys-
tems. Krasich et al.’s work [17] revealed that user perfor-
mance can improve up to 60% with such systems.

Performance Assessment in Sports Training
While EHCT systems aim to improve both user speed and
accuracy, previous studies for 2D screen-based systems
used only time to assess user performance (e.g. [12]). Yet,
previous research showed that accuracy assessment is as
important as time assessment during the learning process
[2, 3, 4]. Recent work showed that Fitts’ law and the (ef-
fective) throughput measure [15] can be used in VR-based
EHCT systems [5, 6] for accuracy assessment.



Eye-tracking in VR for Sports Training
Eye-tracking has been used to analyze and improve per-
ceptual and cognitive skills in different sports [1], including
golf [23], basketball [33], and soccer [36], but none of these
works used VR systems.

Motivation & Hypothesis
To our knowledge, there is no previous work that explored
gaze tracking in VR-based EHCT systems combined with
Fitts’ law. Since we conducted our study with novices, we
expect participants to look at each target and to linger be-
fore searching for the next target [18, 22], which should af-
fect their time and thus also throughput performance.
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Figure 2: (a) The 5x5 target grid,
(b) VE for two feedback conditions,
and (c) a participant doing the task
in both the conditions.

User Study
Participants
12 right-handed subjects (10 male) with an average age of
26.2 ± 4.15 years were recruited from the local university.
The inter-pupillary distance of the headset was adjusted
for each subject. Participants who wore glasses were in-
structed to take them off during the experiment for better
eye-tracking. This did not affect their vision as the 5x5 grid
(see Figure 2(a)) they interacted with during the task was
within their arm’s length and thus easily visible.

Apparatus
A computer with i7-4790 processor, 16 GB RAM, and GTX
1060 graphics card was used to run the experiment. The
system was developed in Unity3D.

VR headset: We used a HTC Vive Pro headset (see Figure
1(a)) with 2880x1600 pixels, refresh rate of 90 Hz, and 110°
(diagonal) FOV.

Eye-tracking: The Pupil Labs VR/AR eye-tracker, designed
for the HTC Vive/Vie Pro (see Figure 1(b)) was used to
track a subject’s gaze at 200 Hz.

The hmd-eyes API [26] for Unity3D along with Pupil Service
[27] was used to capture the gaze data.

Hand tracking: We attached a Leap Motion to the VR HMD
to track hand movements (see Figure 1(a)). A virtual skele-
ton (see Figure 1(c)) of the subject’s hand was shown in the
VE so that subjects could perceive where exactly their hand
was in the virtual space. Also, to allow for accurate selec-
tion of objects, a 1 cm diameter spherical virtual cursor
(see Figure 1(c)) was added on the tip of the index finger of
the virtual hand skeleton. For better tracking, we instructed
subjects to keep their hand open (see Figure 2(c)).

We attached two HTC Vive controllers on the real wall to
measure its position accurately, which enabled us to repli-
cate it precisely in the VE and thus to give the participants
precise passive haptic feedback from the wall. Before run-
ning each experimental session, we ensured that the po-
sition of the controllers in the real and the virtual world
matched. The distance between the two controllers was
also used to match virtual and real world distances.

Procedure
We extended our previous EHCT work [5, 6] by adding a
gaze tracker to the system to analyze gaze movements.
In our current study, we used two Haptic feedback lev-
els: passive haptic feedback and mid-air (see Figures 2(b)
and 2(c)). A soft surface wall (covered with a thick pile of
polypropylene, usually used to dampen sound) was used
to provide passive haptic feedback. Participants started the
experiment with calibration of the eye-tracker, using Pupil
Lab hmd-eyes’ default calibration scene (see Figure 3),
which shows 18 fixation points in a 3D space on a gray
background, one after the other for 1.5 s each. Upon suc-
cessful completion of the calibration, we started a validation
phase [7]. Here we showed 13 fixation points again for 1.5
s each, within a 5x5 grid to test how accurate the tracking



on the grid, i.e., the region of interest, was (see Figure 4).
During this time, the eye-tracker accuracy and precision
was calculated following previous work [13]. Since we as-
sumed that it takes about 0.5 s for the subject to move their
gaze from one point to another, we ignored the first 0.5 s
of gaze data for each target. We moved to the main task of
the experiment once the eye-tracking was well calibrated,
i.e., we observed an accuracy under 3°. Otherwise, we re-
calibrated and re-validated the eye-tracker until we reached
the desired accuracy.

Figure 3: The calibration scene.

Figure 4: 13 fixation points used
for validation.

The main task for the participants was to select (push)
targets (yellow buttons) as quickly and as accurately as
possible using their dominant hand’s index finger. The but-
tons were placed 8 cm apart and the targets appeared with
three different sizes 3TS : small (1.6 cm), medium (3.2 cm),
and large (4.8 cm). When the participants’ fingertip (cursor
sphere) was in contact with a target, the color of the button
was changed to blue. With passive haptic feedback, when
the fingertip touched the real wall (whose position in the VE
was determined by the VR controllers), or in other words,
pushed the buttons far enough that they collided with the
virtual wall, a “selection” was detected and the color of the
button was changed to green, if the cursor was inside the
target, or red, if the cursor was outside the target, when
we played an error sound. In the mid-air condition, the tar-
get plane was moved 20 cm away from the real wall and
the same “selection” technique was used, i.e., subjects
had to push into the buttons in mid-air. In the mid-air con-
dition subjects were positioned at an appropriate distance
to the target plane to be able to comfortably reach all tar-
gets, which means that there was no difference in distance
between target plane and subject between both conditions.
The first target in the 5x5 grid was selected at random. The
ID of Fitts’ law was restricted between 1.94 and 4.39 and
thus, the Target Distances 4TD of the next randomly se-

lected target were also restricted to 16, 22.6, 24, or 32 cm
relative to the previous one. This process continued until no
other buttons were available (that met the above require-
ments) at which point we ended that set. Also, the same
target was not selected twice in a single set.

Before the start of the main tasks, participants were given
practice trials to familiarize themselves with the setup. Dur-
ing this period, we adjusted the grid height to ensure that
the middle row was at the eye level of each participant .

Experimental Design
The 12 participants performed 3 repetitions for two Haptic
Feedback conditions (2HF = Mid-Air and Passive Haptic).
Subject’s movement time (s), error rate (%), and effective
throughput (bits/s) [15] were measured as dependent vari-
ables. Since the number of selected targets was not the
same in each trial set and slightly different for each sub-
ject, there was no fixed number of data points collected. On
average, subjects selected between 21 and 22 targets per
trial, which yields approximately 21 x 2HF x 3 repetitions =
an average of 126 data points for each subject.

For every data point received from the eye-tracker, we cal-
culated the 2D distance between the projected gaze loca-
tion and the current center of the target button. The dis-
tance between the virtual cursor and the center of the target
was calculated in 3D. We made this decision as the gaze
was fixed on the grid plane and there was little gaze move-
ment in depth, i.e., along the z-axis. However, the finger
does move in depth as the subject hits a target, moves the
finger back, and then hits the next target.

To determine how accurate the eye-tracker was, we ana-
lyzed the average minimum visual angle between the pro-
jected gaze and the targets for each row (the topmost row
labelled as 1) and column (the leftmost column labelled as



1) of the 5x5 grid. The minimum visual angle is the closest
point to the target that the gaze could achieve for a particu-
lar click, i.e., the gaze location during selection.

Figure 5: Error rate results for
feedback.

Feedback ID

Time
F(1,11)=0.207
Not Significant

F(4.97, 54.64)= 23.675
p<0.001
η2 = 0.68

Error rate
F(1,11)=42.47

p<0.001
η2 = 0.79

F(9,99)= 33.767
p<0.001
η2=0.754

Throughput
F(1,11)=0.879
Not Significant

F(9,99)=4.699
p<0.001
η2=0.29

Table 1: RM ANOVA results for
time, error rate, and throughput.

Figure 6: Fitts’ law analysis results
for mid-air (blue) and passive
haptic feedback (red) conditions.

Data Analysis
In this section, we only report significant results and focus
on the results that contribute to our work on EHCT sys-
tems. For data analysis, we used Repeated Measures (RM)
ANOVA in SPSS 24.0 with α < 0.05. We considered the
data as normal when Skewness and Kurtosis values were
within ± 1 [6, 11, 21]. We applied Huynh-Feldt correction
when the ε was less than 0.75.

Time, Error Rate, and Throughput Analysis
The time independent variable was normal after log-transform
(Skewness=0.44, Kurtosis=0.67). ID violated sphericity
χ2(44)=71.79, p<0.05, ε=0.522. Error rate was not nor-
mal even after log-transform, thus, we applied ART [35]
before RM ANOVA. According to the results in Figure 5,
subjects made more errors with the passive haptic feedback
condition. Throughput had a normal distribution (Skew-
ness=0.49, Kurtosis=0.25) and ID did not violate the spheric-
ity assumption, χ2(44)=54.29, not significant. Results of
the RM ANOVA are shown in Table 1. Fitts’ law results are
shown in Figure 6.

Gaze Tracking and Finger Tip Position Analysis
Averaging across the two Haptic Feedback conditions,
subjects’ took about 0.25 s before they started visually
searching for the next target (reaction time: RT ), 0.3 s to
locate the target (search time: ST ), 0.25 s waiting for the
finger to hit the target (wait time: WT ), and the rest as fix-
ation time (FT ), as shown in Figure 7. The finger lagged
behind the gaze with the average reaction time (RTF ) of
about 0.35 s. The time taken to reach the target (corre-
sponding to the search time for gaze; STF ) was about 0.45

s, with the rest being fixation (FTF ). When separating the
two Haptic Feedback conditions, there was no major dif-
ference for the gaze distance from target in terms of RT ,
ST , WT , and FT . However, for the cursor distance from
the target, a lag of about 0.06 s was observed for both reac-
tion (RTM

F − RTH
F ) and search time (STM

F − STH
F ) in the

mid-air condition (see Figure 8).

Gaze Tracking Accuracy for EHCT System in VR
The average minimum visual angle between gaze and tar-
get rows was normal after log-transform (Skewness=-0.04,
Kurtosis=-0.52). Row data violated sphericity, χ2(9)=47.46,
p<0.001, ε=0.340. One-way RM ANOVA revealed rows had
a significant effect on the average minimum visual angle
(F (1.36, 14.955)=32.06, p<0.001, η2=0.745). Post-hoc
analysis with the Sidak method revealed that the average
minimum visual angle for the bottom row (Row 5) was sig-
nificantly higher than Rows 1-4. Similar results were found
for the second-last row (Row 4) where the average min-
imum visual angle was significantly higher than all rows
above (Rows 1-3; see Figure 9). No significant differences
were found between Rows 1-3. Average minimum visual
angle between gaze and target columns was not significant.

Discussion
In this paper, we investigated gaze behaviours in a VR-
based eye-hand coordination training (EHCT) system with
or without passive haptic feedback. The results for time, er-
ror rate, and throughput on haptic feedback support the re-
sults of previous work on EHCT in VR [5, 6]. Passive haptic
feedback did not improve user performance and increased
the error rate of the subjects. We hypothesize that since the
subjects were not able to see the real wall, they might not
have trusted the passive haptic feedback, which might have
decreased their performance.



According to the gaze tracking results, we found the reac-
tion time lag of the fingertip relative to the gaze to be ap-
proximately 0.1 s (RTF − RT = 0.1). However, the gaze
finds the target in (RT + ST ) 0.55 s, about 0.25 s (WT )
before the finger, which supports our hypothesis. Nonethe-
less, a long fixation at the end for both gaze (FT ) and cur-
sor (FTF ) can be seen at the right of Figures 7 and 8. We
believe this is the result of trials where the subject could
not properly select the target at their first attempt and thus,
had to try once more. As mentioned before, the distance
between target plane and subject was same in both Haptic
Feedback conditions. Results showed that this did not af-
fect results for the gaze distance from target over time. The
same is true for cursor distance from target over time, with
a 0.06 s time shift for mid-air in Figure 8, which is very small
and thus, negligible.

Figure 7: Average distance of
gaze (blue) and cursor (green)
from target over time.

Figure 8: Average distance of
cursor from target over time for
mid-air (blue; superscript M ) and
passive haptic feedback (green;
superscript H ) conditions.

Figure 9: Average minimum visual
angle between the gaze and the
target for each row of the 5x5 grid.

In Figures 7, 8, and 9, the results never reach zero. Poten-
tial explanations for this could be that: 1. subjects do not
always hit the target and/or do not always look at the cen-
ter of the button; 2. we considered the system to be well
calibrated when the eye-tracker accuracy was less than 3°;
3. according to the results, eye-tracker accuracy was bad
for the buttons at the bottom two rows; and 4. trials where
the subject missed/selected the wrong target were also in-
cluded in the analysis. Also, for Figures 7 and 8, since the
targets are 3D buttons and get pushed in when selected,
there is always a non-zero difference in depth between the
center of the cursor and the button.

Potential explanations for the gaze data being less accurate
for rows below the user’s eye level (Row 4 and 5) include
limitations of the eye-tracker. Yet, although a human neck
can be tilted more downwards (flexion) than it can be tilted
upwards (extension) [31], we noticed that subjects were
more reluctant to flex down than to extend their neck up

while doing the experiment. This is related to the vertical
FOV of human vision being 50° upwards and 70° down-
wards [30]. Thus, they mostly only moved their eyes down
to see the buttons at the bottom of the grid but extended
their neck as well as moved their eyes for buttons on or
above their eye level, which positioned their pupil at the
center of the eye, yielding better eye-tracking accuracy.

Unlike Clay et al. [7], we found gaze accuracy to be better
in the center than in the periphery during pilot studies. For
this reason, we reduced the grid size to 5x5 (relative to 6x6
in our previous work [5, 6]). As previous work [7], we also
noticed deteriorating eye-tracker precision over time, which
led these authors to repeat the calibration and validation of
the eye-tracker every 5 to 10 minutes. As our experimental
task was only ~10 minutes, we only performed these two
steps just once at the beginning of the experiment.

Conclusion & Future Work
In this study, we explored gaze movements in a eye-hand
coordination training (EHCT) system. Our results revealed
significant deterioration of gaze accuracy below eye level.
Also, subjects spent 0.55 s to find a target in the VE and
waited another 0.25 s before the finger caught up. The only
difference between passive haptics and mid-air conditions
was in terms of error rate. In the future, we plan to work on
improving user performance in terms of gaze times with the
“quiet eye” method [32]. Moreover, we want to replicate our
study with bi-manual hand interaction to investigate how
peripheral vision affects user performance in EHCT sys-
tems. Finally, the number of repetitions in this study was not
enough to assess the training aspect of the EHCT system,
similar to previous work [5, 6]. Thus we also plan to apply
our gaze tracking system to athletes and analyze their long-
term learning curves.
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