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Fig. 1: A) Synchronized brushing and linking between desktop and AR, B) Moving a graph from AR to desktop, and C) vice versa.

Abstract— Recent work in immersive analytics suggests benefits for systems that support work across both 2D and 3D data
visualizations, i.e., cross-virtuality analytics systems. Here, we introduce HybridAxes, an immersive visual analytics system that enables
users to conduct their analysis either in 2D on desktop monitors or in 3D within an immersive AR environment – while enabling them
to seamlessly switch and transfer their graphs between modes. Our user study results show that the cross-virtuality sub-systems in
HybridAxes complement each other well in helping the users in their data-understanding journey. We show that users preferred using
the AR component for exploring the data, while they used the desktop to work on more detail-intensive tasks. Despite encountering
some minor challenges in switching between the two virtuality modes, users consistently rated the whole system as highly engaging,
user-friendly, and helpful in streamlining their analytics processes. Finally, we present suggestions for designers of cross-virtuality
visual analytics systems and identify avenues for future work.

Index Terms—Immersive Analytics, Cross-virtuality Analytics, Visualization, Human-computer Interaction

1 INTRODUCTION

Visual Analytics (VA) focuses on analytical reasoning facilitated by in-
teractive visual interfaces [52]. Desktop VA tools like Tableau or Power
BI offer powerful user interfaces for data exploration and analysis but
have a steep learning curve [27]. Most current VA tools use the tradi-
tional Windows, Icons, Menus, and Pointer (WIMP) metaphor [2]. Post-
WIMP data exploration tools have demonstrated substantial improve-
ments on a user’s data understanding [32,46]. Here we explore a system
that bridges both metaphors. One common class of post-WIMP inter-
faces uses immersive technologies, such as Virtual, Augmented, Mixed,
or Extended Reality (VR/AR/MR/XR). Immersive Analytics (IA) uses
engaging, embodied analysis tools to support data understanding and
decision-making through immersive technologies, multi-sensory pre-
sentation, data physicalization, and natural interfaces [17, 19].

IA was first proposed in the 70’s [22], but current affordable VR
hardware has re-increased interest in it. IA systems enable users to
represent multi-dimensional data in three-dimensional (3D) space, and
better exploit human vision capabilities and leverage embodied interac-
tion [6, 23, 51]. As many application areas, such as aerospace, industry,
education, and cultural heritage, deal with complex data in domains
that can benefit from 3D digital twins, i.e., virtual replicas of reality, IA
is of increasing interest [24].
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Previous work has shown that immersive systems have the potential
to improve the sense-making process, and that using a combination of
2D displays and 3D MR environments could be beneficial [9,30]. Many
researchers and practitioners have thus created tools to visualize and
analyze data in VR, AR, or XR. Millais et al. [41] and Hubenschmid
et al. [30] demonstrated the advantages of using immersion for data
exploration in VR. Also, using IA systems can improve a user’s ability
to find connections in the data [24, 25]. To realize the full potential
of IA, some challenges need to be overcome. Snowdon et al. [50]
identified important ones as 1) providing users with a shared context for
the data, 2) showing them role-specific views of the data, and 3) keeping
users aware of what is happening in the system. More recent work [8,9]
adds that 4) providing users with external tools for note-taking and
recording insights is a helpful addition to any IA system.

Here, we use the terms ‘virtualities’, ‘modes of virtuality’, and
‘modes’ in an interchangeable manner. All these terms refer to where
the user resides on the reality-virtuality continuum (RVC) [40]. In this
work, we focus only on two such modes of virtuality: immersive AR
(“3D mode”) and a non-immersive desktop system (“2D mode”).

1.1 Motivation and Research Questions
In the real world humans live in 3D spaces and naturally interact with
3D objects. Research has provided objective evidence for the benefits
of seeing a virtual 3D data visualization as 3D objects in a real or virtual
3D space and not “just” as a 2D projection [1].

Building on the results of previous studies that suggest benefits for
cross-virtuality analytics (XVA) systems in the user’s sense-making
and data-understanding, we investigate such an XVA system that allows
the user to simultaneously work at two different points along the RVC,
to identify the effect on users and their analysis process, which will
also inform the design of future XVA systems.
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Only a handful of previous VA systems support interaction in both
2D and virtual environments (VEs) [9, 20, 43]. Even fewer support
dynamic visualization creation/modification. But how will users use
and perform in a system where they seamlessly interact with their data
on both a desktop (non-immersive 2D mode) and in AR (immersive
3D mode) and can instantly switch between these modes? The litera-
ture [26, 54] suggests that enabling users to switch between 2D and 3D
helps them get a better overview of the data, extends their workspace,
and facilitates the data-understanding process, but only for static visu-
alizations. Thus, we need to investigate what happens if users are able
to rapidly create graphs while being able to switch between 2D and 3D
modes. Our overall goal was thus to investigate: “How does the abil-
ity to operate at two different points along the RVC and transitioning
between them affect the interactive analysis process in IA systems?”
Consequently, we targeted the following research questions (RQs):

• RQ1: How do people use a cross-virtuality IA system? Specif-
ically, what behaviours do they exhibit in each of the two sub-
systems (AR and desktop)? When do they switch between the
different modes of virtuality? And how often do they switch
between the two different modes of virtuality?

• RQ2: How will the users perform (in terms of task completion
time and error rate) in an XVA system, compared to a standalone
desktop counterpart?

Here, both “hybrid” and “cross-virtuality” interchangeably refer to a
system that can operate in multiple modes of virtuality.

1.2 Contributions
To address the questions mentioned above, we created HybridAxes, an
IA prototype. Our contributions are as follows:

• The design of HybridAxes, a mixed reality IA system that builds
on previous work and which allows the user to interoperate along
two different points along the RVC.

• Evaluating HybridAxes in a mixed-method between-subject study
to discover some of the differences between a desktop VA and
cross-virtuality IA system.

• Identifying usage patterns for a cross-virtuality IA system through
observational sessions and open-ended interviews.

• A list of design considerations for both the desktop and AR side
of cross-virtuality IA systems.

To support open science and enable the replication of our work by
others, we will open-source our prototype, to enable future IA systems
to build on previous ones, within the open-source community.

2 BACKGROUND AND RELATED WORK

Building on the IA work already mentioned in the introduction, we
review other relevant work here.

2.1 Interactive Virtual Multi-dimensional Graphs
High-dimensional or complex datasets quickly result in cluttered dis-
plays, and interaction is then often required to filter and interactively
explore the data, regardless of the visualization technique [17]. To high-
light a subset of data points across graphs, focus+context techniques
such as brushing and linking of views were introduced. Drag-and-drop
to modify the visual encodings is now fairly common in BI tools, such
as Tableau. Such interfaces remain constrained by the particular set of
visual idioms supported by the tools. Only few systems, e.g., VizIn-
teract [10], avoid these restrictions through new interaction metaphors
and methods. Researchers also explored direct interaction with multi-
dimensional graphs in VEs using a mouse [29, 55] or touch [33, 47].

Systems in this category all support the creation and manipulation of
graphs in a VE. ImAxes [15] uses the metaphor of an axis to embody
data. By pulling them from the virtual axes shelf/panel users can
creates a histogram, and then further interact with these virtual axes
like physical objects in space and create different graphs by attaching
axes differently relative to each other. To move a graph, users grab its

substrate (the view area) and drag it. Users can pull an axis of a graph
away, or delete a whole graph by simply “throwing it away”. Each
axis has a range slider for simple filtering. More complex filtering is
limited, as users have to construct new graphs to filter existing ones.
This means that that users cannot filter more complex graphs without
constructing many auxiliary ones. Also, the authors did not explore the
effects of using such a filtering system on the overall visual analysis
process. ImAxes also provided (partially implemented) menu-based
interactions to change the colour or size of data points.

To support casual collaborative VA, Uplift [20] combined a 3D
model on a tabletop display with tangible interaction and mid-air AR
data visualization. Uplift still relied on menus for filtering and manip-
ulation of the data attributes. U2vis [43] aims to reduce perceptional
issues on large displays in data exploration and also facilitate the anal-
ysis of dense data sets. While the authors did not validate this claim,
they suggested combining their hybrid 2D/AR displays with interactive
graph creation. Wagner et al. [21] showed a space-time cube with em-
bodied interaction methods to rotate, scale, and query the visualization.
Embodied Axes [13] presented a 3D tangible controller that permits
users to perform more precise 3D selections on immersive 3D graphs
than with traditional controllers.

Wang et al. [54] extended desktop VA with AR display for particle
physicists. In their work, the synchronized desktop and AR systems
used similar interfaces, both controlled by the mouse and keyboard.
They reported that participants used the AR view to walk around the
data, grasp the 3D nature of the data, and create differently-configured
mini AR displays to complement their desktop experience. Their users
preferred the hybrid system and the consistent input reduced their
mental overhead and learning time, albeit at the cost of having to use
(relatively) un-intuitive 6-DOF interaction mappings with the mouse.

Still, there is currently a lack of intuitive data filtering methods for
IA systems, an important aspect of usable IA systems [17, 19]. There
are also few embodied visualization manipulation methods that allow
the users to feel both immersed and in control. Also, many aspects of
embodied data visualization interactions such as storage, retrieval, undo,
redo, and other low-level interactions remain at least under-explored.

2.2 Cross-virtuality Analytics
McIntire et al. [39] outlined that stereoscopic display for information
visualization still has limitations. While HMDs may be convenient
for exploring spatial or multidimensional data, they can fall short in
displaying detailed statistical and abstract information, which is instead
better handled by 2D graphs [51]. Thus, research has recently explored
XR/MR applications that offer interoperability between desktop and
immersive 3D environments [24].

Integrating traditional 2D desktop systems and immersive ones
promises to addressing human-centred challenges such as effective
interaction and collaborative VA [34]. Frohler et al. [24] summarized
such integration as “Cross-virtuality analytics (XVA)” and defined it as
creating “systems for data visualization and analysis that seamlessly
integrate different visual metaphors and devices along the entire RVC
to support multiple users with transitional and collaborative interfaces.”
Others call the same concept hybrid reality or cross-reality analytics.
XVA also includes IA systems with interfaces that allow users to inter-
act in multiple modalities (AR, VR, desktop) and transition between
them [28]. Recent research identified that cross-virtuality transitions
could open new possibilities for interacting with multi-dimensional
data across the RVC [45].

Some work demonstrates the potential of dynamically switching
between a 2D desktop display and a virtual 3D environment. For
instance, DataSpace and Immersive Insights [9] supported collaborative
analysis of spatial datasets either as high-resolution tabular information
(displayed on 2D screens) or as 3D representations of high-dimensional
data (visualized in AR). Their work hinted at the possible advantages
of hybrid reality in the sense-making process, but did not provide
concrete evidence. Using a gesture-based system, VITA [4] showed
that switching graphs between 2D and 3D could be beneficial to the
collaborative aspect of immersive excavations. However, they did not
explore the effects of such interactions in data visualization scenarios.



Wang et al. [54] showed that using an AR extension of a desktop could
help physicists better understand particle collision effects, through a
switch from 2D screens to an AR environment. Gesslein et al. [26]
explored the effects of extending a small tablet interface to 3D space
for spreadsheet editing and data visualization. They reported benefits
due to the ability to create new constructs in 3D, while still showing the
original 2D spreadsheet on the tablet. Lee et al. introduced FIESTA [35]
which allows multiple users to freely move around in a shared room-
sized environment and collaboratively gather insights from immersive
visualizations. Their studies [37] suggested that surfaces were coupled
with the type of graph used. Thus users often used walls to organize 2D
graphs but use the space around them in VR for positioning 3D graphs.

The authors of the “Grand Challenges in Immersive Analytics” [19]
also identified a need for IA systems with 2D desktop interoperability.
They also suggested that transitions between these environments should
cause meaningful transformations in data visualizations. Lee et al.
[36] introduced a new design space for visualization transformations
between 2D and 3D spaces, suggested guidelines for this novel hybrid
design space, and that meaningful 2D/3D transformations would benefit
IA users and help them in the sense-making process. Yet, none of these
guidelines were validated. More recent work [31] explored the core
advantages and challenges of such transitional interfaces. Lee et al.
studied the effects of spatially situated visualizations in a collaborative
VE [35, 37]. They showed promising results for spatial placement, but
they did not explore the potential of a hybrid approach, i.e., combining it
with an AR or desktop system. More recently, Saffo et al. [48] explored
the effect of diverging devices on group awareness in a collaborative
asymmetric system across desktop and VR platforms. Within the same
domain, Tong et al. [53] showed that a well-designed asymmetric
collaboration system could be as effective as a symmetric system.

3 HYBRIDAXES

To answer the questions put forward in subsection 1.1, we needed a
functional IA system to perform the user studies. Here, we present
the design of HybridAxes: its features, interaction modalities, and
supported types of graphs.

3.1 System Design
We focused on creating an hybrid, XVA system that can inter-operate
between a (virtual) 2D desktop and an immersive AR environment, to
enable users to rapidly create graphs using embodied metaphors [10,15],
but also in the context of their existing real environment. We drew in-
spiration from Immersive Insights [9], DynSpace [18], VizInteract [10],
and Reski et al.’s system [44]. Further, cross-virtuality experiences that
involve multiple platforms simultaneously can easily feel inconsistent
and disconnected across these platforms. Our overarching design intent
was thus to create two sub-systems that elicit a sense of continuity
and cohesion in the user. We based this decision on previous work’s
findings [19, 36, 54].

Building on ImAxes’ “data equals axis” metaphor, we wanted to
extend its capabilities, support seamless transitions between virtualities,
including cross-virtuality brushing and linking, drill-down, details-on-
demand, and filtering. All these operations should follow standard
usability guidelines, ideally in embodied form.

To ensure that the users would choose their visualization’s virtuality
mode (desktop vs. AR) based on the perceived performance, comfort,
and properties of the current graph, we aimed to create an environment
with a comparable experience across both sub-systems. This way, we
tried to discourage users from disregarding a specific mode due to a
lack of features and/or performance, empowering them to follow their
VR process in whatever way they see fit. However, this does not mean
that authoring every type of graph has to be equally easy or difficult
on both sides. For example, consider that the immersive 3D space is a
more natural fit for authoring a 3D graph [7,17], so this should be easier
in 3D. Also, interactions that require detailed manipulation and/or text
entry, like creating formulas and annotations, are easier on a desktop
using conventional input methods, i.e., keyboard and mouse. [16]. This
is partly due to the challenges of mid-air 3D interaction, which can
make accurate interactions difficult in AR/VR [3, 16].

Since the majority of today’s work spaces still involve real rooms, it
is reasonable to bring virtual content, such as data visualizations, into
the user’s real-world work environment through AR technologies. This
is often referred to as offering users an XR/MR experience. In our case,
we wanted to offer such an XR experience with matching functionalities
on both desktop and in the AR environment, while allowing users to
move freely between the two. Thus, it is important that our system
works well in both of these environments.

3.2 HybridAxes Implementation

To create HybridAxes we extended the 2017 version of ImAxes [15]
from GitHub, used IATK [14], some of DXR’s rendering techniques
[49], and also added support for UnityXR. We used a Varjo XR-3 as
HMD. We decided to support the following graphs in HybridAxes:
histograms, 2D/3D scatterplots, SPLOMS, PCPs, and line graphs (time-
series), which supports the most common VA scenarios. We added
support for dynamic modification of color and size encodings, by
adding two interactive drop targets in the left and right half of the
substrate of a visualization (seen in Figure 3), respectively. The legend
of the graph shows these encodings and also allows the user to modify
them. For each axis, we also made sure that the tick marks were
readable. Furthermore, we added a history stack to support logging and
to enable undo/redo. To align with users’ existing mental models and
inspired by the visual representation of undo/redo as clockwise/counter-
clockwise arrow icons, undo/redo actions are initiated by a counter-
clockwise or clockwise swipe on the controller touchpad, respectively.

To improve the framerate, we created a dynamic mesh that holds all
the data for a graph, encoded as points, and render it through appropriate
shaders [12, 38]. This functionality supports brushing and linking
through masking textures, so that most computation happens on the
GPU. To accelerate details-on-demand display for data points, we also
created a set of shaders to identify the point closest to the controller.
While we experimented with bare-hand interaction, pilot participants
consistently complained about tracking issues, including unreliable
pinch recognition especially when rotating objects in 3D, and also
about needing to have the hands up in front of the HMD.

3.3 Transitioning Graphs between Virtualities

To support the transition of graphs between the desktop and the 3D
space,we created “panels,” which can be mapped to real wall, desk, or
monitor surfaces (supported by Varjo’s SDK to detect real surfaces) or
serve as virtual floating panels (in AR or VR). Such panels can serve
different roles as, e.g., a data dimensions shelf (as shown in Figure 7C)
or a monitor panel (as shown in Figure 7B). Each of these panels sup-
ports transitions between the mentioned virtualities, visualized through
appropriate animations upon interaction (e.g the red or squares in Fig-
ure 1C.2 and Figure 1C.3 respectively). Users can then pull a 2D graph
from the desktop panel to transition it into 3D and vice versa. To assist
the user, we added visual and haptic feedback for such interactions, so
that users know when a transition will happen.

We only manipulate a graph post-transition when users move a
higher-dimensional graph to a lower-dimensional space. For instance,
when they transfer a 3D scatterplot to the desktop, the third dimension
of this graph will disappear. If available, we then use a “free” graph
channel, such as colour or size, to accommodate the third dimension on
the desktop. Figure 1 B and C show examples. If a graph has already
attributes attached to both size and colour channels, we visually signal
to the user that this transition is going to destroy the third dimension.
Then, if the user proceeds, we transition as much of the graph into 2D
as possible, but leave the “lost” dimension as an axis object in AR.

To improve the user experience, we decrease the perceived latency
by anticipating the users’ interactions and pre-constructing graphs in
the background so that transitions appear fast and seamless. To resize a
graph users can grab the substrate area of a graph with both controllers
simultaneously, which then resizes the whole graph proportional to the
distance between the controllers.

https://github.com/MaximeCordeil/ImAxes


Fig. 2: When pulling an axis from a data dimensions panel, a ghost axis
with an animated transition appears (left). Cloning knob that appears

below all instantiated graphs (right).

Fig. 3: Size/Color encodings after dropping a dimension. 1) The user
brings the selected axis towards the visualization. 2,3) When the axis
collides with the left/right side of the substrate, a yellow panel labeled
“color”/“size” appears, indicating that dropping the axis will assign the

dimension to the respective channel. 4) Changed encoding, with legend
on the right side. For a larger version see the appendix.

New Filtering System We designed a new filtering method for IA
systems. Adhering to familiar desktop VA conventions and matching
previous work [10], we added an interactive filter area at the top of
each graph (shown in Figure 4). To reduce space usage, this panel
is typically shown in compact form (Figure 4a), which summarizes
the filters, but expands into a larger version (Figure 4b) when the user
interacts with it. To add new filters, users then only need to drag a data
dimension (i.e., a 3D axis object) and drop it into the filter area, which
then causes the appropriate type of (editable) filter to be created.

Graph Cloning Cloning enables branching within the workflow,
comparing graphs, or creating different versions of the same graph [56].
To enable users to duplicate graphs, we added a new, elliptical cloning
“knob” below their origin, Figure 2. To clone a graph (with all filters
and encodings), users only need to pull away from this knob.

(a) Collapsed filter area. (b) Expanded filter area.

Fig. 4: Collapsed filter area (left) and expanded filter area shown only
when pointing at/interacting with it (right).

3.4 Desktop System (CODAP Plugin)
For the desktop system, we chose CODAP [11], an open-source data
visualization tool designed for teaching introductory data science. It
features a robust API with Javascript/HTML plugins. CODAP uses
window panes that can show data in the form of tables and supports
drag-and-drop graph creation Figure 5, by dragging data dimensions
from a table header and dropping them into a graph window, as well

as brushing-and-linking. To prevent the screen from becoming too
cluttered, we disabled creation of more than one table and more than
one map view. Still, users could create as many graphs as they desired.

Fig. 5: Window panes inside CODAP.

To support cross-virtuality actions, we created a CODAP plugin
that receive messages and then performs the corresponding action
and sends messages about actions that happened on the desktop. As
desktop window location and graph information is shared with the AR
system, this enables HybridAxes to not only transition graphs between
the virtualities, but also supports cross-virtuality brushing-and-linking
where data points highlighted on the desktop are also highlighted in AR
and vice versa. To filter a graph in CODAP, users first brush a series of
points and then click on the designated filter button, to then either hide
the selected points or the un-selected ones. When performed on a table
view, the filter is global and applies to all graphs. For graphs and maps,
the action creates a local filter that only applies to that visualization.

We use a node.js relay server to transfer messages, which also en-
ables us to limit the rate of updates for interactions that result in (too)
many messages. This relay also logs information.

Our original intent was to use an actual monitor for CODAP. Yet, in
pilots we discovered that the Varjo XR-3’s video-see-through image
quality (particularly in terms of contrast) is just not good enough to
enable users to read the small text in CODAP. We illustrate this issue
in Figure 6 with an AR snapshot of the real-world monitor.

Fig. 6: Readability comparison between real (left) and virtual monitor
(right) as seen through the AR headset, when viewed from roughly the

same distance. High resolution version in the appendix.

As a remedy, we decided to project a virtual image of the desktop
feed onto the video of the real world. Thus, while wearing the HMD, the
user sees an image of the desktop overlaid onto the real-world monitor,
which avoids taking the users out of their desktop experience. This
workaround also allows us to increase the monitor size by 10%, which
further addressed the text readability issue. We also place the virtual
desktop image as a “monitor panel” a few centimeters in front of the
real monitor, to enable users to “grab” and “drop” content from/into the
monitor. Another interesting issue identified during pilots was that users



tried to use the AR controller to control the cursor on desktop, instead
of with the mouse. Yet, the (rotation) jitter of the controller prevented
users from controlling the cursor sufficiently accurately. This caused
substantial frustration and we thus decided to disable this feature.

3.5 Other Cross-Virtuality Interactions
Graphs transferred between virtualities retain the axes, colour, and size
encodings. Due to technical limitations, users currently cannot transfer
the filters of an AR graph to the desktop. Instead, the points that were
filtered in AR are highlighted after the graph transitions to the desktop.
This makes it easier for the user to see the data on the desktop that they
filtered in AR. If so desired, the user can then use a single CODAP
filtering action to actually filter the data. Further, whenever the user
brushes a series of data points in either sub-system, these points are
highlighted in all counterpart graphs. Selecting an empty spot within a
graph clears the selected points.

4 EVALUATION

We aimed to address our main research question around the effects of
our hybrid system on users and their analytical process through specific
experimental tasks that we discuss in this section.

4.1 User Study
An evaluation of IA systems is affected by the user’s cognitive abilities
and environmental noise, favouring observational studies [5]. Previous
work showed that a mixed-method approach yields valuable insights
into user behaviours and system usability [6, 9, 10, 18, 37]. Thus, we
conducted a mixed-method study, with observational sessions, ques-
tionnaires, and semi-structured interviews. We divided our study par-
ticipants equally into two groups, where the first one, D, used only the
desktop system to analyze the data, whereas the second group, H, used
the whole HybridAxes system. The dataset, tasks, and time constraints
were the same for both groups. Each session took 80-90 min.

4.1.1 Dataset and Study Procedure
We used a multi-dimensional housing dataset to encourage our users to
create different types of 2D and 3D graphs with different encodings,
e.g., colour and size, opendata.vancouver.ca. In pilots, we used a
different dataset to train participants, but they then performed poorly
on the main tasks due to unfamiliarity with the data. Thus, we decided
to use the same dataset for both the training and the main tasks, also
to ensure a reasonable study duration. To combat data familiarity bias,
we used only a small subset of the housing data for the training, while
using the complete dataset for the main tasks.

Each participant had to perform three tasks. The first two involved
directed questions on the data, through which we wanted to see (and
measure) how participants use the system to make sense of the data to
arrive at a concrete task answer. The third task was exploratory.

In the first task participants had to find the most expensive hous-
ing option and to name the top three data dimensions that made this
option expensive, justifying their answers with the data. This requires
exploring most data dimensions and finding ways to assess the effect of
each of these on the property price, like a sensitivity analysis. We gave
ample time to encourage users to explore the system and its features,
and to better their understanding of the data.

In the second task participants had to look at the relationship of 7
data dimensions (size, price, age, renovation year, latitude, longitude,
and neighbourhood) and describe how they interact with one another.
Then, they had to identify the best values for those dimensions for a
larger family (5 or more people) and identify which part of the city
provides the most options, i.e. they had to consider the following
data dimensions for answering the question: latitude, longitude, and
neighbourhood. Our aim for this task was to see how users deal with
scenarios that involve visualizing four or more dimensions simultane-
ously. We were also interested to see how they use the system to find a
cluster with a given range for these attributes.

To identify emergent interaction patterns and behaviours, we de-
signed the third task to be exploratory. There, we asked participants
to imagine that they had been recruited by a real estate agency and

were asked to first explore and then identify interesting and non-trivial
insights within the dataset.

Fig. 7: Depiction of the study setup. A shows the view of the recording
camera. B and C are the center and right egocentric views of the

participant, respectively, captured within the AR system.

Introduction and Training (15-25 min.): Participants first com-
pleted a demographic questionnaire. Then group H was trained on
the AR system, with verbal and gestural instructions or assistance, as
needed. Both groups D and H were then introduced to the desktop
system. After that, participants of group H were also introduced to
the cross-virtuality features. For both group D and H sessions, the
researcher first introduced a feature, and then asked participants to
perform a simple task with it.

Tasks 1 and 2 (15+10 min.): Here, each task description was
successively shown on an auxiliary monitor, together with a countdown
timer and a text box for the answer, see Figure 7. To ensure participants
understood the tasks, we answered any potential questions before they
started. Participants were asked to use think-aloud while working on
their answers, and could take a break between tasks.

Exploratory Question for Task 3 (20 min.): The question for task
3 was again shown on the monitor. In this task participants were asked
to explicitly verbalize each insight they had during this session, which
the experimenter noted down.

Post-study Questionnaires (5 min.): Afterwards, we asked partici-
pants to fill a questionnaire about their perceived performance with and
preferences for the system, and another about their perceived mental
and physical fatigue, using the NASA TLX questions.

Interview and Wrap up (15 min.): Finally, we conducted a
semi-structured interview with two parts: 1) Follow-up questions to
contextualize post-study questionnaire answers and to record percep-
tions of the system and user performance within it, and 2) followups
about a users’ behaviours during the study, to confirm experimenter
observations or query the reasons behind them.

4.1.2 Participants
We recruited 16 participants (7 female, 9 male) aged between 25 and 38,
mostly from the local university as well as some working professionals.
All 16 had worked with at least one data visualization tool before
(Excel, Tableau, JMP, Observable, D3, Python, or R). As mentioned,
we divided these participants into 2 groups of 8. The first group (group
D) worked solely on the desktop, while group H used the hybrid system.
When asked to rate their data visualization skills and literacy, 7 out of
8 in each group rated themselves 6 or higher on a seven-point scale
(in group D only one and two in group H rated themselves 7/7), which
indicates high VA familiarity. All participants in group H had prior
experience with VR/AR. Three reported using AR/VR more than six
times in the last month, while the other five reported using AR/VR at
least twice in the last month.

4.1.3 Data Collection and Analysis Procedure
We collected a range of qualitative and quantitative data. First, two
experimenters took notes of participant behaviours and their spoken
words. Second, we recorded an over-the-shoulder video of each session,
see Figure 7. This proved useful for corroborating notes with participant
behaviours, especially for group H. Lastly, we captured the desktop and
for group H also the AR feed. We voice-recorded the interviews, but
made also written notes of answers. Further, we recorded each action
and the status of the system when that action was performed. We also

https://opendata.vancouver.ca


logged each head, hand, and gaze movement as well as the coordinates
of all the objects in the scene three times every second. To further
support attempts at reproduction and verification of our results, we
have published an anonymized version of our collected data alongside
our system’s open source code on Github1.

Using an open coding method, three coders went over the video and
audio recordings and looked for patterns in screen/content organiza-
tion, switching between sub-systems (AR and Desktop), instances of
using AR and desktop together, different strategies in graph creation or
insight-generation, and any effects of the hybrid system on the fluidity
of the VA process. To complement the findings from our coding, we
also analyzed the logged data to quantitatively characterize use patterns.

4.2 Observations and Findings
In this section, we report our main study observations and findings.

4.2.1 General Findings
Findings from Questionnaires: Users rated their perceived speed,
accuracy, and difficulty in performing the tasks on a 7-point scale,
where lower means faster or easier. To investigate the impact of the
participant group on perceived speed, accuracy, and difficulty, we
conducted an ANOVA with the participant group as the independent
variable. None of these ANOVAs showed a signficant difference, for
perceived speed (F(1, 16) = 0.127, p > 0.05), accuracy (F(1, 16) =
0.098, p > 0.05), nor difficulty (F(1, 16) = 0.567, p > 0.05). Thus
there are no strong differences in the perceived speed, accuracy, or
difficulty between group H and group D.

As reasons that might have slowed them, group H mentioned glitches
in both in AR and desktop sub-systems, system unfamiliarity (4/8
participants), and the novelty of the dataset (3/8), while Group D mostly
mentioned the novelty of the dataset (4/8) and system unfamiliarity
(3/8). In terms of accuracy, group D pointed at the desktop system as
the main reason for inaccuracies (6/8). On the other hand, group H
mostly reported the unfamiliarity with the dataset and the system as the
main factors for their perceived accuracy. Group H reported a slightly
higher average difficulty with system (M: 4.38, STD: 0.86) than group
D (M: 4, STD: 1). On top of learning a new dataset Group H mostly
mentioned the mental load of learning two new sub-systems as the main
challenge. The desktop users mostly mentioned dataset unfamiliarity
(6/8) and then the system (2/8) as the main difficulty.

Only task 1 had an objectively correct answer. We thus used this task
as an indicator of actual user accuracy. This task had four parts, and we
graded each answer using a range of 0 to 4. Almost everyone answered
the first two questions correctly. Figure 8 shows the aggregated scores,
where group H (M: 2.87, STD: 1.125) was higher/better than group D
(M: 2.25, STD: 0.88), but not significantly so. There was no significant
difference in time to complete task 1 between group D (M: 13.36
minutes, STD: 1.90) and group H (M: 13.43 minutes, STD: 1.64).

Fig. 8: Accuracy of task 1 across group H and group D.

On a 7-point scale group H users reported a slightly higher degree
of tiredness and fatigue (M: 4.88 STD: 0.78) than group D (M: 5,
STD: 1.32), but not significantly so, Figure 9. Nor could we find
significant effects of fatigue on users’ perceived speed, accuracy, or

1https://github.com/rajabiseraji/NewHybridViz

task difficulty. Generally, group D mostly reported cognitive fatigue
due to unfamiliarity with the system and the dataset, while hybrid users
ranked physical fatigue as more significant (due to the weight and
bulkiness of the headset, and eye strain).

Fig. 9: Left: Boxplot for self-reported fatigue grouped by Participant
Category (sub-system), right: Average graph creation count per group

(group H on the left and group D on the right).

To better understand our users’ behaviours, we analyzed the recorded
action data, comparing the following graph actions across desktop and
AR: 1) creation, 2) moving and resizing, 3) changing colour and size
encodings, 4) brushing and linking, and 5) accessing details-on-demand.
In AR, we also analyzed the number of created 2D and 3D graphs and
the number of transitions where they moved a graph to or from the
desktop. Table 1 shows summary statistics.

Actions Created graphs Moving graphs Brushing/ selecting items
Average Median Average Median Average Median Average Median

Desktop Group 190 187 16.14 18 36 27 75.85 59
Hybrid Group 319 323 59.01 57.5 138.5 127.5 52.30 38.5

Table 1: Action data for the two participant groups.

Group D performed an average of 190 actions at an average rate of
4.2 actions/min. Group H clearly did more: 319 actions at 7 actions/min.
across both sub-systems, shown in Figure 9 and Figure 10, where most
happened in AR (235, 5.2 actions/min.), with only 84 actions on the
desktop (2.9 actions/min.), see Figure 11. When queried about this
behaviour, most group H participants mentioned that it was easy to
quickly create and destroy graphs in AR which allowed them to test
many different hypotheses. Five of them also mentioned that the game-
like nature of the AR sub-system appealed and made the exploration
task more “enjoyable”.

Fig. 10: Comparison of the number of created graphs per participant
between group H on the left and group D on the right.

Another interesting finding was that most group H participants cre-
ated substantially fewer graphs on the desktop compared to group D.
Yet, this fact is not well represented in the overall averages shown in
Table 2 and Table 1. While it seems that creating 15.87 graphs (group
H on the desktop) is close to 16.14 graphs (group D), this is only due
to two participants, P3 and P14, who spent much time on the desktop.
If we remove them, the average for group H drops to only 6 graph
creation actions, which is much lower than group D.

https://github.com/rajabiseraji/NewHybridViz


Fig. 11: Comparison of the number of created graph in group H between
the AR sub-system (left) and desktop sub-system (right).

Actions Created graphs Moving graphs Brushing/selecting items
Average Median Average Median Average Median Average Median

Group H on Desktop 84 67 15.87 6.5 24.65 11.5 17.75 10.5
Group H in AR 235.28 266 43.14 51 113.85 116 34.28 28

Table 2: Overview of group H actions on desktop and in AR.

4.2.2 Observed Patterns and Behaviours
We first discuss behavioural patterns observed in both participant
groups. Then, we mention unique behaviours and patterns.

Visualization Strategy: Multiple Graphs vs. One with Multiple
Dimensions: When addressing each task, participants in both groups
seemed to fall roughly into two categories. Those in the first preferred
creating two or more graphs and then brushing and linking to find
connections (P9, P10, P12). In contrast, the second category created
as few graphs as possible and added multiple dimensions onto them
with colour and size (P2, P6, P13). P6 specifically mentioned: “For
answering question [2], I want more axes, to check more variables at
the same time. Maybe more than just an X and Y.”

Still, participants in group H tended to create more graphs to answer
a question, most of which were created in AR and mentioned the ease
of cloning a graph, the tangibility of interacting with AR graphs, and
more available visualization space as the main factors. P15 said: “It
made more sense to just create as many graphs as possible and brute
force our way into finding the answer.”

Hybrid Specific: Glancing into the Desktop Sub-system: At some
point during the study, all group H participants looked back and forth
between their AR graphs and the desktop ones. For a majority (7/8),
this was a frequent behaviour, confirmed through their interviews and
quantitative system logs. They did this for the following reasons: 1)
To find brushed points across the modalities (P5, P7, P8) or 2) to use
features that were absent in a sub-system, e.g., 3D graphs on the desktop
or maps or tables in AR (P8, P11, P15). P7 explained “First: working
in AR and looking at the map to see what gets highlighted. Second,
work on the desktop and see if it is showing something interesting in the
AR graphs.” Our participants also identified that they only exhibited
this back-and-forth glancing only because interaction was synchronized
between sub-systems.

Hybrid Specific: AR/Desktop Transitions: Seven group H partici-
pants transitioned a graph between AR and desktop, i.e., from 3D to
2D, or vice versa, an average of 6.16 times during their session (median:
3.5) and mostly during the second task Figure 12. Compared to the
overall number of actions, they used this feature only rarely. When
asked, they reported that the process of creating graphs in both AR and
desktop was simple and quick enough for them not to need to transition
a graph between the two modes. Two of the participants with a strong
background in spatial data analysis and visual analytics mentioned that
if they were presented with 3D spatial data they would have used this
hybrid transition more often.

Only two of the participants from group H (P5, P8) reported the
mental load of switching as discouraging. Further, five mentioned that
they mostly used cross-virtuality brushing to connect the data across
the two sub-systems. Almost all mentioned the “hassle” of switching

between controller and mouse discouraged switching. Finally, all of
them mentioned that if not for the issue that sometimes prevented filters
of a graph from being transitioned between modes, they would have
used the AR/Desktop transition more often.

Hybrid Specific: Staying in the Comfort Zone: For group H, all
chose one sub-system (AR or desktop) as their main one within their
first few minutes, and then spent most of their time within it. Most chose
AR, while only P3 and P14 chose desktop. When queried about this
behaviour and taking their background into account, we identified two
main reasons: 1) participants with a strong VR background preferred
AR and 2) participants with a strong data visualization background
began using AR out of curiosity and remained there as they got more
proficient with the system. P8 stated: “I used the switching a little
bit. If I was more expert with the systems, [...] I would have been
more comfortable with some features in one and had our preferences in
using them. But after a while, I felt more comfortable in AR and mostly
worked there. I found my preferred way, and stayed there!”

Hybrid Specific: Use of 3D Graphs: Not unexpectedly, participants
created fewer 3D graphs than 2D ones in AR. Yet, they created most
of these graphs in the second and third tasks. They mentioned that
3D graphs were useful for identifying multi-variable relationships (P8,
P11) and to get a more holistic view of the data (P7). However, some
also reported that analyzing a 3D graph to be more mentally demanding
(P11). Most participants used them as in previous work [38], where
they rotated the 3D graphs and used every face of it as a 2D projection
(P4, P5, P11, P15). In contrast, P7 and P15 used 3D graphs directly to
identify data clusters and trends.

Hybrid Specific: Desktop and AR Usage Patterns: Figure 12
shows the usage patterns of the two sub-systems for group H. P8 and
P14, who did not have a strong background in AR/VR, spent their first
session mostly on the desktop. Both moved to AR at some point during
the second task (at ≈10 min. Figure 12). They stated that for the first
task, they felt they had to come up with correct answers within a time
limit, and thus they mostly used the interface they were comfortable
with. However, for the entire second task and most of the third one, they
reported less pressure due to the exploratory nature of the questions
and thus could explore the novel interface for looking at the data.

We also observed and later confirmed in the interviews that partic-
ipants needed to create more graphs for task 2 and thus needed more
space (especially those that created multiple graphs, see subsubsec-
tion 4.2.2). All group H participants created 3D graphs to be able to
see multiple interactions simultaneously. These factors motivate and
support the more frequent usage of AR in the second and third tasks.
As visible in Figure 12, P3 was an exception, as they spent most of
their time on the desktop, as they were “more comfortable with desktop
VA tools.” They also felt the time pressure, which negatively impacted
their experience and limited their use of the AR sub-system.

Based on our observations and interviews, group H mostly interacted
with the desktop for one or more reasons: 1) reading data point details
in the table (all Ps), 2) using the map (P4, P7, P8, P11, P15), or 3)
filtering based on brushed data (P4, P8, P14).

Hybrid Specific: Filtering and Data Querying Strategy: For tasks
that required drilling down and multiple filters, our hybrid participants
took two different approaches. P5, P7, and P8 applied multiple filters
on their AR graphs and drilled down, while P3, P4, P11, and P15 chose
a combination of brushing and filtering in both AR and desktop (mostly
in AR) to identify their answer. We could not pinpoint any specific
factor that might point to a system characteristic, thus this might be due
to differences in analysis approaches.

Engagement with AR Sub-system: Many (P4, P5, P7, P8, P11,
P15) mentioned the AR system to be “intuitive” and “enjoyable and
engaging to work with”. All expressed their interest in further “playing”
with the system, well after the designated timelimit had expired. When
observing these users working in the hybrid system, they at times exhib-
ited playful behaviours and seemed to enjoy the setup. All mentioned
that although the system has “rough edges”, it is also quite “natural and
intuitive” to work with. At first glance, it might seem that participants’
behavior could be linked to the novelty effect, particularly for those
with limited AR/VR experience. Yet, even regular AR/VR users (P15,



Fig. 12: Timeline of group H users’ actions colored by the type of system. Each point in the timeline represents a user action done in the session.
Due to a software bug, the timeline data (and only that) for two users was lost and thus cannot be shown here.

P8, P5) expressed similar sentiments. Thus we can state that the user
interface and interactions contributed substantially to their sense of
enjoyment and playfulness.

Hybrid Specific: Space Organization and Access: We observed
and later confirmed through the interviews that all hybrid participants
designated a specific 3D space for their AR graphs. Interestingly, most
chose areas that put the monitor either just within peripheral vision (P3,
P4, P5, P11) or where it was completely out of view (P8, P15). We
suspect that they did this to keep themselves focused on the task at hand
and to avoid cluttering their view, see previous work [54]. Both P8
and P15 placed their graphs behind their seat, opposite to the monitor,
which meant they had to turn the chair completely to access these
graphs. They regularly performed actions on their AR graphs and then
quickly used the rotating chair to look back at their monitor, check the
effect of their work on the desktop, and then back again to AR.

Further, we identified that participants never placed or stacked AR
graphs in front of another, where one would obscure another. Instead,
they treated the space around them as a giant spherical manifold within
arms’ reach, and put their graphs (roughly) somewhere on this sphere.

Desktop Specific: Screen Organization: In group D, P2, P6, P12
and P13 constantly re-organized their screen to ensure they had fewer
than 3 or 4 active graphs, removing irrelevant ones or re-using graphs
by changing axes to get the desired results. P2 and P6 later expressed
the need for having more than 2 graph attributes available to them.
They felt limited by the 30" monitor. Still, we suspect that the cognitive
load of seeing and memorizing multiple graphs might play a role in this
behaviour. Unfortunately, we did not collect sufficient data to address
this question in more depth.

4.3 Discussion
Overall, our study results reveal interesting insights into the different
ways users interact with a hybrid cross-virtuality system that allows
them to freely move between different modes of virtuality.

4.3.1 System Usage
When used as complimentary components, desktop and IA sys-
tems can be useful in routine (day-to-day) VA tasks. In our study,
users picked one mode of virtuality as their dominant one. However,
as mentioned, we observed that users used the other sub-system to
complement their interaction. Based on users’ answers and our obser-
vations, the most prevalent reason might be the lack of a feature or view
in the dominant sub-system of choice, e.g., the lack of a map in the AR
sub-system or the lack of 3D graphs in the desktop sub-system. Still,
another popular use case was insight verification, where participants
would regularly cross-check an insight that they felt uncertain about by
using the other sub-system.

Our findings confirm previous work [54], which identified that desk-
top users find AR to be a valuable extension to their experience. How-
ever, our participants’ statements provide a nuanced extensions to
Wang et al. [54], who reported that “users appreciate non-synchronized
views”. Our work suggests that, when users select a dominant sub-
system, i.e., AR, and mostly remain in it, it is beneficial for the sec-

ondary (non-dominant) sub-system, i.e., desktop in our case, to remain
synchronized with the dominant one.

It is currently inadvisable to transition all VA work to AR/VR/XR,
also because efficient VA depends on existing software and interaction
devices, such as mouse and keyboard. Yet, our study demonstrates that
one of the main use cases for hybrid VA systems is to give users the
option to use AR/XR for some of their analysis activities, e.g., when
they are faced with complex multi-dimensional relationships.

Users of a hybrid system dedicate space (separate from their
desktop) for AR operations. As mentioned in the previous section,
most of hybrid users dedicated a part of the available space for their
analysis tasks. In our study, these areas were mostly in mid-air to the
right of the desktop monitor (at an appropriate distance), but not on
the table, or behind the participant. Based on the interviews, it seems
that this separation helped them create a “mental workspace” (P5, P15).
This interesting observation highlights that designers need be aware
of such space usage pattern and design the system and users’ work
spaces accordingly. Further, as users treated the 3D space around them
as a big spherical monitor and never stacked graphs, i.e., always made
sure that everything was fully visible, XVA designers should design for
this imaginary spherical manifold, and only involve stacking/occlusion
when needed to transform visualizations, e.g., [36]. We still acknowl-
edge that with more complex datasets it may become impossible to
avoid occlusions completely.

Support multiple graph authoring and filtering strategies. We
observed that our participants used different strategies to create graphs
and filter them. Some of them preferred to create multiple graphs and
to use brushing-and-linking. Others preferred to add more channels
on fewer graphs. In our study, due to the speed of creation and de-
struction of graphs in AR and the “tangibility and intuitiveness of AR”
(P8, P15, P11), our hybrid users mostly opted for the multiple graphs
approach. However, one mentioned that if modifying the colour and
size encodings in AR were more “intuitive” (P8), they would have used
it potentially more often. Thus, it is important to optimize a system to
support both approaches well.

No difference between AR and desktop in perceived performance
(speed, accuracy, difficulty). With two unfamiliar systems, users
performed more or less the same. This is not unexpected and speaks to
the complexity of learning the systems and the task overshadowing any
differences (both in interaction and data cognition).

In a Hybrid VA system, AR is the mostly used for exploration
and desktop is mostly used for detail-intensive activities. Most of
our group H participants expressed that they felt the “time ticking down”
(P14) or the “pressure of finding the right answer” (P4, P5, P7, P8) in
the first task. However, in the third task, almost all (7/8) freely explored
the data in the AR system, occasionally using the desktop system for
verification. This suggests that for exploration tasks AR provides a
“playground-like environment” (P4), particularly for users who are less
familiar or comfortable with AR. For tasks that require drilling down
into the data and “reading exact values” (P11), most of our participants
preferred the desktop. They cited several reasons for this preference,
including the more precise nature of interaction through the mouse and



keyboard, the availability of tables on the desktop, and their experience
with and comfort in working within a desktop environment.

Regarding AR, users also reported positively on being able to see
the environment around them, instead of being “locked up” in VR.
Yet, since the Varjo’s cameras are almost 20 cm in front of the user’s
eyes, they mentioned the feeling that their hands were not where they
should be. Still, as the session went on, they forgot about the offset and
adapted to the new view.

4.3.2 Limitations
Virtual Monitor Usage: Due to technical constraints (refer to Fig-
ure 3.4), our study employs a video-see-through display and a virtual
monitor in our hybrid setup evaluation. Although most users did not
notice the virtual nature of the monitor, we recognize our solution as a
primary limitation. Future research is encouraged to explore alterna-
tives and strive for a solution with real displays.

Controller Usage over hand tracking: Users noted the “hassle” of
switching between mouse/keyboard and controllers, impacting their
switching frequency. We acknowledge this as an important limita-
tion and recommend future researchers explore robust hand-tracking
methods for smoother switching behaviour.

Sample Size and Study Design: Our number of participants is in
line with other VA between-subject research. Still, a different outcome
may result from a larger sample and/or a within-subjects design. On
the other hand, and as we found several insignificant results, it seems
unlikely that one could expect large differences. Most participants were
university students with above-average VA experience, which matches
reasonably (but not perfectly) with our main target of regular VA users.

Learning Factor and Dataset Familiarity: The observations, in-
terviews, and the quantitative data show that users still became more
proficient with the systems as time went on. Clearer results may result
from thoroughly familiarizing participants in advance of a study.

Using the same dataset for training and evaluation might have famil-
iarized users with some of the data dimensions, which we acknowledge
as a potential confound. We controlled for this by using different data
subsets for training and main tasks. Users’ post-study questionnaire
responses also indicated that they were so busy learning the system
during training that they did not get that familiar with the data itself.

Technology Limitations: There was a (limited) number of bugs
and tracking glitches that had occasional negative effects on users’
performance and their experience. Yet, they were rare enough not to
fundamentally affect the outcomes of this study.

Use of Inter-coder Reliability Check: The interviews and video
recordings were coded by three researchers, who had collaborated
before and were somewhat familiar with each others’ coding processes.
Thus, they quickly reached a consensus on diverging codes. Yet, it
might have been better to use more independent coders and an inter-
rater reliability measure, e.g., Cohen’s κ .

Better Use of 3D Graphs: Some participants did not use 3D graphs
as often as 2D ones as they felt the data did not “fit” 3D graphs well.
This could have been addressed by choosing a dataset that relied (even)
more on spatial data. That said, we believe that for a fair comparison,
one needs a dataset that can also be analyzed in 2D, as otherwise one
sub-system would be clearly favoured.

Task time limit: We used time limits to give all participants the
same amount of exposure to the system and to ensure the experiment’s
logistical feasibility. Yet, this created time pressure that might have al-
tered their behaviour, particularly for P3 and P8. We thus acknowledge
that if the focus is on observing and analyzing users’ behaviours and
their exploratory data analysis journey, it is better to use no time limit.

4.3.3 Lessons for Future Hybrid Visualizations Systems
Both sub-systems should match in terms of interaction. If the
interaction methods differ between sub-systems, this incurs a mental
context-switching effort. Our users also mentioned that due to the
differences in filtering, they thus used it more on the system where it
was easier (i.e., in AR). Thus, we recommend treating the two sub-
systems as parts of a continuous experience and making interaction
methods as consistent as possible. User feedback also suggests that

adhering to this recommendation even more strictly could potentially
enhance user performance in our IA system. Essentially, minimizing
the need for switching between vastly different visual and physical
interfaces could allows users to focus more on the data/task and less on
the interface mechanics. This directly aligns with Nielsen’s principle
of “consistency and standards” in UX design [42].

Use Imbalance in Sub-system Features to Guide Users to Specific
Functionalities. Some functionality makes (generally) less sense in
a specific system, e.g., text entry in AR. Yet, a feature’s absence in
one sub-system can encourage users to use the other one for such
functionality, e.g., like the map in our study. Designers of hybrid
VA systems can leverage this to guide users accordingly. Overall,
the asymmetric nature of hybrid systems could be used to encourage
designer-planned behaviours. Yet, we acknowledge that this introduces
additional challenges, as this requires designers to comprehensively
understand all (future) needs of every user.

Dedicated 3D space for working with AR. As much as our users
enjoyed their freedom, they dedicated a part of the 3D space for working
with AR, separate from the desktop monitor. Hybrid system designers
could design the work space accordingly. For instance, a system might
allow users to create visual boundaries to delineate “work spaces.”
Another approach could boost AR contrast in dedicated spaces to make
the virtual content easier to perceive.

5 CONCLUSION AND FUTURE WORK

We presented and evaluated HybridAxes, a novel hybrid visual analytics
solution with full support for authoring (almost) all data visualizations
on the desktop and in AR. Our study thus explores the new design space
of cross-virtuality VA systems and we found that desktop and immersive
analytics systems serve well as complementary sub-systems for routine
VA tasks. Still, we did not identify strong perceived performance
differences between the two systems. Interestingly, participants cross-
checked their work in the other sub-systems, but transitioned graphs
only sometimes, as it was (too) easy to recreate them. Further, we
revealed the importance of supporting different strategies for authoring
and filtering graphs. Finally, we identified that the designers of hybrid
systems should match the features between the sub-systems, unless
they want to steer the users to specific usage patterns (if appropriate).

As highlighted in the discussion section, our study outcome matches
findings from prior work on spatial user interfaces, e.g., [8, 43, 54].
However, our work extends these findings by identifying the challenges
in environments with simultaneous support for interaction with visual-
izations on both the desktop and in AR as well as user behaviors related
to switching between the environments. At first glance, our findings
might seem to suggest that integrating an AR environment alongside a
desktop merely functions as a glorified secondary large display. Despite
the latter being a valid use-case, it is not the main point of this work.
Instead, we emphasize the importance of deliberate interaction design
for such a multi-modal system with on-demand switching ability, which
users chose to cross-checked their analysis outcomes. We also point
out how such a system could be used to steer users toward specific
functionality. Lastly, our study unveils an emerging need for in-depth
exploration of user preferences within such multi-modal systems, par-
ticularly in scenarios requiring concurrent use of both subsystems to
accomplish specific objectives.

Future improvements to the system include better (hand) tracking
and/or more accurate tracking systems. Another aspect for future work
is the user study, addressing the unfamiliarity factor with substantial
training, to evaluate the hybrid system in a scenario that is more repre-
sentative of long-term usage.
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A CODES AND THEMATIC ANALYSIS

In this appendix we list the detailed results of the thematic analysis that
was mentioned in this section. This list can be seen in Figure 13.

B FULL-SIZE CHARTS AND FIGURES

To accommodate length constraints, we sized the included visuals
above accordingly, but we acknowledge that some readers may find it
challenging to discern numbers and labels in some of the images. To ad-
dress this concern, we show all such figures in this appendix at full size
for optimal readability. The following list shows the correspondence of
each figure with their full-size version.

• Figure 3 → Figure 14

• Figure 6 → Figure 15

• Figure 8 → Figure 16

• Figure 9 → Figure 17

• Figure 10 → Figure 18

• Figure 11 → Figure 19



Fig. 13: The four main themes, their sub categories, and the number of
the participants that were observed in each code section.



Fig. 14: Enlarged version of Figure 3, showing steps for modifying size/color encodings.



Fig. 15: Enlarged version of Figure 6, showing the readability difference between the real and virtual monitor as seen through the AR headset, when
viewed from roughly the same distance.



Fig. 16: Enlarged version of Figure 8, showing

Fig. 17: Enlarged version of Figure 9, showing the accuracy of task 1 across group H and group D.



Fig. 18: Enlarged version of Figure 10, showing the comparison of the number of created graphs per participant between group H on the left and
group D on the right.

Fig. 19: Enlarged version of Figure 11, showing the comparison of the number of created graph in group H between the AR sub-system (left) and
desktop sub-system (right).
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