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Abstract—Lasso selection tends to be inefficient in many
circumstances such as selecting spatially large clusters.ICE-
Lasso is a novel technique that infers likely target clusters during
an ongoing lasso gesture. It provides efficient gesture-based
interaction techniques as shortcuts to select partial, complete, and
multiple clusters. Additionally, it is overloaded on the traditional
lasso with anautomatic mode switching. A comparison user study
show that ICE-Lasso is significantly more efficient than lasso and
also well-liked by users.

I. I NTRODUCTION

Selection of a group of objects is a common task in
graphical user interfaces and is required for many operations
such as deletion, movement, or modification.

Lasso is a standard group selection technique in pen-based
interfaces and it has been used in a variety of applications,
e.g., [10], [6], [13]. It involves dragging a closed path around
the target objects, while avoiding the inclusion of undesired
ones. Several variations of lasso have been proposed [9], [13],
[12]. Auto-complete-lasso [12] automatically closes the loop
as the user performs a lasso selection, which often speeds up
the selection. Some systems combine the lasso selection and
action-commands into a single stroke [5], [6], [8], [1]. For
example, in Scriboli [5] and InkSeine [6] a pigtail gesture at
the end of a lasso activates a menu.

Lasso selection can be time-consuming when selecting a
spatially large cluster. In particular, it tends to be inefficient
on large vertical displays, since the area covered by targets
can be large, hard to reach (e.g., too high or too low), or it
can cross the bezels of the tiled displays. Using a laser pointer
instead of a pen resolves some of these issues. However, hand
jitter inherent to laser pointer-based interaction can make it
hard to avoid nearby non-targets.

This paper presents ICE-Lasso: a new selection technique
that Intelligently Completes and Extends Lasso gestures. As
the user draws a lasso, the system infers the target cluster
and visualizes it via a temporary overlaid loop. When the
user makes a pigtail gesture, the suggested cluster is selected.
Otherwise, if she continues lassoing and captures at least
one object, the system automatically switches back to the
normal lasso. Additionally, ICE-Lasso facilitates the selection
of multiple clusters, as well as partial or complete deselection
of clusters. Figure 1 illustrates compares the two techniques
for a simple cluster selection task.
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Fig. 1. In order to selecting cluster C3, a) lasso requiresprecise drawing of
a long path and b) ICE-Lasso involves an initial segment of a lasso followed
by a pigtail (b).

A. Related Work

Clusters, i.e., spatially neighboring graphical objects,are
one of the most frequently-used structures, and they have
been commonly used to organize semantically related items
such as file icons digital inks [17]. Naturally, improving
user interaction for cluster selection has a long history. Most
relevant to the present discussion are efforts in the hypertext
domain e.g. [7], [11], in the digital ink domain [3], [14],
[16], [2], and general domain [4], [18]. With a few exceptions
( [4], [16]), these systems apply simple hierarchical clustering
algorithms, which cannot reliably detect clusters of arbitrary
shapes or with non-homogeneous densities.

The interaction techniques presented in [7], [11], [4] are
based on a multi-clicking approach: double-clicking on an
object selects its cluster, and each successive click extends the
selection with the nearest cluster(s). There are two limitations
with this approach: first, performing multi-clicks with digital
pens or laser pointers is hard and error-prone, second, there is
no visual feedback before a selection is finalized. Also, there is
no mechanism for editing a selection. Hence, if the user makes
a mistake, she has to cancel the selection and start over.

Watanabeet al. proposed a novel approach for cluster
selection named Bubble Clusters [18]. In this system, clusters
are always visualized via surrounding bubble surfaces. The
users select a cluster by clicking on its empty area ,and splits
(or partially deselect) it by drawing a gesture through the
cluster similar to the one in Tivoli [13]. The presence of
bubbles introduces a significant visual clutter. Also, the system
does not address multiple-cluster selection.

II. ICE-L ASSO

ICE-Lasso consists of the following components: cluster
detection, target cluster prediction, gestural interfaces, and a



seamless mode switching with traditional lasso.

A. Cluster Detection

Cluster detection utilizes a perception-based scale-invariant
algorithm called CODE [15]. In CODE, the influence of each
object on the others is modeled by a normal distribution
function. The center of this function is at the object location;
the standard deviation is half the distance to the object nearest
neighbor; and the peak is rescaled to one. The sum of these
functions represents overall clustering strength. When the clus-
tering strength in that region surpasses a threshold (set toone),
objects on that region are clustered. Figure 2 illustrates this
with four one-dimensional dots, labeledA to D. Dashed and
solid curves represent the individual and the overall clustering
strength, respectively. Applying the threshold results inthree
proximity regions, i.e., clusters{AB, C, D}.
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Fig. 2. Cluster Detection using CODE. Objects are labeledA to D. The
dashed and solid curves represent individual and summed cluster functions,
respectively. Applying the threshold T = 1 generates three cluster AB, C, D.

B. Predicting a Target Cluster

The prediction a target cluster is based on two observations
gathered from an analysis of lasso gestures in various scenar-
ios: first) the gestures tend to be smooth regardless of cluster
shapes, and second) they often start near a target cluster and
remain close to it. The search for a target cluster has two
consecutive steps: direction-based and distance-based. Due to
the dynamic characteristics of a lasso gesture, only the last
portion (LPG) is considered. In the direction-based search, the
algorithm searches for clusters that (a) none of their objects
is currently selected, and (b) are partially or completely in
“front” of the LPG. For this, the algorithm fits a line to the
LPG. Then it uses the line perpendicular to the fitted lineas a
separator. Clusters that are completely behind this separator are
not considered in thedistance-based search.In the distance-
based search, the distances between the last point of the LPG
and all remaining clusters are computed. The nearest cluster is
returned as the inferred target. In case of ambiguities, where
there are more than one inferred targets, the algorithm makes
no prediction, and effectively waits until the user updatesthe
LPG.

Figure 3 illustrates an example:P1P2 is the vector to the
LPG andL is the orthogonal line. In the direction-search step
C3 is discarded, as it is behindL. In the distance-based search,
between clustersC1 and C2, C1 has the minimum distance
to P2. Hence, the algorithm chooses it as the target cluster.
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Fig. 3. P1P2 is the vector fitted to the LPG, andL is orthogonal to it.C1

andC2 are candidates, as they are in front ofL. C1 is the predicted target,
as it is closer toP2.

C. Gestural Interaction

1) Single Cluster Selection: While the user is drawing a
lasso, the system infers the target cluster and visualizes it via
a temporarily overlaid loop (called an ICE-Path), see Fig. 4-a
and Fig. 4-b. If the user draws a pigtail gesture, the suggested
cluster is selected, and the ICE-Path becomes a permanent
solid loop, called ICE-Loop, see Fig. 4-c. Otherwise, if the
user continues lassoing and captures at least one object, the
loop disappears and the system switches back to lasso.
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Fig. 4. Single cluster selection: a) A lasso is initiated at P1. b) Cluster C1
is predicted and an ICE-path (dotted oval) appears. c) Performing a pigtail
selects C1 and an ICE-Loop (slid oval) is visualized.

2) Multiple Clusters Selection: Multiple clusters can be
selected through either a continuous single gesture, or multiple
disjointed gestures. Selection through continuous gesturing is
an extension of a single cluster selection: after a cluster is
selected, if the user continues lassoing, the system predicts the
next cluster and visualizes it through an ICE-Path. Making a
pigtail adds the next cluster to the selection, See Fig. 5.
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Fig. 5. Multiple cluster selection using continuous gesturing.

Continuous gesturing may involve a traversal of a long
path. One common scenario is selecting a second cluster



that is “behind” other objects, e.g., see Fig 6-a. To address
this, ICE-Lasso offers a new disjointed selection technique
which does not require a modifier key (such as the “shift”
key): after a selection is finalized, i.e., when the pen is lifted
and before any command is invoked, the user can extend
the selection to another cluster by starting a lasso from the
inside of an ICE-Loop. Figure 6 shows an example: in Fig 6-
a, the user has selected clusterC1. SelectingC2 through
continuous gesturing would require drawing a long path, see
the dashed curve. Instead, in Fig 6-b, the user initiates a
disjointed selection by starting a new lasso within the ICE-
loop of C1. Similar to the single cluster selection, the system
predicts clusterC2 as the target and the user confirms the
prediction by drawing a pigtail.
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Fig. 6. Multiple cluster selection: a) SelectingC2 after C1 by continuous
gesturing requires drawing a long path. b) Instead, the userstarts a lasso
gesture within the ICE-Loop ofC1 and c) selectsC2.

3) Partial or Complete Cluster Deselection: Similar to a
Bite gesture introduced in Tivoli [13], curved gestures are used
for partial deselection of a cluster. If the user makes a curved
gesture (called acut) within an ICE-loop, all objects that are
on the concave side of the gesture are deselected, see Fig. 7.
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Fig. 7. Partial cluster deselection a) shows a selected cluster and its ICE-
Loop. b) The user draws an inward curve. c) Objects outside onthe concave
part are deselected.

If all of the objects are on the concave side, the whole cluster
is deselected, see Fig. 8. This feature enables users to deselect
a cluster at any time during a selection without canceling the
whole selection and without using a modifier key.

Unlike in Tivoli, the cut gesture does not have to start and
end at the loop: if the user draws a small part of a cut gesture
and pauses for a third of a second, the system extends it by a
line through the gesture end-points. This feature considerably
improves the deselection proposed in Tivoli when the path is
narrow, (e.g., in dense clusters) or is long (e.g., on a large
display).
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Fig. 8. Cluster deselection: Performing a “cut” gesture with no objects on
the convex side deselectsC1.
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Fig. 9. Partial selection with automatic gesture completion. a) shows a
selected cluster and its ICE-Loop. b) Drawing a curved gesture and a pause
extends the gesture. c) Lifting the pen deselects the objects on the concave.

D. Implicit Mode Switching Between ICE-Lasso and Lasso

The system provides a seamless and automatic transition
between the ICE-Lasso and the traditional lasso selection and
eliminates the effort and potential errors of mode-switching.

Selection starts in lasso mode. When a lasso gesture is near
a cluster and has not selected any of the cluster’s objects, the
prediction algorithm visualizes the inferred cluster through an
ICE-path. If the user performs a pigtail, the system switches
to ICE-lasso mode, selects the cluster, and then switches back
to lasso mode. Otherwise, if the user continues lassoing she
stays in lasso mode. Figure 10 illustrates this.
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Fig. 10. ICE-Lasso can act as an auto-complete lasso. a) The user starts a
lasso gesture; an ICE-Path is visualized. b) She continues gesturing towards
P2 and an object is captured; the system switches to lasso and the ICE-Path
disappears. C) Objects are now selected by lasso. D) Liftingthe pen finishes
the selection.

If a pigtail is performed when the lasso gesture has already
enclosed any object, the corresponding objects are selected
first, and then the LPG before the pigtail is used to determine



the cluster to select. After any pigtail gesture has ended, anew
lasso gesture is started. This (new) lasso gesture and all the
subsequent ones have no effect on clusters already selected
when in ICE mode. Figure 11 illustrates this. In Fig. 11-a,
the user starts a lasso gesture fromP1 to P2 and selects two
objects inC1. At P2, the pen is close enough toC2, so an
ICE-path forC2 appears. In Fig. 11-b, the user performs a
pigtail and clusterC2 is selected. After the pigtail (i.e., at
P3 Fig. 11-c) a a new lasso starts and the user moves toward
clusterC3. She ignores any predictions and draws a lasso path
to point P4 and clusterC is selected. In Fig. 11-d, the user
lifts the pen and selection is completed. Alternatively andmore
efficiently, the user could have performed a pigtail gesturefor
clusterC3 shortly afterP3.
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Fig. 11. Automatic mode switching. a) A lasso selects two objects fromC1.
ICE-Lasso predictsC2 and visualizes an ICE-path. b) A pigtail selectsC2

and visualizes an ICE-Loop. c) A lasso starts after the pigtail (i.e. at P3) and
the user continues lassoing (solid curveP3P4). C3 is selected. d)Lifting the
pen finalized the selection.

E. Experiment

We performed an experiment to evaluate ICE-Lasso for
complete selection of clusters. It was conducted in two dif-
ferent environments: a large display and a graphical tablet
which are representative of large and small surfaces. This
allowed us to investigate the effect of different input devices
and movement distances on the techniques.

1) Stimuli: Each layout had four clusters of squares with 10
times 10 pixels. There were one, two or three target clusters
in each layout. All the clusters were similar in size and had
arbitrary orientations. The size, i.e., spatial extent, ofa cluster
was defined by its bounding box. It was classified into three
categories: small (2 cm x 2 cm), medium (4 cm x 4 cm),

and large (8 cm x8 cm). This factor affected not only the
circumference of clusters but also the distances between them.
In summary, targets were classified as follows:

• 3 Spatial Sizes: small, medium, large;
• 3 Numbers of target clusters: one, two, three.

We designed 36 different layouts (4 layouts for each category).
2) Apparatus: The experiment was conducted on a Wacom

PL-400 digitizing pen tablet with an embedded display, and
a 60”x45” interactive wall (75” diagonal). The resolutionsof
both displays were 1024× 768. The tablet was connected to
a 2 GHz PC. The large display was connected to a 3 GHz
computer. The software was written in Python and Tkinter.

3) Participants: 12 students from our university campus
were recruited. None of them had used ICE-Lasso, and most
of them did not have any experience with laser pointers on
large display surfaces.

4) Procedure: For each task, one of the 36 above-
mentioned patterns was shown to the participants. They were
instructed to select the highlighted targets using the auto-
complete lasso or the ICE-Lasso, as quickly and accurately
as possible. Targets and distracters were displayed in green
and black, respectively. If only targets were selected, a brief
sound was played and the experiment advanced to the next
task. Selection Time was measured from the first pen tap/laser
pointer click after a layout was displayed to the time when
only targets were selected. The number of cancelations, i.e,
clicks on an empty area, was also recorded. During the lasso
selection, the users were able to perform a disjointed selection
using the Shift key. Also, they could deselect objects or
clusters using a Ctrl key. These keys were not available for
ICE-Lasso.

The experiment consisted of two consecutive phases, one
on each platform. Both phases involved the same tasks and
experimental procedure. For the first phase, the graphical tablet
with a digital pen was used, while for the second phase
the interactive wall with a laser pointer was used. The laser
pointer was operated at a distance to the display. This was
motivated by the observation that users close to the large
display sometimes could not see all the target objects. To
remove this potential confound, we asked users to select
objects from a distance.

Participants were acquainted with both techniques on 10
practice layouts. In the main phase, the order of selection tech-
niques was counterbalanced. Also, the order of layouts was
randomized (differently) for each participant. Each participant
repeated the main phase three times, using the same order of
techniques and layouts. At the end, participants filled out a
questionnaire to evaluate the ease of use and the learnability
of both techniques.

5) Hypothesis: We hypothesized that ICE-Lasso would be
significantly faster than lasso, since it considerably reduces
dragging distances and does not require modifier keys. We
also expected the participants to perform selections faster on
the tablet.

6) Design: A within-subject full factorial design was used.
There were three independent variables: Technique (lasso or



ICE-Lasso), Spatial Size, i.e., the size of the bounding box
for each cluster (small, medium, large), and Target Number,
i.e., the number of target clusters in each layout (1, 2, 3).
The dependant variables were Selection Time and Cancellation
Rate.

The 36 layouts discussed above were used in the main ex-
periment. This sequence was then repeated three times for each
participant. Also, the whole experiment was performed twice,
once on the tablet and once on the interactive wall. Hence, each
participant performed a total of2×(10×2+36×2×3) = 472
selections including the training.

III. R ESULTS

A. Selection Time

The ANOVA showed a significant difference between Tech-
nique and Selection Time,F1,11 = 25.10, p < 0.001. The
mean selection time for ICE-Lasso and lasso was 2.5 and 3.17,
respectively, see Fig. 12. This confirmed our first hypothesis.
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Fig. 12. Comparing mean Selection Time of Techniques.

Spatial Size There was a significant effect of Spatial Size on
Selection Time,F2,22 = 50.12, p < 0.0001, and also signif-
icantly interacted with TechniqueF2,22 = 41.18, p < 0.001.
For ICE-Lasso, there was no significant effect for Spatial Size.
For lasso, selection of large clusters was considerably slower
than selection of small and medium ones, see also Fig. 13.
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Fig. 13. The effect of Spatial Size on Selection Time.

There was a significant effect of Number on Selection Time
F2,22 = 102.82, p < 0.0001. However, it did not interact with
Technique,F2,22 = 1.73, n.s;, see also Fig. 14.

Input Device had a significant effect on Selection Time,
F1,11 = 13.48, p ≪ 0.01. There was also a marginal interac-
tion between Input Device and Technique,F1,11 = 2.09, p <

0.1, see Fig 15. Our second hypothesis was confirmed.
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Fig. 14. The effect of Target Number on Selection Time.
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Fig. 15. The effect of Input Device on Selection Time.

Learning: Repetition had a strong main effect on Selection
Time, F2,22 = 8.93, p < 0.001. There was a marginal interac-
tion between Repetition and Technique,F4,44 = 2.55, p < 0.1.
While there was no significant change on performance of ICE-
Lasso, lasso significantly improved in later repetitions, see
Fig. 16 and Fig. 17.
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Fig. 16. The effect of Repetition on Selection Time.
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Fig. 17. The effect of Repetition and Input Device on Selection Time.

Cancelation Rate: The cancelation rate was very low for
each of the technique. It had no interaction with Technique,
F2,20 = 0.31, n.s.

Overall Preferences
At the end of the experiment,the participants were given a

questionnaire to rank the techniques on their learnability, ease-



of-use, memorability, and perceived efficiency. Ratings were
on a 5-point Likert scale. Table I illustrates the averages of
the subjective preferences.

ICE-Lasso Lasso
Easy to learn 4.68 4.25
Easy to use 4.25 3.50
Easy to memorize 4.50 4.00
Efficiency 3.95 3.41

TABLE I
AVERAGE RANKING OF THE TECHNIQUES, HIGHER IS BETTER.

Participants were also asked about the positive and negative
aspects of each technique. A majority of participants, 10 out
of 12, preferred ICE-Lasso over lasso. In general, ICE-Lasso
was commented on as being easy to learn and use, while
lasso required more effort. The lack of modifier keys was
also a positive aspect of ICE-Lasso. One problem identified in
ICE-Lasso was that pigtail gesture detection sometimes failed,
which required a cancelation and a redraw.

IV. D ISCUSSION

ICE-Lasso was significantly faster than the traditional lasso
technique, because it considerably reduced dragging distances
and did not require a modifier key. As it was expected,
both techniques were slower on the large display, because
they required longer dragging distances; and for ICE-Lasso,
drawing a pigtail gesture using a laser pointer was harder.

For both techniques, increasing the number of target clusters
increased the selection time. For lasso, most users performed
multiple disjointed selection using the shift key. Some of them
drew a single loop around the whole targets. Both alternatives
involved longer dragging distances and more effort to avoidthe
non-targets. For ICE-Lasso, the user required to draw multiple
pigtail gestures.

Spatial Size had no noticeable effect on ICE-Lasso while
it significantly affected lasso selection. In addition to the
increased circumference of clusters, Spatial Size also affected
“tunnel width”, i.e., the distance between the targets and
non-targets. This was true in our experiment, as the number
of clusters was constant in all layouts. For selecting small
clusters, lasso required a small dragging distance though a
wide tunnel, which was easier with both pens and laser
pointers. As Spatial Size increases, lasso selection becomes
slower as it requires drawing a longer path through narrower
tunnels.

While Repetition had no effect on ICE-Lasso on any of the
platforms, it affected lasso. For lasso when the participants
used a laser pointer, the selection times dropped linearly with
repetition. when they used a pen, there was a sudden drop
at the second repetition. This suggests that learning the lasso
technique with a pen was easier than with a laser pointer.

V. CONCLUSION AND FUTURE WORK

This paper presented ICE-Lasso, a new intelligent selection
technique that significantly reduces pen movement distances.

Also, it offers the selection of multiple clusters and the partial
deselection without the need for modifier keys. Additionally it
can be overloaded onto the lasso technique through a seamless
and automatic mode switching. Our user study indicates that
it is significantly more efficient than lasso when selecting
complete clusters.

There are a two limitations that we plan to address in
the near future. First, we will evaluate the efficiency and
learnability of ICE-Lasso for partial cluster selection. Second,
we will investigate more advanced strategies for predicting
user intention. Although the prediction algorithm is promising
for selecting nearby clusters, it cannot reliably detect distant
target clusters.
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