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Abstract

To determine in a user study whether proposed keyboard layouts, such as
OPTI, can surpass QWERTY in performance, extended training through
longitudinal studies is crucial. However, addressing the challenge of cre-
ating trained users presents a logistical bottleneck. A common alternative
involves having participants type the same word or phrase repeatedly. We
conducted two separate studies to investigate this alternative. The findings
reveal that both approaches, repeatedly typing words or phrases, have limi-
tations in accurately estimating trained user performance. Thus, we propose
the Guided Evaluation Method (GEM), a novel approach to quickly estimate
trained user performance with novices. Our results reveal that in a matter
of minutes, participants exhibited performance similar to an existing longi-
tudinal study — OPTI outperforms QWERTY. As it eliminates the need
for resource-intensive longitudinal studies, our new GEM thus enables much
faster estimation of trained user performance. This outcome will potentially
reignite research on better text entry methods.
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1. Introduction

Text entry is today an essential component of people’s everyday life and
related activities range from texting, sending emails, writing reports and
other documents, to an alternative means of communication for people with
limited muscle control [1, 2, 3, 4]. Currently, most text is entered either via
physical or soft keyboards. Although several more or less optimal layouts
have been presented in the literature [5], the QWERTY keyboard layout and
its variations continue to be the primary means of inputting text to this day
for languages that use the Latin-script alphabet [6, 7].

The main reason behind this predominance is the wide availability of
QWERTY keyboards for more than a century. Thus, many people have
been trained on this layout and it is habitually used in their everyday lives
[7]. The text entry speed achievable via QWERTY is not only very familiar
to users but is also considered to be the most appropriate baseline for anyone
experimenting with unfamiliar keyboard layouts.

Previous research has shown that alternative keyboard layouts that are
theoretically more efficient than QWERTY can offer significant advantages,
but only after substantial training [8]. For example, users needed an average
of 4 hours of practice with a new keyboard layout called OPTI to achieve
the same typing speed as with QWERTY [8]. In the context of touch-based
typing [5, 8], OPTI has been predicted to be approximately 30% faster than
QWERTY, but this speed advantage is typically only achieved after a total of
17 hours of training. Such long training periods make it difficult to persuade
regular computer and smartphone users to commit to such training, especially
when the current typing speed offered by QWERTY is already deemed to be
satisfactory for most situations.

Yet, for input techniques that are more challenging to use, like eye-gaze-
based pointing or brain–computer interfaces for individuals with limited mus-
cle control [1, 2, 3, 4], optimal keyboard layouts have the potential for a
proportionally higher impact on typing speeds and may therefore justify
the effort required to learn a new layout. Still, as previously mentioned,
evaluating the performance potential of unfamiliar layouts suffers a major
methodological bottleneck. Demonstrating the performance potential of a
given layout requires novices (i.e., first-time or beginner-level users of a sys-
tem) to undergo some form of training that can range from about 30 minutes
per participant per layout to up to 7.5 hours of each participant’s time over
14 days, or similar time commitments, e.g., [8, 9, 10, 11, 12, 13, 14, 15, 16,
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17, 18, 19, 20, 21, 22, 23, 24, 25]. Thus, conducting studies that require par-
ticipants to be extensively trained is logistically expensive, especially when
comparing novel or unfamiliar layouts to QWERTY [8, 21], even more so
when comparing multiple different layouts within the same study.

To investigate whether it is possible to speed up the evaluation process
of unfamiliar layouts, we first define a more precise meaning of a few terms.
In the text entry literature, participants who have been trained over a few
sessions on the same day or via a typical text entry longitudinal study have
been (loosely) referred to as “experts”, e.g., [17, 26, 27, 28, 29]. We disagree
with this definition and instead support the notion that to become an expert
one needs to train for years, or go through approximately 10,000 hours or
more practice [30]. Thus, we refer to longitudinal study participants [4, 8, 16,
17, 18, 19, 20, 21, 22] or users who have been trained for a time frame that
is comparable to such studies, simply as “trained users”. Similarly, we refer
to participants who have undergone training only through multiple sessions
on the same day [6, 9, 10, 11, 12, 13, 14, 15] as “minimally trained users”.

To reduce the logistical burden of a longitudinal study, some researchers
have used an approach that requires participants to only type the same
word(s)/phrase(s) repeatedly, e.g., [14, 21, 27, 28, 31]. Yet, this approach
for estimating trained user performance through repeatedly typing the same
word/phrase has not been validated before. More specifically, it is still un-
known if repeatedly typing the same word/phrase provides a good estimate of
trained user text entry performance for a given keyboard layout. To address
this gap in the literature, we first investigate whether this approach provides
a good estimate of a layout’s potential performance with trained users. To-
wards this goal, and similar to previous work [8], we compare OPTI and
QWERTY by tasking participants to type the same word/phrase repeatedly.

The outcomes of a first repeated phrase typing study show that this ap-
proach does not accurately estimate trained user-level text entry performance
within a single day’s training. Still, this approach can potentially produce
good estimates, but only through a longitudinal study that takes multiple
days [32]. We then investigate the approach of repeated word typing. When
we analyze the data word-by-word, i.e., weighting all words the same re-
gardless of their length, the results came close to that of previous work [8].
Yet, we note that this is a biased outcome, as word length distributions are
not uniform in human languages, and analyzing the data word-by-word thus
does not appropriately estimate real keyboard usage. Once we take the word
length into account in the analysis, the results are far from what was reported
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in the literature [8].
Building on these outcomes, we investigate a different approach to bypass

the need for longitudinal studies. One core difference between novices and
trained/expert users in terms of their keyboard usage is that trained/expert
users are able to locate keys more quickly than novices, incurring substan-
tially less average visual search time [33, 34]. To reduce the visual search
time, and in the process, address the lengthy time requirements for longi-
tudinal studies, we introduce here our novel Guided Evaluation Method
(GEM) that allows researchers to empirically evaluate the performance of
trained users in a more efficient manner. The GEM simply highlights all the
keys in a target text that are yet to be typed. Also, instead of presenting
a whole phrase, the GEM tasks participants to type individual words and
requires them to first plan the typing pattern of that word before actually en-
tering it (see Figure 1). All these features combined significantly reduce the
visual search time of novice users and contribute towards making such users
perform like trained users. Yet, although the GEM potentially simulates the
typing behavior of a trained user, we acknowledge that the GEM involves a
typing experience that is not typical for real-life typing. Thus, we emphasize
that the GEM is intended solely as an evaluation method to quickly assess
trained user performance and/or for the comparison of different keyboard
layouts.

To investigate whether this novel evaluation approach estimates the per-
formance of a trained user correctly, we replicate here an existing longitudinal
study with the GEM [8]. Beyond assessing two other evaluation methods for
text entry systems, our main question is whether the GEM approach can es-
timate trained user performance correctly and if the GEM reduces the effort
during the evaluation of text entry systems in research on novel keyboard
layouts.

Our main contributions include: 1) showing that the popular approach of
repeatedly typing the same phrase does not accurately estimate trained user-
level text entry performance within a single day’s training, 2) demonstrating
that the repeated word typing approach is limited in terms of validity and
reliability if analyzed at the word level, and does not yield accurate estimates
when the word length distribution is accounted for in the analysis, and,
3) proposing the GEM approach and demonstrating that it can accurately
estimate trained user-level performance for text entry studies in a matter of
minutes.
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(a) QWERTY

(b) OPTI

Figure 1: The two keyboard layouts used in our three user studies, where only Study 3
involved the Guided Evaluation Method (GEM) with key highlighting. The GEM high-
lights all the keys in the target word that are yet to be typed in white. With the GEM,
participants are also asked to first plan the typing pattern of each target word before they
start typing and then to type the word as quickly as possible. In (a), as the letter ‘L’ has
already been typed and, as it does not exist elsewhere in the remainder of the target word,
its corresponding key is no longer highlighted.
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2. Literature Review

2.1. Evaluation Methods for Text Entry Systems
Previous text entry studies typically trained novices from 30 minutes

to up to 7.5 hours per participant per layout to evaluate the performance
of a given text entry method/layout. This training was either conducted
on the same day, e.g., [6, 9, 10, 11, 12, 13, 14, 15], or, following a more
externally valid approach, over several days through a longitudinal study,
e.g., [4, 8, 16, 17, 18, 19, 20, 21, 22]. Kjærup et al.’s work [35] provides a
comprehensive literature review of such longitudinal studies.

MacKenzie and Zhang [8] compared the QWERTY keyboard to the theo-
retically more optimal OPTI layout in such a longitudinal study. There, five
participants used a stylus to type on each of the two keyboards. A single
session consisted of two 20-22 minute long typing rounds, one for each layout.
Each of the 20 sessions per participant was separated by an interval ranging
from two hours to two days. The results showed that the average typing speed
for OPTI increased from 17.0 words per minute (WPM) in the first session to
44.3 WPM in the 20th one, while QWERTY started at about 27.5 WPM and
ended at about 40 WPM in the final session. The participants were able to
type faster with OPTI after about 4 hours of practice, i.e., starting from the
11th session. However, according to MacKenzie and Zhang [8], even though
participants had about 7 hours of practice with OPTI across the 20 sessions,
i.e., they were trained users, this surely does not make them true experts. To
address this, the authors used the power law of learning [4, 18, 19, 21, 36] to
extrapolate the data up to the 50th session and suggested Equations 1 and 2
for QWERTY and OPTI, respectively.

WPMQWERTY = 27.597× session0.1237, R2 = 0.9802 (1)

WPMOPTI = 17.24× session0.3219, R2 = 0.9974 (2)

In Equations 1 and 2, R2 is the squared correlation coefficient and session
corresponds to the number of 20-22 minute training sessions required. Ac-
cording to these equations, after 17 hours of practice, QWERTY and OPTI
could potentially reach 44.8 WPM and 60.7 WPM, respectively. Thus, for
touch-based keyboards, MacKenzie and Zhang showed that theoretically
more optimal keyboard layouts can outperform the more popular QWERTY
layout [8], but only after lengthy training.
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In a different effort, and to improve the speed of dwell-based systems
for gaze-based keyboards, Majaranta et al. [16] conducted a longitudinal
study where the participants were allowed to adjust the dwell time required
to select a key according to their preference. Eleven participants typed on
a QWERTY keyboard on ten separate days with each session/day lasting
15 minutes. The results showed that their typing speed improved from 6.9
WPM during the first session to 19.9 WPM in the last. The average dwell
time decreased from an average of 876 ms to 282 ms in the 10th session. Still,
this study took again substantial time, specifically, ten days per participant,
to perform.

To reduce the logistical burden of such a longitudinal study, researchers
have experimented with an approach that only requires participants to re-
peatedly type the same word(s)/phrase(s), e.g., [14, 21, 27, 28, 31]. However,
typing just one phrase does not accurately reflect the frequency of characters
in the language, i.e., English in our context. Therefore, this approach cannot
reliably evaluate real keyboard usage. To address this, Yu et al. [14] used a
slightly modified approach where each participant was given a unique phrase
to transcribe 12 times. A further improvement was presented in a later work
[37], where the participants were tasked with typing the same ten phrases in
each session for eight sessions.

However, as speculated by Jokinen et al. [18], while repeatedly typing the
same word on an unfamiliar keyboard layout “may” demonstrate performance
that outperforms QWERTY, typing the same phrase over and over may not
exhibit the same results. Recently, we verified Jokinen et al.’s speculation
that the approach of repeatedly typing the same phrase on an unfamiliar lay-
out like OPTI does not outperform QWERTY within a single day’s training
[32]. That work also indicated that this approach is able to provide a good
estimate of trained user performance and can do so faster than traditional
training with different phrases [32]. Yet, doing this still requires training par-
ticipants over several days, which is still equivalent to a longitudinal study,
albeit a comparatively shorter one.

Mathematical models (e.g., [5, 18, 33, 36, 38, 39]) and empirical studies
relying on a system that simulates a perfect recognizer [9] have also been
used to predict the performance potential of a given layout. In the context of
touch-based text entry, Rick [5] developed a model that predicted that swipe-
based typing (e.g., [40]) has the potential to achieve faster text entry speeds
compared to tap-based typing. For example, a 17.3% gain over tapping is
expected for QWERTY. Yet, if a “more suitable” layout is used, e.g., OPTI
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II, a much higher typing speed could be achieved. More specifically, OPTI
II is predicted to enable typing at a 29.5% faster rate than QWERTY.

Magnien et al. [41] introduced another approach that provides visual
clues to novice participants. Once the user has inputted a few characters,
the system highlights the next few probable characters in bold, which re-
duces the visual search space. Their results demonstrated that this approach
could significantly decrease the time required to enter text. A similar study
was conducted recently by Grüneis et al. [42], too. They showed that a
visual clue presented either as a pop-up animation or with an enlarged font
size achieved the best performance, and improved the typing speed by ap-
proximately 36% and 34%, respectively. In our GEM approach, we build on
the idea of providing visual clues [41, 42] to reduce the visual search space.
However, the methods proposed in previous work [41, 42] do not replicate
the actions of a trained/expert user since users still need to visually search
for the next key (albeit among a comparatively smaller subset of keys). We
mitigate the issue of the required visual search time to some extent in the
GEM approach by requiring participants to first also plan their typing of a
word, before actually starting to enter the word.

2.2. Touch-Based Text Entry
Previous work has presented multiple novel methods for typing text on

touch-based devices. This includes but is not limited to: hand-posture adap-
tive keyboards [43, 44], key-target resizing keyboards [45], tap-stroke hybrid
keyboards [46], gesture keyboards [47, 48, 49, 50, 51], and different keyboard
layouts [20, 52, 53, 54]. However, the focus of such studies is on improving
typing speeds or exploring new text input methods. In contrast, our objec-
tive is not to develop an improved touch-based text entry system. Instead,
we take advantage of the ubiquity of touch-based systems to validate the
GEM by building on MacKenzie and Zhang’s [8] work. Yet, with the GEM,
we are presenting a methodology that can accelerate the search for better
text entry layouts and/or techniques that support this area of research.

3. User Study 1 – Phrase Repetition

Our first study [32] was designed to evaluate the approach of typing the
same phrase repeatedly for the two keyboard layouts used by MacKenzie
and Zhang [8], OPTI and QWERTY. We chose (a slightly modified ver-
sion of) the method used in MacKenzie and Zhang’s study and its results
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[8] as a comparison point for two reasons. First, this choice allowed us to
compare our results with the findings of an independently performed and
thus more externally valid longitudinal study. Also, unlike, e.g., work on T9
[55], this study utilizes a form of touch-based input, which matches today’s
smartphone-based text entry methods reasonably well.

3.1. Apparatus
To ensure that participants were using a device that they were familiar

and comfortable with from their everyday use and to make it also easier to
recruit remote participants, we asked them to perform the experimental task
using their personal smartphone.

3.2. Keyboard Designs
To ensure comparability to MacKenzie and Zhang’s work [8], we aimed

to replicate their work as closely as possible. Therefore, we deliberately did
not consider typing disambiguation methods, such as tap positions [5] or
language models [40], as including these could have confounded the results.

In our study, participants typed on both the OPTI and QWERTY key-
board layouts with the device held in landscape mode. To ensure both layouts
fit comfortably onto the screen, we limited the study to smartphones with
a display size of at least 6" diagonally. However, to accommodate the key-
boards onto a 6" screen, we had to reduce the key sizes by 0.2 cm compared
to the original design by MacKenzie and Zhang [8], resulting in keys that
were 0.8 × 0.8 cm. This slight decrease in key size should not significantly
impact the results, as suggested by Fitts’ law [56, 57, 58, 59, 60] and pre-
vious research [29, 33]. We also introduced a gap of 0.1 cm between keys
to prevent unintended selections when users touched the edge between two
keys. Additionally, we provided auditory feedback in the form of a subtle
click for each key press. We also replaced the F1 key in the original OPTI
layout with a backspace key to facilitate error correction. Following typical
smartphone QWERTY layouts, the backspace key was added next to the
character ‘M’. We showed participants their task progress in the top-right
corner of the screen. The design of the two keyboard layouts is illustrated in
Figure 1. We developed the Android app for the study using Unity.

3.3. Participants
Eight participants (7 male), aged 31.4 ± 5.21 years, took part in the study.

They were recruited via word of mouth or ads over social media platforms
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and email and were compensated $15 for their participation. All participants
had over nine years of experience with typing on a physical/soft QWERTY
keyboard, but none had experience with the OPTI keyboard prior to this
study.

3.4. Procedure
Participants started by filling out a consent form and a demographic ques-

tionnaire, including questions regarding their age, gender, and experience
using OPTI and QWERTY layouts. Then, they typed using both OPTI
and QWERTY, presented in counterbalanced order in a within-subjects ex-
perimental design with a single independent variable — the two keyboard
layouts. Each participant typed the same phrase 96 times over eight sessions
(i.e., 12 times per session) for each of the two layouts. Participants were in-
structed to type an extra “space” after the last word, to also denote the end
of that phrase [24]. Participants were asked to rest for 2 minutes between
sessions.

The phrases were randomly selected from MacKenzie and Soukoreff’s set
[61], which consists of a total of 500 phrases. The minimum, maximum,
and average phrase lengths in that set are 16, 43, and 28.6 characters, re-
spectively, and the average word length is 4.45 characters. To increase the
external validity, we followed Yu et al.’s approach [14] and ensured that every
participant was given a different/unique phrase to transcribe.

Instead of the stylus used by MacKenzie and Zhang [8], participants were
instructed to use their dominant hand’s index finger [18] to type on the mo-
bile screen. They were also instructed to correct any mistakes immediately
if they noticed them but to ignore mistakes that occurred two or more let-
ters back. We made this choice to avoid the cumulative effect of too many
corrections, which in the process can substantially affect the typing speed
[62]. Participants performed the task while sitting in a chair and holding the
phone with their non-dominant hand. Participants were asked to rest for at
least 5 minutes between the two keyboard conditions.

At the end of the experiment, we conducted a short semi-structured in-
terview where participants were asked to share thoughts about their typing
experience with the two layouts. The experiment took about an hour per
participant, including the demographic questionnaire and the interview.
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3.5. Performance Metrics
In this study, we chose the following metrics to evaluate the text entry

performance of the two keyboard layouts:

• Words per minute (WPM) represents the number of words typed per
minute. Here, a single word is defined as a sequence of any 5 characters.
This includes spaces but excludes backspaces [63].

• Keystrokes per character (KSPC) is the average number of key selec-
tions required to (correctly) type in a single character. More precisely,
KSPC is the ratio of the total number of selected keys to the length
of the typed text [64]. Thus, KSPC takes into account the number of
times the backspace key was hit.

• Minimum String Distance Error Rate (MSD ER), where the MSD rep-
resents the minimum amount of changes, including insertions, deletions,
and substitutions, needed to convert one string to another. We use the
MSD ER metric formulation proposed by Soukoreff and MacKenzie [65]
to compute the difference between the target and the entered phrase.

Table 1: WPM results for each session, overall totaling about 25 minutes of typing on
each keyboard. Also, projections via Equations 1 and 2 of how many (22 minutes long)
sessions or how much time would be required to reach the corresponding WPM with the
traditional approach of typing different phrases during training.

Typing Speed
(WPM)

Projected No. of
Training Sessions

Projected Training
Time (hours)

Session OPTI QWERTY OPTI QWERTY OPTI QWERTY
1 19.1 ± 5.85 33.7 ± 6.37 1.4 5.0 0.50 1.83
2 22.9 ± 7.01 36.0 ± 6.35 2.4 8.6 0.89 3.14
3 25.4 ± 7.11 35.1 ± 6.12 3.3 7.0 1.23 2.56
4 25.7 ± 7.24 36.7 ± 6.15 3.5 10.0 1.27 3.67
5 27.9 ± 8.08 35.5 ± 5.76 4.5 7.6 1.64 2.80
6 31.0 ± 7.97 34.4 ± 7.73 6.2 5.9 2.28 2.16
7 30.8 ± 7.86 34.1 ± 5.6 6.1 5.5 2.22 2.03
8 31.0 ± 8.64 33.0 ± 5.94 6.2 4.3 2.27 1.57
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3.6. Results and Discussion
Our results are presented in Table 1 and Figure 2. As per Figure 2a,

although repeatedly typing the same phrase improved participants’ perfor-
mance for OPTI, the speed for OPTI never approached the performance
achieved with QWERTY. In other words, participants’ typing speed using
the QWERTY layout was always above the typing speed achieved using
OPTI throughout the eight sessions.

As can be seen in Table 1 and Figure 2a, participants’ average typing
speed with OPTI was 19.1 ± 5.85 WPM in the first and 31.0 ± 8.64 WPM
in the last session. The speed achieved in the last session was also the
fastest average typing speed across participants in that condition. The fastest
individual participant reached an average speed of 41.1 ± 5.12 WPM in the
8th session with OPTI. Using QWERTY, participants achieved on average
33.7 ± 6.37 WPM in the first and 33.0 ± 5.94 WPM in the last session.
The fastest average typing speed of 36.7 ± 6.15 WPM was achieved by the
participants on the 4th session with QWERTY (see Table 1). The fastest
individual participant was able to reach an average typing speed of 42.6 ±
7.87 WPM on the 4th session as well with the QWERTY layout.

For both OPTI and QWERTY layouts, no noteworthy trends were ob-
served in terms of KSPC and MSD ER. Other than a few exceptions, i.e., in
sessions 1 and 3-5 in Figure 2b, and sessions 3 and 8 in Figure 2c, the curves
for both keyboards look fairly similar to each other. Also, the average MSD
ER for both keyboard layouts was below 2% for all sessions (see Figure 2c),
showing that the participants were quite careful when using both keyboard
layouts [40].

When referencing our results with Equations 1 and 2, which are based
on MacKenzie and Zhang’s work [8], the average typing speed of the last
session is equivalent to 4.3 (20-22 minute long) sessions for QWERTY and
6.2 sessions for OPTI (see Table 1). For QWERTY, where the fastest session
was the 4th session, we estimate that it would take 10 sessions to reach that
speed of 36.7 WPM. This shows that repeatedly typing the same phrase for
about 30 minutes can – at best – achieve comparable results to 3.67 hours
of normal/traditional training (i.e., training with different phrases) with a
known keyboard layout, i.e., QWERTY, or 2.27 hours of traditional training
with an unknown layout, in this case, OPTI.

In contrast to our results, MacKenzie and Zhang [8] found OPTI was able
to outperform QWERTY starting from the 11th (20-22 minute) session and
eventually reached 44.3 WPM in the 20th session, with QWERTY achieving
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about 40 WPM on the same session. The typing speed of our participants did
not even get close to the performance of the trained users in MacKenzie and
Zhang’s study [8] for either keyboard. The results of our study thus indicate
that – although repeatedly typing the same phrase improves performance –
this approach is not suitable for reliably estimating trained user performance
for unfamiliar keyboard layouts. Thus, our results support Jokinen et al.’s
[18] speculation that repeatedly typing the same phrase on an unfamiliar
layout, e.g., OPTI, does not demonstrate that it can surpass QWERTY’s
performance, at least not within a single day’s training. More importantly,
the approach of repeatedly typing the same phrase does not yield a good esti-
mate of trained user-level text entry performance with a single day’s training.

The change in typing speed over time for OPTI in Figure 2a showed an
increasing trend until the 6th session. From there onwards, the curve flattened
out completely. We see this as evidence that continuing the experiment for
a few more sessions probably would not have increased OPTI’s performance
any further. As for QWERTY’s trend over time in Figure 2a, the typing
speed shows a slight increase from the 1st to the 4th session. However, a
decreasing trend can be observed from the 5th session onwards.

We probed this issue in our semi-structured interviews, where one partic-
ipant mentioned that “the task very quickly got boring and frustrating as it
seemed like it was never going to end.” Another shared “My mind kept wan-
dering off. It was very hard to continuously keep my concentration on the
task.” Similarly, another participant explained “After a couple of sessions,
QWERTY was especially hard as there was no challenge associated with the
task, ... , unlike OPTI, where I felt there was still scope for improvement.”
Others also gave similar feedback about the experimental task. Given these
insights, the downward trend of QWERTY’s typing speed starting from the
5th session is most likely associated with participants’ fatigue and the lack of
challenge in the experimental task. This brings up the question of whether
this fatigue had an effect on the results for the flattening trend of OPTI
starting from the 6th session.

To investigate this issue, we fit a regression based on the power law of
learning through the WPM data [8, 18, 19, 21, 36], see Figure 3, which yielded
the following two equations:

WPMQWERTY = 35.684× session−0.016, R2 = 0.0517 (3)

WPMOPTI = 15.64× session0.3273, R2 = 0.9596 (4)
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In Equations 3 and 4, a single session comprises repeatedly typing the
same phrase 12 times, and R2 represents the squared correlation coefficient.
According to the R2 value in Equation 4, approximately 96% of the variance
is accounted for in the fitted learning model, which means that the model
predicts user behaviors very well. Equation 4 predicts that it would require
≈24 sessions (289 repetitions, 8 sessions per day = a little over 3 days)
of repeatedly typing the same phrase with OPTI before participants would
reach the typing speed of 44.3 WPM, which was reported by MacKenzie and
Zhang [8] after twenty (20-22 minute) normal/traditional sessions of training,
i.e., training with different phrases. In other words, although repeatedly
typing the same phrase can eventually provide a good estimate of trained
user performance and can do so faster than traditional training, this approach
still requires training participants over several days and therefore does not
eliminate the need for a longitudinal study.

Yet, typing the same phrase repeatedly on a known layout, in this case,
QWERTY, had detrimental effects on learning. This is evident by the (small)
negative exponent (i.e., -0.016) and a very small R2 value in Equation 3.
Thus, we suggest not to use the repeatedly typing the same phrase task for
more than 4 sessions, i.e., 48 repetitions, for QWERTY or any other layout
that is already highly familiar to a participant. Overall, our analysis based
on the power law of learning showed that the observed flattening trend of
OPTI’s typing speed from 6th session and the decreasing trend of QWERTY
from 5th session onwards are most probably due to the fatigue associated
with the experimental task of typing the same phrase repeatedly.

The repetitive phrase typing approach has been used in the past either
with complete novices [31], or with participants who first trained for a few
sessions using the traditional approach of typing different phrases and then
typing the same phrase for a few more sessions, e.g., [14, 21, 27, 28]. In our
study, we chose the former method [31] which uses a single phrase repet-
itively. We did this as we wanted to investigate an approach that has a
higher probability of quickly reaching trained user performance. Further, we
also ensured that the total number of repetitions for a single phrase was sub-
stantially larger than the combination of phrases and repetitions typically
employed by other studies [14, 21, 28].
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4. User Study 2 – Word Repetition

The results from Study 1 identify that the repeated phrase typing method
is not a good substitute for longitudinal studies, specifically within a single
day of training. Thus, in the second study presented here, we investigated
the approach of repeatedly typing the same word [28], a method that Jokinen
et al. [18] postulated to be potentially more promising compared to repeated
phrase typing.

For this study, we (again) conducted a modified replication of MacKenzie
and Zhang’s study [8], with the difference of employing the repeated word
typing approach. This choice also permits us to validate the effectiveness of
the repeated word typing approach relative to previous work. Here, we out-
line the study’s specifics and the methodology used to assess the performance
of the two keyboard layouts, OPTI and QWERTY.

4.1. Participants
7 females and 7 males, i.e., 14 participants aged 22.7 ± 3.24 years, took

part in the word repetition study. 10 participants had experience with typ-
ing on a physical and/or soft QWERTY keyboard for over nine years, two
participants had been typing for 7-9 years, and another two for 5-7 years.
All participants typed on the OPTI keyboard for the first time in this study.
They received a compensation of $15 for their participation.

4.2. Apparatus, Keyboard Designs, and Procedure
The same apparatus and keyboard design from Study 1 were employed

in this study. Participants started by completing a consent form and a de-
mographic questionnaire covering information such as their age, gender, and
familiarity with the OPTI and QWERTY layouts. Subsequently, partici-
pants proceeded to type six phrases (randomly chosen from MacKenzie and
Soukoreff’s set [61]) on each of the two keyboards presented in counterbal-
anced order. In this study, the phrases were presented to them one word
at a time, and each such word was presented repeatedly. Unlike work that
used the approach of typing a random word (or the same phrase) repeatedly
[14, 27, 28, 31, 32], our choice of using the approach of presenting phrases
word-by-word still ensures that the character frequency, sequence, and length
of the typed content closely resemble real keyboard usage and thus our re-
sults should match many other existing text entry studies, e.g., [8, 16, 40],
as closely as possible.
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Once each target word had been entered, we asked participants to type a
“space” to clearly denote the end of that word, like in Study 1. The reason
why we chose “space” to end each word is not only because that is how words
typically end, but also because it is the most frequently typed key [8, 66]. For
each word, participants were tasked to repeatedly type that word 10 times,
after which the next word in the current/next phrase appeared. At the end of
repeatedly typing a word 10 times, the keyboard disappeared for 200 ms and
then reappeared again to give participants a visual cue that the target word
had changed. We also asked them to memorize each target word, including
its spelling, if necessary.

The participants did not undergo practice trials; instead, we treated all
ten repetitions of all the words of the first phrase as practice, i.e., the whole
first phrase, and excluded that data from the analysis [14, 67]. Participants
were asked to rest for at least 5 minutes between the two keyboard layouts.
After completing the experiment, participants filled out a brief questionnaire,
sharing their preferences and providing feedback on aspects such as ease of
interaction, frustration, mental, and physical fatigue, as well as perceived
speed and precision for each keyboard, using 7-point Likert scales. On aver-
age, participants spent approximately 20 minutes typing on each keyboard.
The entire experiment, encompassing the demographic pre-questionnaire and
post-questionnaires, took about an hour.

For all other aspects, we adhered to the same procedure as in Study 1,
which involved restricting touch typing to the index finger of the dominant
hand and focusing correction efforts solely on mistakes within the last two
letters.

4.3. Performance Metrics
We used the same performance metrics as in Study 1, i.e., WPM, KSPC,

and MSD ER, here as well. However, we used two different approaches to
analyze the data:

• Word-level — With this approach, we calculated the results word-by-
word for every repetition, similar to existing word repetition studies
[28].

• Phrase-level — In this approach, we combined the words, which were
presented separately to the participants, across each repetition into
the target phrase. So, all third repetitions of each word of the phrase
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were “assembled” into the third instance of the whole phrase. Then, we
calculated the results for the entire phrases. This approach matches
how text entry results are typically analyzed in most studies, e.g., [6,
8, 9, 10, 11, 12, 13, 15, 16, 17, 20, 21, 23, 24, 25, 28, 68, 69], and thus
enables comparisons of our results with a wide range of work in the
literature.

More importantly, in the phrase-level approach, combining the words into
phrases ensures that the word length distribution of a given language, i.e.,
English in our case, is also taken into account in the calculation of the re-
sults. In other words, the word-level approach considers every word, irrespec-
tive of its length, to have the same weight in the calculation of the average
WPM/KSPC/MSD ER. In contrast, the phrase-level approach weighs each
word by its length, preserving the word length distribution in its calculation,
thus computing an appropriately weighted average. With our approach, we
also address a limitation of a previous word repetition study [28], where the
average and maximum word lengths of the chosen 20-word set were just 3.3
and 5, respectively, whereas the average word length is 5.1 in the English
language [70], which means that this previous study may have biased results
towards shorter words (that are easier to enter).

4.4. Experimental Design
We used a within-subjects design for our evaluation, with two independent

variables — the keyboard layout and the repetition number. As dependent
variables, we measured participants’ WPM, KSPC, and MSD ER. For each
of these performance metrics, we calculated the word-level and phrase-level
averages for each of the 10 word-by-word repetitions of the five typed phrases,
i.e., ignoring the first practice phrase. On average, each participant typed
27.2 words ten times for each layout, with the average word length being
5.38.

4.5. Results
We first present an analysis of the main objective measures followed by

the subjective ones. The objective measures were analyzed using two-way
repeated measures (RM) ANOVA with α = 0.05 in SPSS 29. The subjective
measures data was analyzed using dependent t-tests with α = 0.05 using
the same software. We considered data to be normally distributed when
Skewness (S) and Kurtosis (K) values were within ±1.5 [71, 72]. For RM
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ANOVA, upon violation of Mauchly’s sphericity test, we applied Huynh-
Feldt correction where ϵ < 0.75, and all post-hoc analyses were conducted
with the Bonferroni method. For dependent variables that did not have a
normal/log-normal distribution, data was transformed using Aligned Rank
Transform (ART) [73]. For brevity, we detail only statistically significant
results.

Table 2: Word-level RM ANOVA results for the two Keyboard Layouts and ten Repeti-
tions.

Keyboards Repetitions Keyboards × Repetitions

WPM F1,13 = 0.88, n.s.,
η2 = 0.064

F3.80,49.4 = 50.8, p < 0.001,
η2 = 0.796

F3.53,45.9 = 53.0, p < 0.001,
η2 = 0.803

MSD ER F1,13 = 8.38, p < 0.05,
η2 = 0.392

F9,117 = 2.25, p < 0.05,
η2 = 0.147

F9,117 = 1.78, n.s.,
η2 = 0.121

Table 3: Word-level WPM results for each repetition, overall totaling about 20 minutes
of typing on each keyboard. Also, projections via Equations 1 and 2 of how many (22
minutes long) sessions or how much time would be required to reach the corresponding
WPM with the traditional approach of typing different phrases during training.

Typing Speed
(WPM)

Projected No. of
Training Sessions

Projected Training
Time (hours)

Repetition OPTI QWERTY OPTI QWERTY OPTI QWERTY
1 23.6 ± 15.5 36.3 ± 10.8 2.6 9.1 0.97 3.34
2 37.3 ± 16.9 38.6 ± 10.3 11.0 15.0 4.05 5.50
3 39.5 ± 15.8 38.1 ± 10.2 13.1 13.5 4.82 4.95
4 40.3 ± 15.5 38.0 ± 10.3 14.0 13.2 5.12 4.85
5 40.5 ± 14.7 37.5 ± 9.54 14.2 12.0 5.21 4.39
6 41.3 ± 14.5 37.8 ± 9.42 15.1 12.7 5.54 4.65
7 41.4 ± 14.2 38.1 ± 9.70 15.2 13.6 5.57 4.98
8 40.9 ± 14.3 37.8 ± 8.99 14.7 12.7 5.38 4.65
9 42.0 ± 13.2 37.6 ± 9.24 15.9 12.3 5.84 4.51
10 42.4 ± 13.4 37.6 ± 8.88 16.4 12.1 6.02 4.44

4.5.1. Word-level Analysis of WPM, KSPC, MSD ER, and Required Num-
ber of Traditional Training Sessions

All significant results for our main object measures are presented in Tables
2 and 3, and Figures 4 and 5. According to Table 3 and Figure 4a, partici-
pants started significantly slower with OPTI (23.6 ± 15.5 WPM) compared
to QWERTY (36.3 ± 10.8 WPM). Yet, starting from the 3rd repetition, they
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were quickly able to exceed their corresponding QWERTY’s typing speed.
Still, OPTI only exhibited significantly better performance over QWERTY
for repetitions 6 through 10. The curve for OPTI also starts to show a flat-
tening trend from the 3rd repetition onwards. As for QWERTY, except for
the 2nd repetition, the data seems to be more or less flat throughout.

The fastest average typing speed of 42.4 ± 13.4 WPM achieved using
the OPTI layout was on the very last repetition. Yet, for QWERTY the
fastest speed (38.6 ± 10.3 WPM) was already observed in the 2nd repetition.
The fastest individual participant reached an average speed of 56.0 ± 11.6
WPM in the 10th repetition with OPTI. Similarly, for QWERTY, the fastest
individual participant typing speed of 45.7 ± 9.90 WPM was observed in the
3rd repetition.

When comparing our results with Equations 1 and 2 from MacKenzie
and Zhang’s research [8], the average typing speed of the final repetition
corresponds to 12.1 (20-22 minute long) sessions of normal/traditional train-
ing (i.e., training with different phrases) for QWERTY and 16.4 sessions for
OPTI (see Table 3). Specifically, for QWERTY, where participants achieved
their highest speed in the 2nd repetition, we estimate that reaching a speed
of 38.6 WPM would require 15 sessions.

Interestingly, OPTI’s typing speed performance showed a downward trend
with increasing word length, as can be seen in Figure 5. Yet, the typing
speed for QWERTY was more similar for all the word lengths (except for
word length 12). For words that had a length of 5 or less, OPTI exhibited
superior typing speed over QWERTY within the ten repetitions. For words
with a word length of greater than 5, the curves crossed over each other, with
QWERTY exhibiting superiority over OPTI.

A two-way RM ANOVA across keyboards and repetitions did not reveal
significant differences for KSPC for the two dependent variables nor an in-
teraction. As for MSD ER (see Table 2), with the exceptions of the 2nd and
the 9th repetitions where OPTI exhibited significantly more errors than QW-
ERTY (see Figure 4e), no other significant differences were found between
the two keyboard layouts in the post-hoc analysis. Still, the MSD ER was
throughout well below 2% for both the keyboards, allowing us to conclude
that both KSPC (see Figure 4c) and MSD ER did not reveal any noteworthy
trends.
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Table 4: Phrase-level RM ANOVA results for the two Keyboard Layouts and ten Repeti-
tions.

Keyboards Repetitions Keyboards × Repetitions

WPM F1,13 = 8.45, p < 0.05,
η2 = 0.394

F5.30,68.9 = 40.7, p < 0.001,
η2 = 0.758

F9,117 = 29.0, p < 0.001,
η2 = 0.690

MSD ER F1,13 = 9.74, p < 0.01,
η2 = 0.428

F9,117 = 2.58, p < 0.01,
η2 = 0.165

F9,117 = 1.84, n.s.,
η2 = 0.124

4.5.2. Phrase-level Analysis of WPM, KSPC, MSD ER, and Required
Number of Traditional Training Sessions

Tables 4 and 5 and Figure 4 present the results for the phrase-level per-
formance metrics. According to Table 5 and Figure 4b, participants’ typing
speed was significantly slower in the first four repetitions with OPTI com-
pared to QWERTY. Starting from the 5th repetition until the end, no signif-
icant differences in typing speed between OPTI and QWERTY were found.
In other words, the two keyboard layouts exhibited similar performance from
the 5th repetition onwards. In short, according to this measure OPTI was
never able to outperform QWERTY.

The curve for OPTI showed a flattening trend starting from the 5th rep-
etition. Although there was a slight increase in typing speed on the 9th

repetition, the slope of the curve flattened out again on the 10th repetition.
Conversely, the data for QWERTY was pretty flat throughout the ten repe-
titions.

The highest average typing speed of 35.2 ± 8.69 WPM attained using
the OPTI layout occurred in the final repetition. For QWERTY, the highest
speed of 35.2 ± 5.60 WPM was observed on the 8th repetition. Among
individual participants, the fastest average speed reached 51.0 ± 5.08 WPM
in the 10th repetition with OPTI. Similarly, with QWERTY, the highest
individual participant typing speed (43.4 ± 5.43 WPM) was recorded on the
7th repetition.

When comparing our results with Equations 1 and 2 [8], the fastest aver-
age typing speed corresponds to 7.1 (20-22 minute long) sessions of traditional
training for QWERTY and 9.2 sessions for OPTI (see Table 5).

Similar to our word-level KSPC results, a two-way RM ANOVA (again)
did not reveal significant differences for phrase-level KSPC. As for MSD ER
(see Table 4), OPTI exhibited significantly more errors than QWERTY in
the first four and the 9th repetition (see Figure 4f). For repetitions 5-8 and 10,
we did not observe significant differences between the two keyboard layouts.

20



Again, in all the repetitions for both keyboards, the MSD ER never reached
2%. This indicates that the participants were quite careful when typing on
each of the two keyboards [40].

Table 5: Phrase-level WPM results for each repetition, overall totaling about 20 minutes
of typing on each keyboard. Also, projections via Equations 1 and 2 of how many (22
minutes long) sessions or how much time would be required to reach the corresponding
WPM with the traditional approach of typing different phrases during training.

Typing Speed
(WPM)

Projected No. of
Training Sessions

Projected Training
Time (hours)

Repetition OPTI QWERTY OPTI QWERTY OPTI QWERTY
1 15.4 ± 4.67 31.8 ± 5.63 0.7 3.1 0.26 1.14
2 26.1 ± 8.99 33.9 ± 6.32 3.6 5.3 1.33 1.93
3 29.5 ± 10.3 34.0 ± 6.93 5.3 5.4 1.95 1.96
4 29.8 ± 9.34 34.3 ± 6.09 5.5 5.8 2.01 2.12
5 32.3 ± 9.81 33.8 ± 5.34 7.1 5.2 2.59 1.89
6 33.1 ± 9.83 34.7 ± 6.24 7.6 6.4 2.79 2.35
7 33.4 ± 10.4 34.8 ± 5.59 7.8 6.5 2.85 2.39
8 33.0 ± 9.67 35.2 ± 5.60 7.5 7.1 2.75 2.61
9 34.9 ± 8.46 34.2 ± 5.45 9.0 5.6 3.28 2.06
10 35.2 ± 8.69 34.8 ± 4.82 9.2 6.5 3.38 2.37

4.5.3. Learning Curves
We also fit a regression based on the power law of learning through the

word-level and phrase-level WPM data [8, 18, 36], see Figures 6a and 6b.
This yielded Equations 5 and 6 for word-level analysis:

WPMQWERTY = 37.177× repetition0.0084, R2 = 0.0767 (5)

WPMOPTI = 24.688× repetition0.2533, R2 = 0.6358 (6)

and Equations 7 and 8 for phrase-level analysis:

WPMQWERTY = 31.682× repetition0.0424, R2 = 0.6762 (7)

WPMOPTI = 14.813× repetition0.3951, R2 = 0.7998 (8)

In the above equations, repetition is the number of times the word is
repeatedly typed, and R2 represents the squared correlation coefficient.
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4.5.4. Subjective Measures
11 out of the 14 participants preferred the QWERTY layout, and only

3 preferred OPTI. Justifications for selecting QWERTY included “muscle
memory,” “habituation with [the] existing method,” and “I use this layout
every day, so I am pretty familiar with it.” Subjects who preferred OPTI
mentioned “the spacebars and the alphabet location, in particular, helped me
[type] faster,” and “there were four spacebars ... and the letters were better
arranged.”

When participants were asked about their perceived ease of interaction
with each keyboard using a 7-point Likert scale (1: very difficult, 7: very
easy), the subjective feedback indicated a notable preference for QWERTY,
which was perceived as significantly easier than OPTI (t13 = 4.09, p <
0.001, d = 1.09). Regarding frustration levels (1: very frustrating, 7: very
satisfied), participants found QWERTY to be significantly less frustrating
than OPTI. (t13 = 2.73, p < 0.05, d = 0.73). Similarly, in terms of mental fa-
tigue (1: very fatiguing, 7: very relaxing; t13 = 2.79, p < 0.05, d = 0.75) and
perceived speed (1: very slow, 7: very fast; t13 = 3.40, p < 0.01, d = 0.91),
QWERTY again outperformed OPTI. The remaining two subjective mea-
sures, namely physical fatigue and perceived precision (1: very imprecise, 7:
very precise), did not reveal significant differences. A graphical representa-
tion of the subjective outcomes is depicted in Figure 7.

4.6. Study 2 Discussion
In this study, we investigated whether repeatedly typing the same word

provides an accurate estimation of trained user performance for unfamiliar
keyboard layouts. To do this, we replicated MacKenzie and Zhang’s study
[8] with repeated word typing and analyzed the data following two different
approaches, i.e., at the word- or phrase-level.

Results revealed that word-level analysis matches the findings of MacKen-
zie and Zhang [8] more closely. As previously mentioned, MacKenzie and
Zhang [8] found participants were able to reach 44.3 WPM and about 40
WPM for OPTI and QWERTY, respectively, after 20 (20-22 minute) ses-
sions of traditional training. The highest speed achieved in our study was
42.4 WPM for OPTI and 38.6 WPM for QWERTY (see Table 3 and Figure
4a). To reach such speeds, we can estimate (using Equations 1 and 2 [8])
that about 16 and 15 sessions, i.e., about 6 and 5.5 hours, of traditional
training would be required, respectively (see Table 3). Moreover, and similar
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to MacKenzie and Zhang’s findings [8], our results also indicated that OPTI
is superior to QWERTY.

Yet, we caution that word-level analysis is limited in terms of validity and
reliability. The reason is that it does not take the word length distribution
of a language into consideration and considers every word, whether of length
two or ten, to have the same weight in the calculation of the averages. In
other words, word-level analysis does not resemble the results of real-world
keyboard usage well enough. Instead, a more valid and more widely compa-
rable approach is a phrase-level analysis where the words are combined into
their respective phrases.

However, the phrase-level analysis was unable to identify a superior key-
board nor did it provide accurate performance estimates (see Table 5 and
Figure 4b). The main reason for this seems to be OPTI’s deteriorating per-
formance for longer words, as evident in Figure 5. Thus, taking the word
length distribution in the phrase-level analysis into account resulted in dif-
ferent estimates. Our outcome also indicates that using only shorter words
in a typing study [28] can bias the outcome of a study substantially (the
OPTI data in Figure 5 is on average never below QWERTY for words up
to 5 letters), and thus we do not recommend using only shorter words. Al-
though not reported here, we also calculated word-level weighted averages of
the typing speed, where the weights were set to the lengths of each word.
From this, we found quite similar results to that of our phrase-level analysis
presented in Figure 4b, matching the pattern of the curves similarly well.

The learning curves for word-level and phrase-level analysis in Equations
5, 6, 7, and 8 also show that phrase-level analysis fits the performance data
better than word-level analysis, as evident through the higher R2 values. This
again shows that phrase-level analysis is potentially a more valid approach
than word-level analysis.

One reason the curve for QWERTY was fairly flat in both Studies 1 and
2 (see Figures 3 and 6) is attributable to the fact that the QWERTY layout
did not involve much learning, due to participants’ prior familiarity with the
layout. Thus, QWERTY was also highly preferred and rated as evident in
the subjective outcomes of this study.

5. Guided Evaluation Method (GEM)

The findings of Study 2 discourage the use of the repeated word typing
approach for text entry studies, as this approach was unable to accurately
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estimate trained user performance (if word length distributions were cor-
rectly accounted for). Thus, we introduce here a new approach: the Guided
Evaluation Method (GEM). The GEM is designed to be less resource-
consuming than traditional evaluation approaches. To reduce a novice’s vi-
sual search time for finding keys on an unfamiliar keyboard [33, 34], the
GEM builds on the idea of providing visual clues [41, 42] and guides the
user by highlighting all the characters of the target word, more specifically,
the keys that are yet to be typed (see Figure 1). Thus, with a target word
of “ELECTIONS” and as shown in Figure 1a, when “EL” has already been
typed, the letter ‘L’ is no longer highlighted as it does not exist elsewhere in
the remaining part of the target word. If participants make a mistake, keys
are not de-highlighted from the mistake onwards. This helps participants
realize that a mistake had occurred earlier in the word and does not require
them to constantly check whether the typed and the target text matched.

Similar to Study 2, once the target word was typed, we asked participants
to type in a space character to denote the end of the word. Also, we (again)
randomly chose complete phrases from MacKenzie and Soukoreff’s set [61],
but (again) presented only one individual word at a time.

We chose to present only a single word at a time because we did not want
to overburden our novice participants with the need to remember the whole
phrase – after all, they are simultaneously dealing with the unfamiliar OPTI
keyboard layout, which already increases cognitive overhead. Thus, having
to memorize only a single word (instead of a phrase) is more likely to reveal
representative typing speeds, as participants need to memorize less text at
a time. Furthermore, typing only a single word at a time also requires less
going back and forth to check whether the typed and the target text match,
again avoiding extra time that is not representative of skilled typing.

In our first pilot study during the development process of the GEM, we
tried to highlight only the next letter, i.e., highlight a single key/letter of the
target word at a time. Yet, this did not work well, as our novice participants
took a lot of time to first perceive and react to each new highlight, i.e., the
time needed to process a new visual stimulus [74, 75], before pressing the
corresponding key. As the time interval required to respond to a new visual
stimulus is not representative of trained/expert user behavior, we decided to
use a different approach.

In a subsequent pilot study, we asked participants to first plan the typing
pattern of each target word before they started typing that word without
highlighting any letters. We encouraged them to take as long as they needed

24



to plan the typing pattern. Once the planning was done, they were asked
to type the target word as quickly as possible. Yet, this approach also did
not work well, as we noticed that participants were not able to remember
the typing pattern beyond four or five letters of the target word. In other
words, participants frequently got “lost” after they typed four/five letters and
started acting like pure novices, i.e., scanned the entire keyboard layout for
each next target letter.

To address this issue and to simultaneously compensate for the above-
mentioned per-key reaction times, we asked participants to plan the typing
pattern for each word before typing it and also highlight all the keys of the
target word on the keyboard that are still to be typed. Highlighting all
keys to be typed permits us to de-highlight all keys that have already been
typed — as long as they do not exist elsewhere in the target word. This
significantly reduces the visual search space and thus (largely) mitigates the
issue of participants getting lost after typing four or five letters.

In summary, GEM comprises three main features — typing only a single
word at a time, planning before typing, and reducing the search space by
highlighting all necessary keys but also de-highlighting keys that have already
been typed. These three properties of the GEM allow us to substantially
reduce learning effects and thus the need for a longitudinal study, which
enables us to use the GEM to directly compare different keyboard layouts,
e.g., OPTI vs. QWERTY. In other words, GEM-based user studies with
novice users have the potential to enable designers to quickly estimate a
layout’s performance with trained users.

6. User Study 3 – GEM

In this study, we again replicated MacKenzie and Zhang’s study [8], but
this time with the proposed GEM approach. This choice, just as in Studies
1 and 2, allowed us to compare our results with their findings [8] and, in
the process, helped us to validate the GEM approach. Here, we describe the
details of the study and how we evaluated the two keyboard layouts, OPTI
and QWERTY, with the GEM.

6.1. Participants
14 participants (10 male, 4 female), aged 30.3 ± 5.01 years, took part in

this study. All of them had experience with typing on a physical and/or soft
QWERTY keyboard for over nine years, except one who has been typing for
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3-5 years. For all participants, this study was the first time they typed on an
OPTI keyboard. Each participant was compensated with $10 for their time.

6.2. Apparatus, Keyboard Designs, and Procedure
The same apparatus and keyboard design as in Studies 1 and 2 were used,

except for the addition of the key highlighting associated with the GEM (see
Figure 1). At the beginning of the study, participants filled out a consent form
and a demographic questionnaire. Participants then typed eleven phrases on
each of the two keyboards. We again instructed participants to memorize
each target word (and if needed its spelling) and to plan the typing pattern of
each word before they started typing it. We encouraged them to take as long
as they needed during the planning phase. We (again) asked participants to
type each word of the randomly chosen phrases [61] in sequence, by revealing
only a single word at a time.

Participants were not given practice trials. Instead, we again considered
the first phrase as practice and discarded it from the analysis [14, 67]. Similar
to Study 2, at the end of the experiment, participants filled out another short
questionnaire. On average, participants typed for about 5 minutes on each
of the two keyboards. In total, the experiment took less than 30 minutes, in-
cluding the demographic pre-questionnaire and the post-questionnaires. Ev-
erything else was the same as in the previous two studies.

6.3. Performance Metrics
Other than the phrase-level WPM, KSPC, and MSD ER measures used

in Studies 1 and 2, we also recorded the planning time in this study to eval-
uate the text entry performance of the two keyboard layouts. The Planning
Time is the time taken by the participants to plan the typing pattern for a
word in the GEM. In other words, it is the time taken from the presentation
of a word to the first key press for entering said word. Note that the planning
time is not taken into account in the calculation of WPM. Similar to Studies
1 and 2, the WPM measure just considers the time taken by the participants
to type the word — from the first key press to the last key press (i.e., the
spacebar).

6.4. Experimental Design
We used a within-subjects design in this study. As dependent variables,

we measured participants’ WPM, KSPC, MSD ER, and planning time. For
each of these performance metrics, we calculated the overall average of the
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ten typed phrases, i.e., ignoring the first practice phrase. As the overall
performance data can be confounded by the properties of each individual
phrase (see below), we used a 5-phrase moving average (5-PMAvg) for WPM,
KSPC, MSD ER, and planning time to analyze participants’ performance
over time. Thus, for the overall averages and the subjective measures, we had
a single independent variable – the keyboard layout. As for the 5-PMAvg, we
had two independent variables – the keyboard layout and the phrase number.

The reason we chose a moving average over a simple average for each
individual phrase is that the latter suffers a similar problem as the repeatedly
typing the same phrase approach [32] – it does not represent real keyboard
usage as the average is calculated based on typing just a single phrase. Thus,
confounding factors like the characters, length, and number of words of the
particular phrase could have a higher impact on the results than desirable. To
mitigate this issue, we used a moving average for each of the four performance
metrics. For the first four phrases, we calculated the moving average only
up to that point. For example, the moving average for the third phrase is
thus the average of only the first three phrases. We also chose to calculate
the moving averages over five phrases because several existing studies, e.g.,
[11, 25, 24], define a single session to comprise of typing five phrases, and we
wanted to support comparability of our results with the literature.

6.5. Results
We analyzed the data using t-tests for the overall averages and the sub-

jective measures. For the 5-PMAvg, we analyzed the data using two-way
RM ANOVA. For both the t-tests and RM ANOVA, we analyzed the data
in the same manner as in Study 2. We used Bonferroni corrections for the
ANOVAs to prevent the inflation of type I errors.

6.5.1. WPM, KSPC, MSD ER, and Required Number of non-GEM Sessions
According to Figure 8a, participants’ overall average typing speed across

all ten phrases was significantly faster (t13 = 4.15, p < 0.001, d = 1.11) for
OPTI (44.6 ± 2.60 WPM) compared to QWERTY (39.3 ± 1.61 WPM). The
fastest participant was able to type at an overall average of 58.7 ± 10.3 WPM
with OPTI and 46.5 ± 7.84 WPM with QWERTY. As per Figures 8b and 8c,
no significant differences were observed for the overall KSPC (OPTI: 1.020
± 0.013, QWERTY: 1.034 ± 0.022) and MSD ER (OPTI: 0.29 ± 0.39%,
QWERTY: 0.13 ± 0.27%) measures.
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When looking at how typing speed varies over time (see Tables 6 and 7),
the results of the 5-PMAvg reveal that participants started typing signifi-
cantly faster with OPTI starting from the 6th phrase (see Figure 9a). The
fastest participant was able to type at a 5-PMAvg of 64.8 ± 7.50 WPM with
OPTI and 48.9 ± 7.50 WPM with QWERTY. No significant differences for
a 5-PMAvg of KSPC and MSD ER were observed (see Figures 9b and 9c).

When we compare our overall average WPM results for the GEM with ex-
trapolations through Equations 1 and 2 (which do not include the GEM), it
would take 19.1 (20-22 minute) sessions for OPTI (i.e., 7.02 hours of training)
and 17.5 sessions for QWERTY (i.e., 6.42 hours of training) for participants
to reach the same typing speed. For the 5-PMAvg WPM results, the corre-
sponding number of MacKenzie and Zhang’s sessions and total training time
[8], is presented in Table 7.

Table 6: 5-phrases Moving Average RM ANOVA results for the two Keyboard Layouts
and ten Phrases.

Keyboards Phrases Keyboards × Phrases

WPM F1,9 = 7.71, p < 0.05,
η2 = 0.461

F2.18,19.6 = 0.63, n.s.,
η2 = 0.066

F3.61,32.5 = 3.04, p < 0.01,
η2 = 0.253

Planning Time F1,9 = 39.1, p < 0.001,
η2 = 0.813

F2.91,26.2 = 1.40, n.s.,
η2 = 0.135

F3.06,27.5 = 0.58, n.s.,
η2 = 0.060

6.5.2. Planning Time Analysis
The comparison of the overall average planning time for all the phrases

showed that participants took significantly longer (t13 = 4.61, p < 0.001, d =
1.23) to plan their typing with the OPTI keyboard (21.4 ± 2.65 seconds)
compared to QWERTY (12.9 ± 1.84 seconds; see Figure 8d). When looking
at a 5-PMAvg of planning time (see Table 6), OPTI required significantly
more time to plan for all phrases over QWERTY (see Figure 10a). Further,
Figure 10b shows that the planning time increased with increasing word
length.

6.5.3. Subjective Measures
Among our 14 participants, 10 preferred QWERTY, 3 preferred OPTI,

and 1 mentioned that both were the same. Example reasons for the choice of
QWERTY were “Using [QWERTY] for more than 10 years”, “Familiarity,
wide availability”, it is the “same as a laptop/phone keyboard ”, and it “felt
natural and easy.” Subjects who preferred OPTI mentioned “the keyboard
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Table 7: 5-phrases Moving Average of WPM results for each phrase, overall totaling about
5 minutes of typing on each keyboard. Also, projections via Equations 1 and 2 of how many
(22 minutes long) sessions or how much time would be required to reach the corresponding
WPM with the traditional approach of typing different phrases during training.

Typing Speed
(WPM)

Projected
No. of Training

Sessions

Projected
Training Time

(hours)
Phrase OPTI QWERTY OPTI QWERTY OPTI QWERTY

1 40.5 ± 7.21 41.0 ± 8.59 14.2 24.7 5.20 9.07
2 41.7 ± 9.18 41.2 ± 7.47 15.5 25.6 5.69 9.39
3 41.9 ± 9.28 40.0 ± 7.50 15.7 20.0 5.77 7.33
4 41.9 ± 9.46 39.6 ± 6.58 15.8 18.4 5.79 6.75
5 41.9 ± 9.75 39.4 ± 5.76 15.8 17.7 5.81 6.51
6 44.0 ± 9.31 38.8 ± 5.41 18.4 15.7 6.73 5.74
7 44.2 ± 7.61 38.3 ± 4.29 18.6 14.1 6.84 5.18
8 45.8 ± 7.77 38.8 ± 3.75 20.8 15.8 7.63 5.79
9 45.3 ± 7.38 39.1 ± 4.48 20.0 16.6 7.35 6.09
10 45.6 ± 5.86 39.0 ± 4.34 20.5 16.4 7.50 6.01

responds faster ”, “Letters are closer ”, and “Four [spacebars] ... helped me to
get to the next word faster.” The participant who did not have a particular
preference said that “both are easy to learn.”

When asked about the ease of interaction with each keyboard on a 7-
point Likert scale (1: very difficult, 7: very easy), the subjective responses
showed that QWERTY was perceived to be easier than OPTI (t13 = 2.26, p <
0.05, d = 0.61). In terms of frustration (1: very frustrating, 7: very satisfied),
QWERTY was less frustrating than OPTI (t13 = 2.23, p < 0.05, d = 0.60).
Similarly, for mental fatigue (1: very fatiguing, 7: very relaxing), QWERTY
was again better than OPTI (t13 = 3.31, p < 0.01, d = 0.88). The other three
subjective measures, i.e., physical fatigue, perceived speed (1: very slow, 7:
very fast), and precision (1: very imprecise, 7: very precise) did not exhibit
significant differences. A plot of the subjective results is presented in Figure
10c.

6.6. Study 3 Discussion
In this study, we investigated whether we can accurately estimate trained

user-level performance for unfamiliar keyboards with the GEM approach.
To evaluate the GEM, we first compare our results with those of MacKen-

zie and Zhang’s study [8]. Our findings with the GEM are quite close: 44.6
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WPM with GEM vs. 44.3 WPM in MacKenzie and Zhang’s 20th session for
OPTI, respectively 39.3 vs. 40 WPM for QWERTY. These results demon-
strate that a ≈5-minute session with the GEM for each keyboard is able to
identify very similar results to those that were reached after about 7 hours of
a longitudinal study per participant without the GEM. We also confirmed that
OPTI can reach speeds that are overall significantly faster than QWERTY
(see Figure 8a). We cannot directly compare this finding with MacKenzie
and Zhang [8], as the authors did not report such statistical differences in
their work.

In terms of the 5-PMAvg, OPTI exhibited significant differences com-
pared to QWERTY starting from the 6th phrase (see Figure 9a and Ta-
ble 7). Consequently, we recommend running the GEM for at least six
phrases but acknowledge that this number can vary depending on the ex-
act interaction/pointing/selection technique. Thus, the number of phrases
used with the GEM is best determined by running pilots as more phrases
may be needed, e.g., to differentiate between very similar layouts/selection
techniques.

The highest 5-PMAvg typing speed for OPTI was 45.8 WPM on phrase
8, while it was 41.2 WPM on phrase 2 for QWERTY. Thus, in the context
of touch-based typing and in comparison to a longitudinal study, our results
validate that the GEM is a lot more efficient for estimating the trained user
performance of a text entry system. However, the results with the GEM did
not get close to the expert-level performance of 60.7 WPM with OPTI and
44.8 WPM with QWERTY predicted by MacKenzie and Zhang [8] nor to the
text entry rates of 55.6-58.93 WPM reported for experts in other literature
[76, 77]. Thus, we can only state that the GEM estimates the performance
of trained users, i.e., users trained via a typical text entry longitudinal study,
and not that of true experts.

It is also illustrative to compare the predictions from the GEM with the
model proposed by MacKenzie and Zhang’s [8]. To reach the overall average
typing speed achieved with the GEM, participants would need to train for
19.1 and 17.5 non-GEM sessions (each 20-22 minutes), i.e., train for 7.02
and 6.42 hours, for OPTI and QWERTY with MacKenzie and Zhang’s [8]
approach, respectively.

Similarly, for the highest 5-PMAvg result, participants would need to go
through 20.8 non-GEM sessions (i.e., 7.63 hours) with OPTI and 17.7
sessions (i.e., 6.51 hours) with QWERTY (see Table 7). These results
also illustrate how much time the GEM can save for empirically estimating

30



trained user-level performance on novel/unfamiliar keyboard layouts.
As shown in Figure 9a and Table 7, the typing speed of participants with

the OPTI keyboard did improve over time. However, the speed decreased
with increasing time for QWERTY. This is probably explained by the slightly
higher KSPC for QWERTY compared to OPTI (see Figure 9b). Based on
our observations, the potential reason for the higher KSPC, although not
significantly different from OPTI, is that participants felt more confident with
this keyboard layout. Thus, they tended to type faster, which led to more
mistakes [28] and, therefore, more corrections [16], which slowed their overall
performance [46]. Still, the typing speed for QWERTY was consistently
above 38 WPM, see Table 7, unlike our word-level analysis in Study 2 (see
Figure 4a and Table 3). In other words, the performance observed with the
GEM is quite close to the previously reported speed of about 40 WPM for
regular QWERTY users [8].

The GEM also did not counteract participants’ years of experience with
the QWERTY layout. This is evident in the results of the subjective measures
(see Figure 10c) for each keyboard, where most of the participants preferred
QWERTY over OPTI. QWERTY was also rated significantly better than
OPTI for ease of interaction, frustration, and mental fatigue.

Beyond participants’ familiarity with the QWERTY layout, another rea-
son why QWERTY was rated better is likely the increased effort (and time)
required to plan the typing pattern for the OPTI keyboard. Not only was the
overall planning time significantly less for QWERTY (see Figure 8d), it also
took participants significantly less time to plan throughout the ten phrases
compared to OPTI (see Figure 10a). We believe that this higher planning
time for OPTI is one of the key reasons that led to participants exhibit-
ing a faster typing speed within the GEM relative to QWERTY. After all,
trained/expert users will typically either explicitly plan execution in advance
or implicitly use muscle memory, e.g., [78]. Thus, we believe this does not
invalidate the GEM as an evaluation method — in contrast, it emphasizes
that the GEM uses a methodology that is more commensurate with trained
user behaviors. Moreover, according to Figure 10b, the time required to plan
to type a word on the OPTI keyboard also seems to increase as the length of
the word to be typed increases, and notably so for words that are 9 letters
or longer. Similar observations were made for typing speed in our study,
where the WPM decreased with increasing word length for both OPTI and
QWERTY.
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7. General Discussion and Future Work

In this paper, we first showed that the approach of repeatedly typing
the same phrase could estimate trained user-level text entry performance
with data gathered for more than three days of usage from each partici-
pant. Yet, this is still effectively a longitudinal study. We then investigated
the repeated word typing approach. Results indicated that when the data
were analyzed at the phrase-level, and not at the word-level (which ignores
word length distributions), this approach failed to estimate trained user per-
formance accurately. Towards more efficient evaluations of novel keyboard
layouts, we then proposed and validated a novel approach, the Guided Eval-
uation Method (GEM), which empirically estimates how fast trained users
can type with a new layout through a study with novice users in a matter of
minutes. Thus, the GEM greatly reduces the need for longitudinal studies
in text entry research.

In Study 2, all significant differences of the main objective measures ex-
hibited large effect sizes (η2 > 0.14; see Tables 2 and 4). Similarly, in Study
3, we found significant differences between the two keyboards for overall av-
erage typing speed with a large effect size (d = 1.11) with 14 participants as
well, a number consistent with much other work [79]. In terms of 5-PMAvg of
typing speed, the effect sizes were also large (η2 > 0.14; see Table 6). These
robust findings make us believe that our results are likely replicable.

In Study 2, the phrase-level model for OPTI, i.e., Equation 8, achieved
the highest R2 value of 0.7998. This equation predicts that it would take
approximately 16 repetitions of typing the same word for participants to
reach speeds of 44.3 WPM, as reported previously [8]. However, given the
flattening trend of the OPTI curve starting from the 5th repetition, we have
strong doubts about whether the prediction would actually play out in reality.
Based on our observations of the participants and listening to the auditory
feedback provided by the system on each key press, participants tended to
get into a rhythm by the 5th/6th repetition. For example, participants typed
the first 3-5 letters in one go, paused ever so slightly, and typed the rest of
the letters in another go. This rhythm was continued for the remaining repe-
titions. To mitigate this, we recommend future work to introduce a planning
phase every five repetitions, similar to our GEM approach. We speculate
that planning the typing pattern after every fifth repetition would improve
participants’ performance further, possibly even matching our learning mod-
els in Equations 7 and 8. More importantly, this could even provide more

32



accurate phrase-level estimates of trained user performance.
Although the GEM was quite accurate in estimating trained user-level

text entry performance, it was unable to predict the performance of true
experts, i.e., users who have years-long training. Still, the GEM is ver-
satile enough to be easily integrated into different types of prototype text
entry systems that utilize different interaction techniques, e.g., touch/tap,
swipe, eye-gaze-based techniques, and others. Thus, researchers can now use
the GEM to focus directly on the training of an interaction technique over
multiple sessions and can (largely) ignore the potential confound of layout
learning. A longitudinal study with the GEM could then potentially answer
the question of whether the true expert typing speeds predicted by previous
work [5, 8] for different layouts could actually be achieved, something that
is very difficult to do with other techniques as participants otherwise need
to spend (even more) time to learn both the layout and the interaction tech-
nique. Thus, we recommend future work to investigate if and how quickly
users can achieve the speed of a true expert with the GEM.

As mentioned before, the GEM relies on three main features — typing
a single word at a time, planning before typing, and reducing the search
space by highlighting all necessary keys but also de-highlighting keys that
have already been typed. Although we found in our pilots that each of these
individual features is not sufficient to predict the performance of a trained
user on its own, it would still be interesting to investigate in the future how
much each of these three components contributes to the successful predictions
of the GEM approach.

Through other unreported pilot studies that we performed before the
studies reported here, we learned quickly that the GEM is not a good means
for inducing learning of a keyboard layout, specifically because the GEM
– as presented above – involves only typing a few phrases. We also need
to acknowledge here that the GEM involves a typing experience that is not
the same as real-life typing. Thus, we highlight that the GEM approach
is currently only designed to be an evaluation method to quickly estimate
trained user performance and/or compare different keyboard layouts and
that the GEM in its current form should not be used as a training method to
learn a new layout. Still, it might be interesting to analyze in future work if
something like the GEM, or more specifically highlighting target keys, could
have benefits for training users on unfamiliar keyboard layouts.

To enable direct comparisons with existing studies, we chose to present
phrases word by word with the GEM. Still, further work should investigate
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the influence of word length on planning time and typing speed on unfa-
miliar keyboards. Additionally, a combination of repeatedly typing the same
word/phrase and the GEM might allow for an even better/faster trained/expert
user performance estimation. Again, further studies are required to verify
this.

8. Limitations

Although the GEM provides an accurate estimation of the text entry
speed for a given layout, one limitation of the approach is its bias towards a
lower error rate. Previous work has demonstrated that expert users tend to
make more mistakes when typing very fast [28] and thus require more correc-
tive actions [16]. Yet, according to our data shown in Figures 8c and 9c, our
participants made substantially fewer errors compared to, for example, the
trained users of MacKenzie and Zhang [8] or the corrective actions performed
by the trained users of Majaranta et al. [16]. We believe that the reason why
users made fewer mistakes with the GEM is that, as the keys are highlighted
in GEM and unlike real-world typing, users are less likely to make mistakes
that involve keys outside that limited sets of highlighted keys. Therefore, we
recommend using GEM predominantly to make rapid a priori predictions for
the text entry speed potential of a text entry technique in the early stages of
the development process.

Another approach to estimating expert user performance for text entry is
to use model-based approaches, such as the KLM model [80] or variants [81],
including those adapted to touch screens [82]. Yet, such models are targeted
(only) at expert performance, i.e., focus mostly on motor movement time,
and do not take learning into account nor model the performance of users
that have received only a specified amount of training, i.e., trained users. On
the surface, it seems feasible to adopt these approaches to take learning into
account, e.g., by modeling the decrease of the mental effort (and thus time)
to recall a character’s location on the keyboard. Yet, this is a simplistic
approach, as it assumes that recall is always perfect. Previous models for
text entry learning built on cognitive architectures for human memory, such
as ACT-R [83], e.g., modeling memorization and also the interference effect
from distractors encountered during learning [84, 85, 86, 87].

While the repeated word/phrase typing approach involves a memory re-
call component, it relies predominantly on the immediate preceding trials.
In contrast, the GEM bypasses the issue of letter location recall by mov-
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ing memory recall and/or visual scanning (mostly) into the planning phase
before the word is entered. In essence, this a-priori planning improves our
novice participants’ execution time, yielding results that are close to trained
user performance. Still, we (again) acknowledge that these performance es-
timates are achieved by the GEM by simulating a typing experience that is
not the same as real-life typing. We further recognize that the GEM involves
a mechanism that is somewhat different from the behavior of a real trained
user, e.g., because trained users typically remember letter locations while the
GEM only highlights them, and thus, users have to remember them only for
the current word.

Another limitation of this work is that to validate both the repeated
word/phrase typing approaches as well as the GEM, we compared our re-
sults to that of MacKenzie and Zhang [8]. Although we tried to replicate
their work [8] as closely as possible, we still had to make some modifications
that potentially confounded the results to some extent. For example, the
keyboard design was slightly modified as the dimension of the keys had to
be reduced a bit (0.2 cm), and a small gap (0.1 cm) between the keys needed
to be introduced. Another difference was we asked participants to use their
dominant hand’s index finger instead of the stylus used by MacKenzie and
Zhang [8]. The difference in technological advances since their work [8] and a
smaller user sample, though not uncommon in longitudinal studies [20, 35],
could also be factors as well. Still, we believe that these factors do not in-
validate our work. Not only were our findings very similar to previous work
[5, 8, 38], but also the fact that our absolute novice participants were able to
type significantly faster with OPTI compared to QWERTY starting from just
the 6th phrase makes us believe that our study is very comparable. This is
evidence that the GEM unquestionably mitigates participants’ lack of layout
knowledge. Still, we encourage future work to conduct a longitudinal study
with the same apparatus and participants to further validate our work.

9. Conclusion

To reduce the logistical bottleneck of longitudinal studies in text entry re-
search for reliably estimating the performance potential of a given text entry
system, we investigated multiple approaches here. First, we showed that the
popular approach of repeatedly typing the same phrase would still require
training participants for more than three days to estimate trained user text
entry performance. Therefore, it does not eliminate the need for a longitudi-
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nal study. Next, we found that the approach of repeatedly typing the same
word does not provide accurate estimates of trained user performance when
the data is analyzed at a phrase-level, which is more valid than analysis at
the word-level, where word length distributions are ignored.

We then proposed a novel approach, the Guided Evaluation Method
(GEM), and showed that it can accurately estimate the performance of
trained users in a user study with novice users in just a matter of min-
utes. Thus, the GEM greatly reduces the need for longitudinal studies and
enables researchers to quickly perform text entry studies with different inter-
action techniques and layouts. Given this, we conclude by stating that the
GEM has the potential to be a game changer in the investigation of novel key-
board layouts and interaction techniques and maybe even text entry research
in general.

References

[1] P. Majaranta, Communication and text entry by gaze, in: Gaze interac-
tion and applications of eye tracking: Advances in assistive technologies,
IGI Global, 2012, pp. 63–77. doi:10.4018/978-1-61350-098-9.ch008.

[2] C. Kumar, R. Menges, D. Müller, S. Staab, Chromium based frame-
work to include gaze interaction in web browser, in: Proceedings of the
26th International Conference on World Wide Web Companion, WWW
’17 Companion, International World Wide Web Conferences Steering
Committee, Republic and Canton of Geneva, CHE, 2017, p. 219–223.
doi:10.1145/3041021.3054730.
URL https://doi.org/10.1145/3041021.3054730

[3] C. Pandarinath, P. Nuyujukian, C. H. Blabe, B. L. Sorice, J. Saab,
F. R. Willett, L. R. Hochberg, K. V. Shenoy, J. M. Hender-
son, High performance communication by people with paralysis us-
ing an intracortical brain-computer interface, eLife 6 (2017) e18554.
doi:10.7554/eLife.18554.

[4] M. E. Mott, S. Williams, J. O. Wobbrock, M. R. Morris, Improving
dwell-based gaze typing with dynamic, cascading dwell times, in: Pro-
ceedings of the 2017 CHI Conference on Human Factors in Computing
Systems, CHI ’17, Association for Computing Machinery, New York,

36



NY, USA, 2017, p. 2558–2570. doi:10.1145/3025453.3025517.
URL https://doi.org/10.1145/3025453.3025517

[5] J. Rick, Performance optimizations of virtual keyboards for stroke-based
text entry on a touch-based tabletop, in: Proceedings of the 23nd Annual
ACM Symposium on User Interface Software and Technology, UIST ’10,
Association for Computing Machinery, New York, NY, USA, 2010, p.
77–86. doi:10.1145/1866029.1866043.
URL https://doi.org/10.1145/1866029.1866043

[6] T. J. Dube, A. S. Arif, Text entry in virtual reality: A comprehensive
review of the literature, in: M. Kurosu (Ed.), Human-Computer Interac-
tion. Recognition and Interaction Technologies, Springer International
Publishing, Cham, 2019, pp. 419–437. doi:10.1007/978-3-030-22643-533.

[7] M. Speicher, A. M. Feit, P. Ziegler, A. Krüger, Selection-based text entry in
virtual reality, in: Proceedings of the 2018 CHI Conference on Human Factors
in Computing Systems, CHI ’18, Association for Computing Machinery, New
York, NY, USA, 2018, p. 1–13. doi:10.1145/3173574.3174221.
URL https://doi.org/10.1145/3173574.3174221

[8] I. S. MacKenzie, S. X. Zhang, The design and evaluation of a high-
performance soft keyboard, in: Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, CHI ’99, Association for Computing
Machinery, New York, NY, USA, 1999, p. 25–31. doi:10.1145/302979.302983.
URL https://doi.org/10.1145/302979.302983

[9] P. O. Kristensson, K. Vertanen, The potential of dwell-free eye-typing
for fast assistive gaze communication, in: Proceedings of the Sympo-
sium on Eye Tracking Research and Applications, ETRA ’12, Associa-
tion for Computing Machinery, New York, NY, USA, 2012, p. 241–244.
doi:10.1145/2168556.2168605.
URL https://doi.org/10.1145/2168556.2168605

[10] X. Lu, D. Yu, H. N. Liang, W. Xu, Y. Chen, X. Li, K. Hasan, Exploration of
hands-free text entry techniques for virtual reality, in: 2020 IEEE Interna-
tional Symposium on Mixed and Augmented Reality (ISMAR), IEEE, 2020,
pp. 344–349. doi:10.1109/ISMAR50242.2020.00061.

37



[11] C. H. Morimoto, J. A. T. Leyva, A. Diaz-Tula, Context switching eye
typing using dynamic expanding targets, in: Proceedings of the Work-
shop on Communication by Gaze Interaction, COGAIN ’18, Associa-
tion for Computing Machinery, New York, NY, USA, 2018, pp. 1–9.
doi:10.1145/3206343.3206347.
URL https://doi.org/10.1145/3206343.3206347

[12] A. Kurauchi, W. Feng, A. Joshi, C. H. Morimoto, M. Betke, Swipe&switch:
Text entry using gaze paths and context switching, in: Adjunct Publication
of the 33rd Annual ACM Symposium on User Interface Software and Tech-
nology, UIST ’20 Adjunct, Association for Computing Machinery, New York,
NY, USA, 2020, p. 84–86. doi:10.1145/3379350.3416193.
URL https://doi.org/10.1145/3379350.3416193

[13] W. Feng, J. Zou, A. Kurauchi, C. H. Morimoto, M. Betke, Hgaze typing:
Head-gesture assisted gaze typing, in: ACM Symposium on Eye Tracking Re-
search and Applications, Association for Computing Machinery, New York,
NY, USA, 2021, pp. 1–11.
URL https://doi.org/10.1145/3448017.3457379

[14] C. Yu, K. Sun, M. Zhong, X. Li, P. Zhao, Y. Shi, One-dimensional hand-
writing: Inputting letters and words on smart glasses, in: Proceedings of the
2016 CHI Conference on Human Factors in Computing Systems, CHI ’16,
Association for Computing Machinery, New York, NY, USA, 2016, p. 71–82.
doi:10.1145/2858036.2858542.
URL https://doi.org/10.1145/2858036.2858542

[15] F. C. Y. Li, R. T. Guy, K. Yatani, K. N. Truong, The 1line keyboard: A
qwerty layout in a single line, in: Proceedings of the 24th Annual ACM
Symposium on User Interface Software and Technology, UIST ’11, Associ-
ation for Computing Machinery, New York, NY, USA, 2011, p. 461–470.
doi:10.1145/2047196.2047257.
URL https://doi.org/10.1145/2047196.2047257

[16] P. Majaranta, U.-K. Ahola, O. Špakov, Fast gaze typing with an adjustable
dwell time, in: Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, CHI ’09, Association for Computing Machinery, New
York, NY, USA, 2009, p. 357–360. doi:10.1145/1518701.1518758.
URL https://doi.org/10.1145/1518701.1518758

38



[17] O. Tuisku, P. Majaranta, P. Isokoski, K.-J. Räihä, Now dasher! dash away!
longitudinal study of fast text entry by eye gaze, in: Proceedings of the
2008 Symposium on Eye Tracking Research & Applications, ETRA ’08, As-
sociation for Computing Machinery, New York, NY, USA, 2008, p. 19–26.
doi:10.1145/1344471.1344476.
URL https://doi.org/10.1145/1344471.1344476

[18] J. P. P. Jokinen, S. Sarcar, A. Oulasvirta, C. Silpasuwanchai, Z. Wang,
X. Ren, Modelling learning of new keyboard layouts, in: Proceedings of
the 2017 CHI Conference on Human Factors in Computing Systems, CHI
’17, Association for Computing Machinery, New York, NY, USA, 2017, p.
4203–4215. doi:10.1145/3025453.3025580.
URL https://doi.org/10.1145/3025453.3025580

[19] E. Clarkson, J. Clawson, K. Lyons, T. Starner, An empirical study
of typing rates on mini-qwerty keyboards, in: CHI ’05 Extended Ab-
stracts on Human Factors in Computing Systems, CHI EA ’05, Associa-
tion for Computing Machinery, New York, NY, USA, 2005, p. 1288–1291.
doi:10.1145/1056808.1056898.
URL https://doi.org/10.1145/1056808.1056898

[20] H. Hakoda, B. Shizuki, J. Tanaka, Qaz keyboard: Qwerty based portrait
soft keyboard, in: A. Marcus (Ed.), Design, User Experience, and Usability:
Technological Contexts, Springer International Publishing, Cham, 2016, pp.
24–35. doi:10.1007/978-3-319-40406-63.

[21] S. J. Castellucci, I. S. MacKenzie, M. Misra, L. Pandey, A. S. Arif, Tiltwriter:
Design and evaluation of a no-touch tilt-based text entry method for hand-
held devices, in: Proceedings of the 18th International Conference on Mobile
and Ubiquitous Multimedia, MUM ’19, Association for Computing Machin-
ery, New York, NY, USA, 2019, pp. 1–8. doi:10.1145/3365610.3365629.
URL https://doi.org/10.1145/3365610.3365629

[22] K. Lyons, T. Starner, D. Plaisted, J. Fusia, A. Lyons, A. Drew, E. W. Looney,
Twiddler typing: One-handed chording text entry for mobile phones, in:
Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, CHI ’04, Association for Computing Machinery, New York, NY,
USA, 2004, p. 671–678. doi:10.1145/985692.985777.
URL https://doi.org/10.1145/985692.985777

39



[23] D. Rough, K. Vertanen, P. O. Kristensson, An evaluation of dasher with a
high-performance language model as a gaze communication method, in: Pro-
ceedings of the 2014 International Working Conference on Advanced Visual
Interfaces, AVI ’14, Association for Computing Machinery, New York, NY,
USA, 2014, p. 169–176. doi:10.1145/2598153.2598157.
URL https://doi.org/10.1145/2598153.2598157

[24] C. Kumar, R. Hedeshy, I. S. MacKenzie, S. Staab, Tagswipe: Touch assisted
gaze swipe for text entry, in: Proceedings of the 2020 CHI Conference on Hu-
man Factors in Computing Systems, CHI ’20, Association for Computing Ma-
chinery, New York, NY, USA, 2020, p. 1–12. doi:10.1145/3313831.3376317.
URL https://doi.org/10.1145/3313831.3376317

[25] R. Hedeshy, C. Kumar, R. Menges, S. Staab, Hummer: Text entry by gaze
and hum, in: Proceedings of the 2021 CHI Conference on Human Factors in
Computing Systems, Association for Computing Machinery, New York, NY,
USA, 2021, pp. 1–11.
URL https://doi.org/10.1145/3411764.3445501

[26] W. Xu, H.-N. Liang, Y. Zhao, T. Zhang, D. Yu, D. Monteiro, Ringtext:
Dwell-free and hands-free text entry for mobile head-mounted displays using
head motions, IEEE Transactions on Visualization and Computer Graphics
25 (5) (2019) 1991–2001. doi:10.1109/TVCG.2019.2898736.

[27] S. Ghosh, A. Joshi, M. Joshi, N. Emmadi, G. Dalvi, S. Ahire, S. Rangale,
Shift+tap or tap+longpress? the upper bound of typing speed on inscript, in:
Proceedings of the 2017 CHI Conference on Human Factors in Computing
Systems, CHI ’17, Association for Computing Machinery, New York, NY,
USA, 2017, p. 2059–2063. doi:10.1145/3025453.3025944.
URL https://doi.org/10.1145/3025453.3025944

[28] X. Bi, S. Zhai, Ijqwerty: What difference does one key change make? ges-
ture typing keyboard optimization bounded by one key position change from
qwerty, in: Proceedings of the 2016 CHI Conference on Human Factors in
Computing Systems, CHI ’16, Association for Computing Machinery, New
York, NY, USA, 2016, p. 49–58. doi:10.1145/2858036.2858421.
URL https://doi.org/10.1145/2858036.2858421

[29] K. Vertanen, H. Memmi, J. Emge, S. Reyal, P. O. Kristensson, Veloc-
itap: Investigating fast mobile text entry using sentence-based decoding

40



of touchscreen keyboard input, in: Proceedings of the 33rd Annual ACM
Conference on Human Factors in Computing Systems, CHI ’15, Associa-
tion for Computing Machinery, New York, NY, USA, 2015, p. 659–668.
doi:10.1145/2702123.2702135.
URL https://doi.org/10.1145/2702123.2702135

[30] K. A. Ericsson, R. T. Krampe, C. Tesch-Römer, The role of deliberate prac-
tice in the acquisition of expert performance., Psychological review 100 (3)
(1993) 363.

[31] M. H. Urbina, A. Huckauf, Dwell time free eye typing approaches, in:
Proceedings of the 3rd Conference on Communication by Gaze Interaction,
COGAIN ’07, Association for Computing Machinery, New York, NY, USA,
2007, pp. 65–70.
URL https://wiki.cogain.org/images/e/e5/COGAIN2007Proceedings.pdf

[32] A. K. Mutasim, M. Hudhud Mughrabi, A. U. Batmaz, W. Stuerzlinger,
Does repeatedly typing the same phrase provide a good estimate of ex-
pert text entry performance?, in: Extended Abstracts of the CHI Con-
ference on Human Factors in Computing Systems, CHI EA ’23, Asso-
ciation for Computing Machinery, New York, NY, USA, 2023, pp. 1–8.
doi:https://doi.org/10.1145/3544549.3585647.

[33] I. S. MacKenzie, S. X. Zhang, An empirical investigation of the novice
experience with soft keyboards, Behaviour & Information Technology
20 (6) (2001) 411–418. arXiv:https://doi.org/10.1080/01449290110089561,
doi:10.1080/01449290110089561.
URL https://doi.org/10.1080/01449290110089561

[34] A. Sears, J. A. Jacko, J. Chu, F. Moro, The role of visual search in the
design of effective soft keyboards, Behaviour & Information Technology
20 (3) (2001) 159–166. arXiv:https://doi.org/10.1080/01449290110049790,
doi:10.1080/01449290110049790.
URL https://doi.org/10.1080/01449290110049790

[35] M. Kjærup, M. B. Skov, P. A. Nielsen, J. Kjeldskov, J. Gerken, H. Reiterer,
Longitudinal Studies in HCI Research: A Review of CHI Publications From
1982–2019, Springer International Publishing, Cham, 2021, Ch. Theoretical
Perspectives, pp. 11–39. doi:10.1007/978-3-030-67322-2_2.
URL https://doi.org/10.1007/978-3-030-67322-2_2

41



[36] I. S. MacKenzie, R. W. Soukoreff, Text entry for mo-
bile computing: Models and methods,theory and prac-
tice, Human–Computer Interaction 17 (2-3) (2002) 147–198.
arXiv:https://www.tandfonline.com/doi/pdf/10.1080/07370024.2002.9667313,
doi:10.1080/07370024.2002.9667313.
URL https://www.tandfonline.com/doi/abs/10.1080/07370024.2002.9667313

[37] C. Yu, Y. Gu, Z. Yang, X. Yi, H. Luo, Y. Shi, Tap, dwell or gesture? explor-
ing head-based text entry techniques for hmds, in: Proceedings of the 2017
CHI Conference on Human Factors in Computing Systems, CHI ’17, Associ-
ation for Computing Machinery, New York, NY, USA, 2017, p. 4479–4488.
doi:10.1145/3025453.3025964.
URL https://doi.org/10.1145/3025453.3025964

[38] I. S. Mackenzie, S. X. Zhang, R. W. Soukoreff, Text entry us-
ing soft keyboards, Behaviour & Information Technology 18 (4)
(1999) 235–244. arXiv:https://doi.org/10.1080/014492999118995,
doi:10.1080/014492999118995.
URL https://doi.org/10.1080/014492999118995

[39] M. Silfverberg, I. S. MacKenzie, P. Korhonen, Predicting text entry speed on
mobile phones, in: Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems, CHI ’00, Association for Computing Machinery, New
York, NY, USA, 2000, p. 9–16. doi:10.1145/332040.332044.
URL https://doi.org/10.1145/332040.332044

[40] A. Kurauchi, W. Feng, A. Joshi, C. Morimoto, M. Betke, Eyeswipe:
Dwell-free text entry using gaze paths, in: Proceedings of the 2016 CHI
Conference on Human Factors in Computing Systems, CHI ’16, Associa-
tion for Computing Machinery, New York, NY, USA, 2016, p. 1952–1956.
doi:10.1145/2858036.2858335.
URL https://doi.org/10.1145/2858036.2858335

[41] L. Magnien, J. L. Bouraoui, N. Vigouroux, Mobile text input with soft key-
boards: Optimization by means of visual clues, in: S. Brewster, M. Dunlop
(Eds.), Mobile Human-Computer Interaction - MobileHCI 2004, Springer
Berlin Heidelberg, Berlin, Heidelberg, 2004, pp. 337–341. doi:10.1007/978-3-
540-28637-033.

42



[42] D. Grüneis, M. Kurz, E. Sonnleitner, Let me help you: Improving the novice
experience of high-performance keyboard layouts with visual clues, Applied
Sciences 13 (16) (2023). doi:10.3390/app13169391.
URL https://www.mdpi.com/2076-3417/13/16/9391

[43] M. Goel, A. Jansen, T. Mandel, S. N. Patel, J. O. Wobbrock, Contexttype:
Using hand posture information to improve mobile touch screen text entry,
in: Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, CHI ’13, Association for Computing Machinery, New York, NY,
USA, 2013, p. 2795–2798. doi:10.1145/2470654.2481386.
URL https://doi.org/10.1145/2470654.2481386

[44] S. Azenkot, S. Zhai, Touch behavior with different postures on soft smart-
phone keyboards, in: Proceedings of the 14th International Conference on
Human-Computer Interaction with Mobile Devices and Services, MobileHCI
’12, Association for Computing Machinery, New York, NY, USA, 2012, p.
251–260. doi:10.1145/2371574.2371612.
URL https://doi.org/10.1145/2371574.2371612

[45] A. Gunawardana, T. Paek, C. Meek, Usability guided key-target resizing
for soft keyboards, in: Proceedings of the 15th International Conference on
Intelligent User Interfaces, IUI ’10, Association for Computing Machinery,
New York, NY, USA, 2010, p. 111–118. doi:10.1145/1719970.1719986.
URL https://doi.org/10.1145/1719970.1719986

[46] A. Arif, M. Pahud, K. Hinckley, B. Buxton, Experimental study of stroke
shortcuts for a touchscreen keyboard with gesture-redundant keys removed,
in: Proceedings of Graphics Interface 2014, GI 2014, Canadian Human-
Computer Communications Society, Toronto, Ontario, Canada, 2014, pp.
43–50.
URL https://graphicsinterface.org/proceedings/gi2014/gi2014-6/

[47] O. Alsharif, T. Ouyang, F. Beaufays, S. Zhai, T. Breuel, J. Schalkwyk, Long
short term memory neural network for keyboard gesture decoding, in: 2015
IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), IEEE, 2015, pp. 2076–2080. doi:10.1109/ICASSP.2015.7178336.

[48] S. Zhai, P. O. Kristensson, The word-gesture keyboard: Reimag-
ining keyboard interaction, Commun. ACM 55 (9) (2012) 91–101.

43



doi:10.1145/2330667.2330689.
URL https://doi.org/10.1145/2330667.2330689

[49] S. Reyal, S. Zhai, P. O. Kristensson, Performance and user experience of
touchscreen and gesture keyboards in a lab setting and in the wild, in: Pro-
ceedings of the 33rd Annual ACM Conference on Human Factors in Com-
puting Systems, CHI ’15, Association for Computing Machinery, New York,
NY, USA, 2015, p. 679–688. doi:10.1145/2702123.2702597.
URL https://doi.org/10.1145/2702123.2702597

[50] X. Bi, C. Chelba, T. Ouyang, K. Partridge, S. Zhai, Bimanual gesture key-
board, in: Proceedings of the 25th Annual ACM Symposium on User Inter-
face Software and Technology, UIST ’12, Association for Computing Machin-
ery, New York, NY, USA, 2012, p. 137–146. doi:10.1145/2380116.2380136.
URL https://doi.org/10.1145/2380116.2380136

[51] A. Markussen, M. R. Jakobsen, K. Hornbæk, Vulture: A mid-air word-
gesture keyboard, in: Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, CHI ’14, Association for Computing Machin-
ery, New York, NY, USA, 2014, p. 1073–1082. doi:10.1145/2556288.2556964.
URL https://doi.org/10.1145/2556288.2556964

[52] X. Bi, B. A. Smith, S. Zhai, Quasi-qwerty soft keyboard optimization, in:
Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, CHI ’10, Association for Computing Machinery, New York, NY,
USA, 2010, p. 283–286. doi:10.1145/1753326.1753367.
URL https://doi.org/10.1145/1753326.1753367

[53] M. Dunlop, J. Levine, Multidimensional pareto optimization of touchscreen
keyboards for speed, familiarity and improved spell checking, in: Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems, CHI
’12, Association for Computing Machinery, New York, NY, USA, 2012, p.
2669–2678. doi:10.1145/2207676.2208659.
URL https://doi.org/10.1145/2207676.2208659

[54] S. Zhai, P. O. Kristensson, Interlaced qwerty: Accommodating ease of vi-
sual search and input flexibility in shape writing, in: Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems, CHI ’08, As-
sociation for Computing Machinery, New York, NY, USA, 2008, p. 593–596.

44



doi:10.1145/1357054.1357149.
URL https://doi.org/10.1145/1357054.1357149

[55] A. Pavlovych, W. Stuerzlinger, Model for non-expert text entry speed on 12-
button phone keypads, in: Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, CHI ’04, Association for Computing Machin-
ery, New York, NY, USA, 2004, p. 351–358. doi:10.1145/985692.985737.
URL https://doi.org/10.1145/985692.985737

[56] A. U. Batmaz, A. K. Mutasim, M. Malekmakan, E. Sadr, W. Stuerzlinger,
Touch the wall: Comparison of virtual and augmented reality with con-
ventional 2d screen eye-hand coordination training systems, in: 2020 IEEE
Conference on Virtual Reality and 3D User Interfaces (VR), IEEE, 2020, pp.
184–193. doi:10.1109/VR46266.2020.00037.

[57] A. Mutasim, A. U. Batmaz, M. Hudhud Mughrabi, W. Stuerzlinger, Perfor-
mance analysis of saccades for primary and confirmatory target selection, in:
Proceedings of the 28th ACM Symposium on Virtual Reality Software and
Technology, VRST ’22, Association for Computing Machinery, New York,
NY, USA, 2022, pp. 1–12. doi:10.1145/3562939.3565619.
URL https://doi.org/10.1145/3562939.3565619

[58] A. K. Mutasim, A. U. Batmaz, W. Stuerzlinger, Pinch, click, or dwell: Com-
paring different selection techniques for eye-gaze-based pointing in virtual
reality, in: ACM Symposium on Eye Tracking Research and Applications,
ETRA ’21 Short Papers, Association for Computing Machinery, New York,
NY, USA, 2021, pp. 1–7. doi:10.1145/3448018.3457998.
URL https://doi.org/10.1145/3448018.3457998

[59] I. Schuetz, T. S. Murdison, K. J. MacKenzie, M. Zannoli, An explanation of
fitts’ law-like performance in gaze-based selection tasks using a psychophysics
approach, in: Proceedings of the 2019 CHI Conference on Human Factors in
Computing Systems, CHI ’19, Association for Computing Machinery, New
York, NY, USA, 2019, p. 1–13. doi:10.1145/3290605.3300765.
URL https://doi.org/10.1145/3290605.3300765

[60] M. Choe, Y. Choi, J. Park, H. K. Kim, Comparison of
gaze cursor input methods for virtual reality devices, Interna-
tional Journal of Human–Computer Interaction 35 (7) (2019)
620–629. arXiv:https://doi.org/10.1080/10447318.2018.1484054,

45



doi:10.1080/10447318.2018.1484054.
URL https://doi.org/10.1080/10447318.2018.1484054

[61] I. S. MacKenzie, R. W. Soukoreff, Phrase sets for evaluating text entry tech-
niques, in: CHI ’03 Extended Abstracts on Human Factors in Computing
Systems, CHI EA ’03, Association for Computing Machinery, New York,
NY, USA, 2003, p. 754–755. doi:10.1145/765891.765971.
URL https://doi.org/10.1145/765891.765971

[62] A. S. Arif, W. Stuerzlinger, Predicting the cost of error correction
in character-based text entry technologies, in: SIGCHI Conference
on Human Factors in Computing Systems, CHI ’10, 2010, pp. 5–14.
doi:10.1145/1753326.1753329.
URL https://doi.org/10.1145/1753326.1753329

[63] A. S. Arif, W. Stuerzlinger, Analysis of text entry performance metrics,
in: 2009 IEEE Toronto International Conference Science and Technology
for Humanity (TIC-STH), IEEE, 2009, pp. 100–105. doi:10.1109/TIC-
STH.2009.5444533.

[64] R. W. Soukoreff, I. S. MacKenzie, Measuring errors in text entry tasks: An
application of the levenshtein string distance statistic, in: CHI ’01 Extended
Abstracts on Human Factors in Computing Systems, CHI EA ’01, Associ-
ation for Computing Machinery, New York, NY, USA, 2001, p. 319–320.
doi:10.1145/634067.634256.
URL https://doi.org/10.1145/634067.634256

[65] R. W. Soukoreff, I. S. MacKenzie, Metrics for text entry research: An eval-
uation of msd and kspc, and a new unified error metric, in: Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems, CHI
’03, Association for Computing Machinery, New York, NY, USA, 2003, p.
113–120. doi:10.1145/642611.642632.
URL https://doi.org/10.1145/642611.642632

[66] R. W. Soukoreff, I. S. Mackenzie, Theoretical upper and
lower bounds on typing speed using a stylus and a soft key-
board, Behaviour & Information Technology 14 (6) (1995)
370–379. arXiv:https://doi.org/10.1080/01449299508914656,
doi:10.1080/01449299508914656.
URL https://doi.org/10.1080/01449299508914656

46



[67] V. Rajanna, J. P. Hansen, Gaze typing in virtual reality: Impact of key-
board design, selection method, and motion, in: Proceedings of the 2018
ACM Symposium on Eye Tracking Research and Applications, ETRA ’18,
Association for Computing Machinery, New York, NY, USA, 2018, pp. 1–10.
doi:10.1145/3204493.3204541.
URL https://doi.org/10.1145/3204493.3204541

[68] W. Cui, R. Liu, Z. Li, Y. Wang, A. Wang, X. Zhao, S. Rashidian, F. Baig,
I. Ramakrishnan, F. Wang, X. Bi, Glancewriter: Writing text by glancing
over letters with gaze, in: Proceedings of the 2023 CHI Conference on Human
Factors in Computing Systems, CHI ’23, Association for Computing Machin-
ery, New York, NY, USA, 2023, pp. 1–13. doi:10.1145/3544548.3581269.
URL https://doi.org/10.1145/3544548.3581269

[69] M. Zhao, A. M. Pierce, R. Tan, T. Zhang, T. Wang, T. R. Jonker, H. Benko,
A. Gupta, Gaze speedup: Eye gaze assisted gesture typing in virtual real-
ity, in: Proceedings of the 28th International Conference on Intelligent User
Interfaces, IUI ’23, Association for Computing Machinery, New York, NY,
USA, 2023, p. 595–606. doi:10.1145/3581641.3584072.
URL https://doi.org/10.1145/3581641.3584072

[70] V. V. Bochkarev, A. V. Shevlyakova, V. D. Solovyev, The average word
length dynamics as an indicator of cultural changes in society, Social Evolu-
tion and History 14 (2) (2015) 153–175.
URL https://arxiv.org/abs/1208.6109

[71] J. F. Hair Jr, W. C. Black, B. J. Babin, R. E. Anderson, Multivariate data
analysis (2014).

[72] P. Mallery, D. George, SPSS for Windows step by step: a simple guide and
reference, Pearson, 2003.

[73] J. O. Wobbrock, L. Findlater, D. Gergle, J. J. Higgins, The aligned rank
transform for nonparametric factorial analyses using only anova procedures,
in: Proceedings of the SIGCHI Conference on Human Factors in Com-
puting Systems, CHI ’11, ACM, New York, NY, USA, 2011, pp. 143–146.
doi:10.1145/1978942.1978963.
URL http://doi.acm.org/10.1145/1978942.1978963

47



[74] A. M. Treisman, G. Gelade, A feature-integration theory of attention, Cog-
nitive Psychology 12 (1) (1980) 97–136. doi:https://doi.org/10.1016/0010-
0285(80)90005-5.
URL https://www.sciencedirect.com/science/article/pii/0010028580900055

[75] M. D’Zmura, Color in visual search, Vision Research 31 (6) (1991) 951–966.
doi:https://doi.org/10.1016/0042-6989(91)90203-H.
URL https://www.sciencedirect.com/science/article/pii/004269899190203H

[76] A. M. Feit, D. Weir, A. Oulasvirta, How we type: Movement strategies
and performance in everyday typing, in: Proceedings of the 2016 CHI
Conference on Human Factors in Computing Systems, CHI ’16, Associa-
tion for Computing Machinery, New York, NY, USA, 2016, p. 4262–4273.
doi:10.1145/2858036.2858233.
URL https://doi.org/10.1145/2858036.2858233

[77] J. Dudley, H. Benko, D. Wigdor, P. O. Kristensson, Performance envelopes
of virtual keyboard text input strategies in virtual reality, in: 2019 IEEE
International Symposium on Mixed and Augmented Reality (ISMAR), 2019,
pp. 289–300. doi:10.1109/ISMAR.2019.00027.

[78] R. S. Masters, J. P. Maxwell, Implicit motor learning, reinvestment and
movement disruption: What you don’t know won’t hurt you, in: Skill Acqui-
sition in Sport, Routledge, 2004, pp. 207–228.
URL https://api.semanticscholar.org/CorpusID:142428042

[79] K. Caine, Local standards for sample size at CHI, in: Proceedings of the 2016
CHI Conference on Human Factors in Computing Systems, CHI ’16, Asso-
ciation for Computing Machinery, New York, NY, USA, 2016, p. 981–992.
doi:10.1145/2858036.2858498.
URL https://doi.org/10.1145/2858036.2858498

[80] S. K. Card, T. P. Moran, A. Newell, The keystroke-level model for user
performance time with interactive systems, Commun. ACM 23 (7) (1980)
396–410. doi:10.1145/358886.358895.
URL https://doi.org/10.1145/358886.358895

[81] I. S. MacKenzie, Human-computer interaction: An empirical research per-
spective, Newnes, 2012. doi:10.1016/B978-0-12-405865-1.00007-8.
URL https://doi.org/10.1016/B978-0-12-405865-1.00007-8

48



[82] A. D. Rice, J. W. Lartigue, Touch-level model (TLM): Evolving KLM-GOMS
for touchscreen and mobile devices, in: Proceedings of the 2014 ACM South-
east Regional Conference, ACM SE ’14, Association for Computing Machin-
ery, New York, NY, USA, 2014, pp. 1–6. doi:10.1145/2638404.2638532.
URL https://doi.org/10.1145/2638404.2638532

[83] J. R. Anderson, D. Bothell, M. D. Byrne, S. Douglass, C. Lebiere, Y. Qin,
An integrated theory of the mind, Psychological Review 111 (4) (2004) 1036–
1060. doi:10.1037/0033-295X.111.4.1036.
URL https://doi.org/10.1037/0033-295X.111.4.1036

[84] A. Das, W. Stuerzlinger, A cognitive simulation model for novice text
entry on cell phone keypads, in: 14th European Conference on Cog-
nitive Ergonomics: Invent! Explore!, ECCE ’07, 2007, pp. 141–147.
doi:10.1145/1362550.1362579.
URL https://doi.org/10.1145/1362550.1362579

[85] A. Das, W. Stuerzlinger, Modeling learning effects in mobile texting, in:
International Conference on Mobile and Ubiquitous Multimedia, MUM ’08,
2008, pp. 154–161. doi:10.1145/1543137.1543169.
URL https://doi.org/10.1145/1543137.1543169

[86] A. Das, W. Stuerzlinger, Proactive interference in location learning: A new
closed-form approximation, in: International Conference on Cognitive Mod-
eling, ICCM ’10, 2010, pp. 37–42.
URL https://iccm-conference.neocities.org/2010/proceedings

[87] A. Das, W. Stuerzlinger, Unified modeling of proactive interference and mem-
orization effort: A new mathematical perspective within act-r theory, in: An-
nual Meeting of the Cognitive Science Society, CogSci ’13, 2013, pp. 358–363.
URL https://escholarship.org/uc/item/1p05s7db

49



(a)

(b)

(c)

Figure 2: Results of Phrase Repetition Study, i.e., Study 1, for (a) WPM, (b) KSPC,
and (c) MSD ER over eight sessions of typing the same phrase. The error bars show the
standard error of means.
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Figure 3: WPM in Phrase Repetition Study, i.e., Study 1, over eight sessions along with
an extrapolation of the learning curve to the 30th session.
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(a) (b)

(c) (d)

(e) (f)

Figure 4: Results of Word Repetition Study, i.e., Study 2, for word-level (a) WPM, (c)
KSPC, and (e) MSD ER, and phrase-level (b) WPM, (d) KSPC, and (f) MSD ER over
ten repetitions of typing the same word. Significance levels are shown as *** for p < 0.001,
** for p < 0.01, and * for p < 0.05. The error bars show the standard error of means.
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(a)

(b)

Figure 6: (a) Word-level and (b) phrase-level WPM in Word Repetition Study, i.e.,
Study 2, over ten repetitions along with an extrapolation of the learning curve to the 30th

repetition.
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Figure 7: Results of Word Repetition Study, i.e., Study 2, for Subjective Measures of the
OPTI and QWERTY keyboards. Significance levels are shown as *** for p < 0.001, **
for p < 0.01, and * for p < 0.05. The error bars show the standard error of means.
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(a) (b)

(c) (d)

Figure 8: Results of GEM Study, i.e., Study 3, for overall average (a) WPM, (b) KSPC, (c)
MSD ER, and (d) Planning Time of all the phrases for OPTI and QWERTY. Significance
levels are shown as *** for p < 0.001, ** for p < 0.01, and * for p < 0.05. The error bars
show the standard error of means.
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(a)

(b)

(c)

Figure 9: Results of GEM Study, i.e., Study 3, for 5-phrases Moving Average of (a) WPM,
(b) KSPC, and (c) MSD ER. Significance levels are shown as *** for p < 0.001, ** for
p < 0.01, and * for p < 0.05. The error bars show the standard error of means.
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(a)

(b)

(c)

Figure 10: Results of GEM Study, i.e., Study 3, for (a) 5-phrases Moving Average of
Planning Time, (b) Planning Time for each Word Length, and (c) Subjective Measures
for OPTI and QWERTY keyboards. Significance levels are shown as *** for p < 0.001,
** for p < 0.01, and * for p < 0.05. The error bars show the standard error of means.
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