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Abstract—Lasso selection tends to be inefficient in many ¢ O

i i i @)
circumstances such as selecting spatially large cluster$CE- %FD O
Lasso is a hovel technique that infers likely target clustes during DGQ/
an ongoing lasso gesture. It provides efficient gesture-bed DD
interaction techniques as shortcuts to select partial, coplete, and cs U
multiple clusters. Additionally, it is overloaded on the traditional C]D é?
lasso with anautomatic mode switching. A comparison user study Dot
show that ICE-Lasso is significantly more efficient than lass and (@) b)

also well-liked by users.

Fig. 1. In order to selecting cluster C3, a) lasso requaresise drawing of
a long path and b) ICE-Lasso involves an initial segment afsad followed
I. INTRODUCTION by a pigtail (b).

Selection of a group of objects is a common task iﬂ Related Work

graphical user interfaces and is required for many operatio _ ] _ ) _ )
such as deletion, movement, or modification. Clusters, i.e., spatially neighboring graphical objectse

Lasso is a standard group selection technique in pen-ba: At of the m?St fregutently-us_ed structurt_es,”andl t:leg _thave
interfaces and it has been used in a variety of applicatio e commonly used 10 organize semantically reiated items
e.g., [10], [6], [13]. It involves dragging a closed path and such_as f|Ie_ icons digital inks _[17]. Naturally, improving
the target objects, while avoiding the inclusion of undssir user interaction for cIustgr seleptlon has a Ion.g historgsm
ones. Several variations of lasso have been proposed ] [1relevant to the present discussion are efforts in the hgpert

; ' “domain e.g. [7], [11], in the digital ink domain [3], [14],
[12]. Auto-complete-lasso [12] automatically closes thep - d ld in 1471 1181, With a f o
as the user performs a lasso selection, which often speedsI ’ [1]é anth generat omain [I ] [ ]I. hl' a f]V.V elxc(;e_p n
the selection. Some systems combine the lasso selection 5 ’.[ D, ese systems apply simple hierarchica us‘g
action-commands into a single stroke [5], [6], [8], [1]. Fof gorithms, which cannot reliably detect clusters of adbit

- o - Ny hapes or with non-homogeneous densities.
example, in Scriboli [5] and InkSeine [6] a pigtail gestute & . . . :
the end of a lasso activates a menu. The interaction techniques presented in [7], [11], [4] are

L lecti be i _ h lect based on a multi-clicking approach: double-clicking on an
asso seiection can be time-consuming when selec Ingofi']'ect selects its cluster, and each successive click éxtire
spatially large cluster. In particular, it tends to be ireént

| tical displ ) th 4 by & selection with the nearest cluster(s). There are two liioits
on large vertical dispiays, since the area covered Dy rgﬁ}ith this approach: first, performing multi-clicks with diigl
can be large, hard to reach (e.g., too high or too low), or

;ﬁtens or laser pointers is hard and error-prone, secona: ther

can cross the bezels of the tiled displays._ Using a Iaseltepminno isual feedback before a selection is finalized. Alsoglie
instead of a pen resolves some of these issues. However, h anechanism for editing a selection. Hence, if the user make

jitter inherent to laser pointer-based interaction can endk a mistake, she has to cancel the selection and start over.

hard _to avoid nearby non-targets. ) . Watanabeet al. proposed a novel approach for cluster
This paper presents ICE-Lasso: a new selection techniqygection named Bubble Clusters [18]. In this system, ehsst
that Intelligently Completes and Extends Lasso gesturss. Are always visualized via surrounding bubble surfaces. The
the user draws a lasso, the system infers the target clugiggrs select a cluster by clicking on its empty area ,andsspli
and visualizes it via a temporary overlaid loop. When th&)r partially deselect) it by drawing a gesture through the
user makes a pigtail gesture, the suggested cluster igeelec|yster similar to the one in Tivoli [13]. The presence of

Otherwise, if she continues lassoing and captures at legghples introduces a significant visual clutter. Also, tatem
one object, the system automatically switches back to thges not address multiple-cluster selection.

normal lasso. Additionally, ICE-Lasso facilitates theession

of multiple clusters, as well as partial or complete degalac Il. ICE-LASSO

of clusters. Figure 1 illustrates compares the two tectesqu ICE-Lasso consists of the following components: cluster
for a simple cluster selection task. detection, target cluster prediction, gestural interfa@nd a



seamless mode switching with traditional lasso. L @C%

. % 0o
A. Cluster Detection éﬁj by "._‘p1 00
Cluster detection utilizes a perception-based scalerizvg a8 % /
algorithm called CODE [15]. In CODE, the influence of each 0 :
object on the others is modeled by a normal distribution c1 0288%

function. The center of this function is at the object locati
the standard deviation is half the distance to the objeatasta rig 3. p1p2 s the vector fitted to the LPG, anfilis orthogonal to itC'1
neighbor; and the peak is rescaled to one. The sum of these@C?2 are candidates, as they are in frontlaf C1 is the predicted target,
functions represents overall clustering strength. Whercths- @S it is closer toP2.

tering strength in that region surpasses a threshold (setel
objects on that region are clustered. Figure 2 illustraités t
with four one-dimensional dots, labeletito D. Dashed and . ] ) ]
solid curves represent the individual and the overall elisg 1) Single Cluster Selection: While the user is drawing a
strength, respectively. Applying the threshold resultshiree lasso, the system infers the target cluster and visualizés i

C. Gestural Interaction

proximity regions, i.e., clusterAB, C, D}. a temporarily overlaid loop (called_an _ICE—Path), see Fig. 4
and Fig. 4-b. If the user draws a pigtail gesture, the suggdest
cluster is selected, and the ICE-Path becomes a permanent

/\ solid loop, called ICE-Loop, see Fig. 4-c. Otherwise, if the

] \/ \/ user continues lassoing and captures at least one object, th
loop disappears and the system switches back to lasso.

C1 o
: o e\
A B c D O )
O o
Fig. 2. Cluster Detection using CODE. Objects are labeledo D. The 9) 10
dashed and solid curves represent individual and summestiecléunctions, T 8! e
respectively. Applying the threshold T = 1 generates thtaster AB, C, D. Pi OO Pi OO
B. Predicting a Target Cluster (@ (b) ©

The prediction a target cluster is based on two observatidfig 4. Single cluster selection: a) A lasso is initiated &t B) Cluster C1
gathered from an analysis of lasso gestures in various scerfgPredicted and an ICE-path (dotted oval) appears. c) freifig a pigtail

; . selects C1 and an ICE-Loop (slid oval) is visualized.
ios: first) the gestures tend to be smooth regardless ofeclust P )

shap(_es, and secc_md) they often start near a target cluster ar2) Multiple Clusters Selection: Multiple clusters can be
remain c_Iose to 't_' dThe .SeaerCh fgr adtacljr_get C|Usge;£ja(SDtV¥8|ected through either a continuous single gesture, diptaul
cr:)nsdecunve_z st(;ps. |re_ct|_0n- ?sel and distance- al :te Idisjointed gestures. Selection through continuous gesfls
the dynamic characteristics of a lasso gesture, only t N extension of a single cluster selection: after a cluster i

portion (LPG) is considered. In the direction-based search, ﬂ%%lected, if the user continues lassoing, the system fisatiic

glgorithm searches for clusters that (a) none of their ije,chext cluster and visualizes it through an ICE-Path. Making a
!‘s cuzrently selected, and_ (b) are partlally or completeiy higtail adds the next cluster to the selection, See Fig. 5.
front” of the LPG. For this, the algorithm fits a line to the

LPG. Then it uses the line perpendicular to the fitted lineas a

separator. Clusters that are completely behind this separe 70 29%6%8 29%9%8 29%0%8
not considered in theistance-based searcln the distance-

based search, the distances between the last point of the LPG o . o

and all remaining clusters are computed. The nearest cligste 0%80 @80
returned as the inferred target. In case of ambiguitiesrevhe

there are more than one inferred targets, the algorithm snake 98 98 o5

no prediction, and effectively waits until the user updates “59 “59 “129

LPG.

Figure 3 illustrates an exampl&1P2 is the vector to the © ® “

LPG andL is the orthogonal line. In the direction-search step Fig. 5. Multiple cluster selection using continuous gestyr

C3is discarded, as it is behind In the distance-based search,

between cluster§€’l and C2, C'1 has the minimum distance Continuous gesturing may involve a traversal of a long
to P2. Hence, the algorithm chooses it as the target clustepath. One common scenario is selecting a second cluster



that is “behind” other objects, e.g., see Fig 6-a. To address 500 O 500 O 500 O
this, ICE-Lasso offers a new disjointed selection techeiqu 23e e 23e
which does not require a modifier key (such as the “shift”

key): after a selection is finalized, i.e., when the pen iedif > /O o
and before any command is invoked, the user can extend O%OO O%QO QOQOO
the selection to another cluster by starting a lasso from the

. . . . . 00 Do 00
inside of an ICE-Loop. Figure 6 shows an example: in Fig 6- ge g g

a, the user has selected clustéit. SelectingC2 through 20 Elo 00
continuous gesturing would require drawing a long path, see @ ® ©

the dashed curve. Instead, in Fig 6-b, the user initiates a

disjointed selection by starting a new lasso within the ICHi9- 8. Cluster deselection: Performing a “cut” gesturehwib objects on
. . . the convex side deselects1.

loop of C'1. Similar to the single cluster selection, the system

predicts clusterC2 as the target and the user confirms the

prediction by drawing a pigtail.

0000 0oo
ODoobooo
OoDoooo

(a) (b) (c)

Fig. 9. Partial selection with automatic gesture compfetia) shows a
selected cluster and its ICE-Loop. b) Drawing a curved gesand a pause
extends the gesture. c) Lifting the pen deselects the abfatthe concave.

@ ®) © D. Implicit Mode Switching Between ICE-Lasso and Lasso

Fig. 6. Multiple cluster selection: a) Selecting2 after C'1 by continuous The system provides a seamless and automatic transition
gesturing _re_quires drawing a long path. b) Instead, the s&®ts a lasso petween the ICE-Lasso and the traditional lasso selectidn a
gesture within the ICE-Loop of’1 and c) select&'2. [ . e
eliminates the effort and potential errors of mode-switghi
Selection starts in lasso mode. When a lasso gesture is near

3) Partial or Complete Cluster Deselection: Similar to a ) .
. . S a cluster and has not selected any of the cluster’'s objéuts, t
Bite gesture introduced in Tivoli [13], curved gestures are used

for partial deselection of a cluster. If the user makes amrvprediction algorithm visualizes the !nferred cluster tgb an
gesture (called aut) within an ICE-loop, all objects that arelCE'path' If the user performs a pigtail, the system swiiche

on the concave side of the gesture are deselected, see Figto7ICE—Iasso mode, selects the cluster, and then switches ba
' to lasso mode. Otherwise, if the user continues lassoing she

stays in lasso mode. Figure 10 illustrates this.
i0 s
.0 O
~ g
(@) ®) © (a) (b)

Fig. 7. Partial cluster deselection a) shows a selectedeclasd its ICE-
Loop. b) The user draws an inward curve. c) Objects outsidtherconcave
part are deselected.

If all of the objects are on the concave side, the whole ctuste
is deselected, see Fig. 8. This feature enables users tledese
a cluster at any time during a selection without cancelirgg th
WhOIe. sellectlpn .and without using a modifier key. Fig. 10. ICE-Lasso can act as an auto-complete lasso. a) Jérestarts a

Unlike in Tivoli, the cut gesture does not have to start anesso gesture; an ICE-Path is visualized. b) She continaetigng towards
end at the loop: if the user draws a small part of a cut gesttﬁé and an object is captured; the system switches to lasso aniCHrPath

. . isappears. C) Objects are now selected by lasso. D) Liftiegpen finishes
and pauses for a third of a second, the system extends it by, @selection.
line through the gesture end-points. This feature conalugr
improves the deselection proposed in Tivoli when the path isif a pigtail is performed when the lasso gesture has already
narrow, (e.g., in dense clusters) or is long (e.g., on a largaclosed any object, the corresponding objects are sdlecte
display). first, and then the LPG before the pigtail is used to determine




the cluster to select. After any pigtail gesture has endegvwa and large (8 cm x8 cm). This factor affected not only the
lasso gesture is started. This (new) lasso gesture andeall ¢tircumference of clusters but also the distances betweasm.th
subsequent ones have no effect on clusters already sele¢tedummary, targets were classified as follows:

when in ICE mode. Figure 11 illustrates this. In Fig. 11-a, « 3 Spatial Sizes: small, medium, large;

the user starts a lasso gesture fréthto P2 and selects two o 3 Numbers of target clusters: one, two, three.

objects inC1. At P2, the pen is close enough @2, so an e designed 36 different layouts (4 layouts for each casggor
ICE-path for C2 appears. In Fig. 11-b, the user performs a 2) Apparatus: The experiment was conducted on a Wacom
pigtail and clusterC2 is selected. After the pigtail (i.e., atpL-400 digitizing pen tablet with an embedded display, and
P3 Fig. 11-c) a a new lasso starts and the user moves towaréo"x45” interactive wall (75" diagonal). The resolutioos
clusterC3. She ignores any predictions and draws a lasso p3#bth displays were 1024 768. The tablet was connected to
to pOint P4 and clusterC' is selected. In Flg 11-d, the userg 2 GHz PC. The |arge d|Sp|ay was connected to a 3 GHz
lifts the pen and selection is completed. Alternatively amate  computer. The software was written in Python and Tkinter.
efficiently, the user could have performed a pigtail gestare  3) Participants: 12 students from our university campus
clusterC3 shortly afterP3. were recruited. None of them had used ICE-Lasso, and most
of them did not have any experience with laser pointers on
O o large display surfaces.
o 4) Procedure: For each task, one of the 36 above-
mentioned patterns was shown to the participants. They were
P23, instructed to select the highlighted targets using the -auto
complete lasso or the ICE-Lasso, as quickly and accurately
Lo © as possible. Targets and distracters were displayed imgree
0o and black, respectively. If only targets were selected,ief br
sound was played and the experiment advanced to the next
task. Selection Time was measured from the first pen tap/lase
pointer click after a layout was displayed to the time when
only targets were selected. The number of cancelations, i.e
o« clicks on an empty area, was also recorded. During the lasso
@ 50 selection, the users were able to perform a disjointed sefec
using the Shift key. Also, they could deselect objects or
clusters using a Ctrl key. These keys were not available for
AL ) ICE-Lasso.

Co © The experiment consisted of two consecutive phases, one
F=le] on each platform. Both phases involved the same tasks and
®ag experimental procedure. For the first phase, the graplaibbdt

3 with a digital pen was used, while for the second phase
the interactive wall with a laser pointer was used. The laser
pointer was operated at a distance to the display. This was
Fig. 11. Automatic mode switching. a) A lasso selects tweodlsifromC1. motivated by the observation that users close to the large
oy o oy vy CISPIaY Someimes could ot see all the target objects. To
the user continues lassoing (solid cu8P4). C'3 is selected. d)Lifing the €Move this potential confound, we asked users to select
pen finalized the selection. objects from a distance.

Participants were acquainted with both techniques on 10
, practice layouts. In the main phase, the order of selectioh-t
E. Experiment niques was counterbalanced. Also, the order of layouts was
We performed an experiment to evaluate ICE-Lasso fesindomized (differently) for each participant. Each maptnt
complete selection of clusters. It was conducted in two difepeated the main phase three times, using the same order of
ferent environments: a large display and a graphical tabtethniques and layouts. At the end, participants filled out a
which are representative of large and small surfaces. Thjgestionnaire to evaluate the ease of use and the leatpabili
allowed us to investigate the effect of different input ded of both techniques.
and movement distances on the techniques. 5) Hypothesis: We hypothesized that ICE-Lasso would be
1) Simuli: Each layout had four clusters of squares with 18ignificantly faster than lasso, since it considerably cedu
times 10 pixels. There were one, two or three target clustetisagging distances and does not require modifier keys. We
in each layout. All the clusters were similar in size and heaalso expected the participants to perform selections rfaste
arbitrary orientations. The size, i.e., spatial extenta afuster the tablet.
was defined by its bounding box. It was classified into three 6) Design: A within-subject full factorial design was used.
categories: small (2 cm x 2 cm), medium (4 cm x 4 cm)here were three independent variables: Technique (lasso o

(b)

(c) (d)



ICE-Lasso), Spatial Size, i.e., the size of the bounding box
for each cluster (small, medium, large), and Target Number,
i.e., the number of target clusters in each layout (1, 2, 3).
The dependant variables were Selection Time and Cancallati
Rate.

The 36 layouts discussed above were used in the main ex-
periment. This sequence was then repeated three timesdior ea
participant. Also, the whole experiment was performed éwic
once on the tablet and once on the interactive wall. Henod, ea
participant performed a total @fx (10 x 2+36 x 2 x 3) = 472
selections including the training.

E Num1 B Num.2 O Num.3 5.12
4.14

Selection Time (s)
e O I S )

ICE-Lasso Lasso

Ill. RESULTS 4 B Pen W Laser 3.60
. 2.88

A. Selection Time

The ANOVA showed a significant difference between Tech-
nique and Selection Timef; ;; = 25.10,p < 0.001. The
mean selection time for ICE-Lasso and lasso was 2.5 and 3.17,
respectively, see Fig. 12. This confirmed our first hypothesi

Selection Time (s)

ICE-Lasso Lasso

Fig. 15. The effect of Input Device on Selection Time.

Fig. 14. The effect of Target Number on Selection Time.

3.5 1 3.17
z 37 . - . .
2 25 1 21 Learning: Repetition had a strong main effect on Selection
E 2 Time, F5 5o = 8.93,p < 0.001. There was a marginal interac-
£ 157 tion between Repetition and Techniqu&,ss = 2.55,p < 0.1.
§ ™ While there was no significant change on performance of ICE-

051 Lasso, lasso significantly improved in later repetitionse s

0 . .
(CE-Lasso Lasso Fig. 16 and Fig. 17.

Fig. 12. Comparing mean Selection Time of Techniques.
—4— |CE-Lasso - Lasso

5‘\.

* ad

Soatial Sze There was a significant effect of Spatial Size on
Selection Time,F» 22 = 50.12,p < 0.0001, and also signif-
icantly interacted with Techniqué: oo = 41.18,p < 0.001.
For ICE-Lasso, there was no significant effect for SpatiaéSi
For lasso, selection of large clusters was considerabiyesio
than selection of small and medium ones, see also Fig. 13.

Selection Time (s)
o =2 N W A,

Rep.1 Rep.2 Rep.3
Fig. 16. The effect of Repetition on Selection Time.

[l Small B Medium O Large

5.16 -

44
351 =4—Lasso Laser

— m % (CE-Lasso Laser

254 Lasso Pen
N M| —ICE-LassoPen

2.55 535 267 2.50

Selection Time (s)

1.5

Selection Time (s)
o =~ N W s OO

ICE-Lasso Lasso 05

Rep.1 Rep.2 Rep.3

Fig. 13. The effect of Spatial Size on Selection Time.

Fig. 17. The effect of Repetition and Input Device on Setetflime.

There was a significant effect of Number on Selection Time

F5 90 = 102.82,p < 0.0001. However, it did not interact with  Cancelation Rate: The cancelation rate was very low for
Technique,F; 22 = 1.73, n.s;, see also Fig. 14. each of the technique. It had no interaction with Technique,

Input Device had a significant effect on Selection TimeF; 50 = 0.31, n.s.
Fi111 = 13.48,p < 0.01. There was also a marginal interac- Overall Preferences

tion between Input Device and Techniqug,; = 2.09,p < At the end of the experiment,the participants were given a
0.1, see Fig 15. Our second hypothesis was confirmed. questionnaire to rank the techniques on their learnapdage-



of-use, memorability, and perceived efficiency. RatingseweAlso, it offers the selection of multiple clusters and thetigh
on a 5-point Likert scale. Table | illustrates the averages deselection without the need for modifier keys. Additiopl|

the subjective preferences.

ICE-Lasso| Lasso
Easy to learn 4.68 4.25
Easy to use 4.25 3.50
Easy to memorize| 4.50 4.00
Efficiency 3.95 3.41 the
TABLE |

AVERAGE RANKING OF THE TECHNIQUESHIGHER IS BETTER

can be overloaded onto the lasso technique through a seamles
and automatic mode switching. Our user study indicates that
it is significantly more efficient than lasso when selecting
complete clusters.
There are a two limitations that we plan to address in
near future. First, we will evaluate the efficiency and
learnability of ICE-Lasso for partial cluster selectiorecdnd,
we will investigate more advanced strategies for predictin

user intention. Although the prediction algorithm is premg

for selecting nearby clusters, it cannot reliably detestatit
Participants were also asked about the positive and negatirget clusters.

aspects of each technique. A majority of participants, 10 ou
of 12, preferred ICE-Lasso over lasso. In general, ICE-bass
was commented on as being easy to learn and use, whitg
lasso required more effort. The lack of modifier keys was
also a positive aspect of ICE-Lasso. One problem identified i
ICE-Lasso was that pigtail gesture detection sometimésdfai

which required a cancelation and a redraw. (3]

IV. DISCUSSION [4]

ICE-Lasso was significantly faster than the traditionastas (5]
technique, because it considerably reduced draggingndissa
and did not require a modifier key. As it was expected|6]
both techniques were slower on the large display, because
they required longer dragging distances; and for ICE-Lassgy
drawing a pigtail gesture using a laser pointer was harder.

For both techniques, increasing the number of target a’ﬂuste[s]
increased the selection time. For lasso, most users pegtbrm
multiple disjointed selection using the shift key. Sometwfrh  [9]
drew a single loop around the whole targets. Both alteraativ
involved longer dragging distances and more effort to atloéd [1q)
non-targets. For ICE-Lasso, the user required to draw pielti
pigtail gestures. 11]

Spatial Size had no noticeable effect on ICE-Lasso whiHe
it significantly affected lasso selection. In addition tce th(12]
increased circumference of clusters, Spatial Size alsxtafd
“tunnel width”, i.e., the distance between the targets angh
non-targets. This was true in our experiment, as the number
of clusters was constant in all layouts. For selecting Sm?{h]
clusters, lasso required a small dragging distance though a
wide tunnel, which was easier with both pens and laser
pointers. As Spatial Size increases, lasso selection besoit®]
slower as it requires drawing a longer path through narrowgs;
tunnels.

While Repetition had no effect on ICE-Lasso on any of thig”]
platforms, it affected lasso. For lasso when the partidgpan
used a laser pointer, the selection times dropped lineaily wi18]
repetition. when they used a pen, there was a sudden drop
at the second repetition. This suggests that learning s la
technique with a pen was easier than with a laser pointer.

V. CONCLUSION AND FUTURE WORK

This paper presented ICE-Lasso, a new intelligent selectio
technique that significantly reduces pen movement distance
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