An Intelligent Assistant for Computer-Aided Design
Extended Abstract

Olivier St-Cyr, Yves Lespérance, and Wolfgang Stuerzlinger

Department of Computer Science, York University
4700 Keele Street, Toronto, Ontario, Canada M3J 1P3
{olivier, lesperan, wolfgang}@cs.yorku.ca
http://www.cs.yorku.ca/~{olivier, lesperan, wolfgang}

Introduction behavior and user knowledge and goals. This could be
used to enforce complex application specific constraints on
the way objects are manipulated and on the layouts that are
produced. Secondly, such a model could be used for
disambiguation and consistency checking. Humans often
communicate information about a task very inaccurately,

because they understand the context of the task and its
goals from previous experience. An agent could use its
domain knowledge to resolve ambiguities, as well as ask

This paper describes an approach in improving the usability
of computer-aided design (CAD) applications by adding an
intelligent agent that assists the user in his/her interaction
with the system. To implement the agent, we use
ConGolog [GLL97, LLR99] — a very high-level

programming language for developing knowledge-based
agents that are embedded in complex environments.

ConGolog supports the specification of a task-level model . : . : :
more meaningful questions when user input is required.

of a glynam|c enwronment., the description of cqmplex Moreover, the user goal model could be exploited to detect
behaviors, and the synthesis of new plans at run-time. A .

. . ; inadvertent errors. Thirdly, the agent could also aid the
prototype intelligent agent is being developed to work with user in constructing the virtual design using its knowledge
an existing 3D CAD system [GS99]. This agent is intended g 9 g 9

. L , .. of the domain and user goals. Because it is aware of the
to help the user in designing an office layout that satisfies 2 . :
his goals. current state of the design, it can provide suggestions and

The CAD system [GS99] that our intelligent agent advice to the user, guide him through the task, and respond

i i . . to user questions. All this would lead to much more
works with is built to allow the user to design a 3D virtual T .
environment (office, kitchen, living room, etc). The natural and intuitive interaction between the user and the
, . ; . . . CAD system.
system’s graphical user interface is quite simple.
Interactions consist primarily of using the mouse to pick)
and place various types of objects (desk, chair, lamp, System overview
inkwell, etc.) in the room layout. In this it resembles the Our prototype system consists of three main subsystems
Object Associations system [BS95]. The system handles that interact and cooperate — $égure 1.
the details of interactions based on a model of objects and The user interacts with the system through the CAD
the physical constraints that hold in the scene, for instance, system’s user interface and through a simple graphical user
an object being supported by a particular surface. But the interface dedicated to the intelligent assistant. The main
system lacks a model of the user, of the task that he issubsystems/components run asynchronously and
trying to perform, and of the objectives that he is trying to communicate through TCP/IP sockets. The intelligent
achieve. It cannot really assist the user in quickly creating assistant component includes the agent’'s domain model
the desired room layout. and behaviors specified in ConGolog, and the ConGolog
An early example for a system that attempts to aid the interpreter which runs on top of Quintus Prolog. These
user in creating a room layout is CRACK [FM88]. This 2D tools use logic programming technology, which is well
system critiques the current design with text messages thatsuited to implementing knowledge-based applications.
explain the problem. The domain knowledge embedded in The CAD system component is based on SGI's OpenGL
the critiquing system is not used to actively aid the user for Optimizer 1.1 and implemented in C++. Its primary
placing objects. functions consist in handling constraints during
We believe that the use of intelligent agent interaction, detecting collisions, positioning objects, etc.
technology can provide many benefits in the area of layout These operations are best handled using computer graphics
systems. An agent would maintain a high-level methods as opposed to artificial intelligence methods.
representation of the application domain, including object

O

Agent GUI
1 TCP/IP socket 1
CAD - User interface I qurg;in Intelligent
System | - Constraint handling Assistant
Agent
- Collision detection TCP/IP socket behaviorg
- Positioning 4 —» ConGolog
interpreter
- Etc.
Figure 1.System architecture.
The CAD system areas are definediffer areasand binding areas These

areas are bound together by constraints and thus, limit the
positioning of the constrained object during manipulation.
"Collision detection/avoidance is also used to ensure that no
two objects occupy the same space. These principles
(surface constraints and collision detection/avoidance)
capture part of the natural behavior of objects in the
system. SeEigure 2for an example of a scene.

General geometric constraints are already part of the
IConS system. For exampl@nFloor andOnWall are two

Most of today’s CAD systems are well suited to creating
geometric objects. Nevertheless, users find common tasks
such as quickly furnishing a room, hard to accomplish,
especially since placing objects is conceptually different
from creating them. The IConS CAD system [GS99] used
in this project is a recently developed 3D application that
exploits knowledge about the behavior of objects to
provide simple and intuitive interaction techniques for

object placement and manipulation. Objects are , . o .
represented using polygonal models. The application usesOf the system’s constraints that can limit where an object
' can be placed. All the implemented constraints describe

a simple two-dimensional interface. The main interaction o .
device is the mouse; keyboard commands are used only for.general placement guidelines for objects that can be used

switching modes and organizational tasks. Currently, three gorig?/n d?rsr:%ni;s t\?viir:rz kr:;twfggcgjgafeéhae :rﬁpggsltéoge
modes exist: constrained object movement, unconstrained : 9 9

object movement, and viewer navigation (see [GS99] for useful; it could know for instance, that a computer should
details). not be placed too close to a heat source.

A user of this system builds scenes based on a
predefined library of objects. For each object, two sets of

Figure 2.Picture of a scene.

ConGolog conditions expressed in terms of the abstract fluents. The
availability of concurrent processes and interrupts
facilitates the implementation of agent controllers that
monitor and react to changes in their environment while
pursuing goal-oriented tasks. Plan synthesis can be
performed using non-deterministic search. ConGolog has
been used to implement various types of agents including a
robot controller [LTJOO] and a meeting-scheduling
assistant [LLR99]. Funge [Fu98] has also used a subset of
ConGolog to produce more natural computer animations.

As mentioned earlier, the intelligent assistant agent is
implemented in ConGolog. ConGolog is an agent
programming language based on techniques for reasoning
about action and implemented using logic programming
technology. Roughly speaking, one can see it as a
concurrent programming language where the primitive
actions are not assignments or arithmetic operations, but
high-level domain—specific actions like “moving a book
onto the desk”. A ConGolog program includes two
components: a specification of the domain and its . . .
dynamics, and a specification of the agent's behavior. The The intelligent assistant agent
domain specificationis expressed in adeclarative
formalism based on the situation calculus, a logical Domain representation
language for representing a changing world. It includes |, the office layout domain, there are many types of
declarations for the primitive actions that can be performed objects. These are organized into a hierarchy of classes,
by the agent or environment in the domain, declarations for e.g. Desk, InkWell, etc. These object classes are
properties of the domain that may change from state 10 \hemselves instances of a set of function-related
state (these are called fluents), and specifications of the aiaclasses:
preconditions and effects of the primitive actions in terms
of these fluents. o « WorkspaceAreaObjectClass, which includes

The behavior specifications expressegrocedurally Desk, Chair, SideTable, etc.
by composing the primitive actions using constructs that , MeetingAreaObjectClass, which includes
include loops, conditionals, concurrency with possibly MeetingTable, Chair, WhiteBoard,etc.

differing priorities, interrupts, and non-deterministic StorageAreaObjectClass, which includes Bookshelf
choice. Behaviors can be complex and the use of domain Book, FilingCabinet, etc '

specific primitive actions means that the specification can OfficeEquipmentAreaObjectClass, which includes
be very high-level. A model of the state is automatically FaxMachine. Printer Photocopier’ etc

maintained by the interpreter based on the domain ’ ’ T
specification and programs can refer to it by testing

Spatial relation types (e.g. OnTop, On Floor, choose c,0,s,82,s3:[
OnWorkspace, etc) are also grouped in a hierarchy. There setOf(c, AccessoriesClass(c), s1)?;
are primitive actions for creating and destroying an remove(o, - LegalRelation(OnWorkspace,
instance of an object or relation class. Desk,0), s1, s2)?;
Another set of fluents and primitive actions is used to append(s2, ["None of the above"], s3)?;
represent interactions with the user or the CAD module. makeMenuQuery("Please pick an accessory", s3)]
For example, the agent can perform the primitive action
makeYesNoQuery(msg) and a possible response of the user Another area where ConGolog helps is in detecting
is represented by the primitive action errors and constraint violations. The agent can easily

answerYesNoQueryYes. The declarations for the check the legality of the actions requested by the user
makeYesNoQuery(msg) are: before performing them. For example, if the user
requested the agent to place a computer on top of a heater,
/I preconditions it could detect that creating an instance of the OnTop
Action makeYesNoQuery(msg) relation between these was illegal. In such situations, it
possible when = YesNoQueryOut. could also suggest alternative actions that may achieve the
user’'s goal. ConGolog's plan synthesis facilities could
/I effects also be useful for dealing with unanticipated user requests,
Occurrence makeYesNoQuery(msg) recovering from failures, or producing animations.

causes YesNoQueryOut always .
Future work

simple version of the agent module has been
implemented and testing has shown that it can be used to
create simple layouts in a straightforward manner. This
. . agent module is now being connected to the IConS CAD
Agent behavior specification system. We are also continuing to develop the ConGolog
So far the behaviors that have been scripted for the agentrepresentation of the domain and extending the behavior of
are rather simple. For e.g., the procedure, which interactsthe agent. Our objectives are to demonstrate the feasibility
with the user to help him set up the workspace area of his of the approach and document its advantages over standard

These declarations are used by ConGolog to initialize the
agent’s knowledge base, update it when actions occur, and
check the legality of actions in a given state.

office layout, goes as follows: techniques.

proc setUpWorkSpace(officeLayout) [References
addObj(Desk,officeLayout); . . .
addObj(Chair,officeLayout); [BS95] Bukowski, R., and Sequin, C. 1998bject

Associations: A Simple and Practical Approach to Virtual
3D Manipulation ACM Symposium on Interactive 3D
Graphics '95, 131-138, Monterey, CA.

resetYesNoQuery;
makeYesNoQuery("Would you
like to have one more chair

added to your office?"); . .
yesNoQquyRespln’?') [Fu98] Funge, J. 1998Vaking Them Behave: Cognitive

if yesNoQueryAnsYes then I\/]Icofels for $omputerCAnir3atiorﬁ>h.D. Thesis, University
addObj(Chair,officeLayout)); of Toronto, Toronto, Canada.

[FM88] Fischer G. and Morch A. 1988. CRACK: A
Critiquing Approach to Cooperative Kitchen Design. In
Proceedings of the International Conference on Intelligent
Tutoring Systems, 176-185, Montreal, Canada.

endProc

As we extend the agent’s behavior, we hope to exploit
the distinctive features of ConGolog. For instance,
ConGolog makes it easy to use the knowledge base to
generate alternatives that satisfy some conditions. As an
example, let's assume that the user had just added a des
into his office layout and wanted to add some accessories
to it. The agent could produce a menu of alternatives as
follows:

[GLL97] De Giacomo, G., Lespérance, Y., and Levesque,
. J. 1997 Reasoning about Concurrent Execution,
Prioritized Interrupts, and Exogenous Actions in the
Situation Calculus. InProceedings of the Fifteenth
International Joint Conference on Atrtificial Intelligence
1221-1226. Nagoya, Japan.

[GS99] Goesele, M., and Stuerzlinger, W. 1999. Semantic
Constraints for Scene Manipulation. Proceedings of the
Spring Conference in Computer Graphic440-146.
Budmerice, Slovak Republic.

[LLR99] Lespérance, Y., Levesque, H. J., and Reiter, R.
1999. A Situation Calculus Approach to Modeling and
Programming Agents. In Wooldridge, M., and Rao, A,
editors,Foundations of Rational Agenc¥75-299. Kluwer.

[LTJOO] Lespérance, Y., Tam, K., and Jenkin, M. 2000.
Reactivity in a Logic-Based Robot Programming
Framework, to appear in Jennings, N.R. and Lespérance,
Y., editors,Intelligent Agents Volume VI - Proceedings of
the 1999 Workshop on Agent Theories, Architectures, and
Languages (ATAL-99) NAI, Springer-Verlag, Berlin.

