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ABSTRACT
In current graphical user interfaces, there exists a (typically un-
avoidable) end-to-end latency from each pointing-device movement
to its corresponding cursor response on the screen, which is known
to affect user performance in target selection, e.g., in terms of move-
ment time (MT ). Previous work also reported that a long latency
increases MTs in path-steering tasks, but the quantitative relation-
ship between latency andMT had not been previously investigated
for path-steering. In this work, we derive models to predict MTs
for path-steering and evaluate them with five tasks: goal crossing
as a preliminary task for model derivation, linear-path steering,
circular-path steering, narrowing-path steering, and steering with
target pointing. The results show that the proposed models yielded
an adjusted 𝑅2 > 0.94, with lowerAICs and smaller cross-validation
RMSEs than the baseline models, enabling more accurate prediction
of MTs.
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1 INTRODUCTION
1.1 Background
The nature of interactive systems introduces unavoidable end-to-
end latency (or lag, delay) from a user’s input to its corresponding
output on the screen, for example, due to hardware-sensing needs,
data communication to the CPU, device driver overhead, the appli-
cation’s own processing time, graphics generation, display refresh,
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and even network delays, if a remote desktop is used [18, 82]. Point-
ing is one of the most fundamental operations in graphical user
interfaces (GUIs) and latency is known to negatively affect its per-
formance, e.g., by increasing the movement timeMT and error rate
ER [22, 37]. Previous work has focused on the effects of latency
on pointing [31, 56], and some of these studies have also derived
predictive models how MT changes due to latency [37, 56].

Yet, users perform also operations other than pointing in GUIs,
and the importance of path-steering tasks has been repeatedly
identified [2, 7, 24, 44, 103, 109]. A steering task requires users to
pass through a restricted path without the cursor deviating outside
of the boundaries, e.g., when navigating a cascaded menu. The MT
of this operation is well-modeled by the steering law, which is based
on the path width and length [2, 26, 70].

In contrast to the numerous papers focusing on target pointing
under the influence of latency, few studies have investigated the
increase of MTs in steering tasks when the cursor movement is
delayed. Furthermore, no theoretical model on MT has been pre-
sented, and thus it is currently necessary to conduct a new study
for each individual latency to be able to estimate the MT ; this is
where a theoretical contribution of a performance model has its
benefits.

In this paper, we propose modified formulations of the steering
law to account for the presence of latency, and evaluate their validity
in four experiments. As a necessary preliminary step to derive the
modified steering law model, we also test a goal-crossing task with
latency. Our contributions are twofold.

• Theoretical derivation ofMT prediction models that take the
end-to-end latency in path-steering tasks into account. Our
basic model is derived from Fitts’ law for constant-width
paths with latency and then refined for each specific con-
dition, such as narrowing paths and steering-and-pointing
tasks.

• Empirical evaluation of the proposed models compared with
baselines through four steering experiments and one goal
crossing study. In all five experiments, the results showed
that models that incorporate a linear latency term predict
MTs significantly more accurately than all baseline models.

1.2 Contribution to the HCI Community and
Suggestions to Future Researchers

Given that latencies in hardware and software are unavoidable, HCI
researchers have tried to understand whether there is regularity to
the effects of latency on user performance, whether these effects
are predictable, and if predictive models can be utilized to prevent
performance degradation. However, the HCI community’s specific
efforts in addressing these questions have been somewhat narrow
and often limited to target-pointing tasks, despite repeated empha-
sis in previous studies on the importance of trajectory-based GUI
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tasks such as goal crossing and path steering. This gap needs to be
filled for better understanding of user performance in interactive
systems.

Given that users regularly use many different devices today, the
need for investigating the effects of latency on user performance
is increasing. Typical HCI research on GUI-performance modeling
has assumed that we use a single input-output device combination,
where the end-to-end latency is on average constant when vali-
dating performance models, which is today an overly simplistic
assumption. If we use several devices with different latencies si-
multaneously, e.g., in a dual-display environment or when using a
remote desktop in parallel to the local one, the prediction accuracy
of a model will be considerably degraded, and one could question
whether existing model-based interaction techniques [46, 78] and
model-driven design guidelines [13, 105] would still work effec-
tively.

As our five experiments show below, realistic levels of latency
significantly affect MTs. This result advances our understanding in
HCI, by filling the above-mentioned gap on GUI performance; our
models robustly explain the impact of latency on user behavior for
steering tasks that are not modeled by Fitts’ law. Beyond the scope
of Fitts’ and steering laws our takeaway for general HCI researchers
is that there is still a need to re-evaluate the effects of latencies, even
in well-known models. Examples include replicating model eval-
uations for ERs in pointing at stationary targets [97, 110], MTs in
goal-crossing tasks [10, 54], and MTs in free-form object-selection
tasks in illustration software [14, 101]. From this perspective, our
work is a cornerstone for further studies that investigate models
with latency for tasks different than pointing, to evaluate, e.g., if
these models retain high prediction accuracy across multiple dis-
plays with different latencies or if incorporating a latency term
into the model is necessary. At a more general level and when
considering the plethora of devices that users use today, ranging
from smartwatches to Virtual/Augmented reality systems, our work
enables designers to predict how efficiently steering operations will
work in a given system with a given latency.

2 RELATEDWORK
In this section, we describe previous work on the effects of end-to-
end latency for indirect input devices. We also mention studies on
touchscreen-response latencies [42, 61, 93], robot-armmanipulation
with latency [9, 15, 28, 36, 57, 74, 77], and delayed teleoperations
[16, 69]. However, there are large differences between these works
and the topic we are investigating. Thus, readers who are interested
in robotics-related topics or touchscreens are directed to the above-
mentioned papers.

2.1 Latency in Computer Operations
To identify the negative effects of latency on target pointing, Teather
et al. used a motion capture system to measure the time from a
mouse movement to its on-screen cursor displacement, and showed
that MT and spatial error (i.e., distance between the cursor and
target) increased with latency [82]. Pavlovych and Stuerzlinger
showed that a longer latency affected MT , ER, and throughput (as
defined for Fitts’ law [76]) negatively [66].
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Figure 1: The standard formulation of Fitts’ law holds for
(a) target-pointing and (b) goal-crossing tasks, if there is no
added latency.

In a series of studies, Claypool et al. reported similar negative
effects of latency on moving-target pointing [20–22, 51]. Pavlovych
et al. showed that in the pursuit of a moving target, a longer la-
tency increased the spatial error [65, 68]. Long and Gutwin experi-
mented with video games of Pong and Space Invaders, and found
that latency had a negative impact on the user experience and per-
formance, including increased ER and movement-path variability
[52, 53].

Other work measured actual end-to-end latencies in computer
systems. For example, Teather et al. reported that a Microsoft op-
tical mouse had an end-to-end latency of 30 ± 2 ms [82]. Ivkovic
et al. measured latencies in various video game titles, devices, and
consoles such as WiiU [41]. The reported latencies ranged from
23 to 243 ms, and specifically were between 23 and 158ms for PC-
and-mouse conditions. Casiez et al. reported that, using a red-LED
mouse, the end-to-end latencies differed depending on the mouse,
display, and OS, exhibiting between 50 and 83 ms of latency [18].
When users extend/mirror a secondary display via a wireless con-
nection, latencies can range from 240 to 400 ms using the Microsoft
Wireless Display Adapter [33], about 400 ms for Miracast [62], and
approximately 120 ms for AirPlay [1].

2.2 Fitts’ law and a Modified Version that
Accounts for Latency

The MT to point to a target in tasks such as the ones shown in
Figure 1a is well-modeled by Fitts’ law [30, 55]:

MT = 𝑎 + 𝑏 · ID𝑓 and ID𝑓 = log2

(
𝐴

𝑆
+ 1

)
, (1)

where ID𝑓 is the Fitts’ index of difficulty (as indicated by the sub-
script), 𝐴 is the distance to the target center, and 𝑆 is the target
size. In this paper, italic lower-case letters 𝑎–𝑐 and those with prime
(e.g., 𝑐′) indicate empirically determined coefficients. Equation 1
also holds for a goal-crossing task (Figure 1b), where the user needs
to to pass through a line, where it is sufficient to replace 𝑆 with the
line length𝑊 , i.e., ID𝑓 = log2

(
𝐴
𝑊

+ 1
)
[5, 10].

MacKenzie and Ware [56] and Hoffmann [37] independently
derived mathematically equivalent models versions of Fitts’ law by
adding a latency term:

MT = 𝑎 +𝑏 · ID𝑓 + 𝑐 · 𝐿total · ID𝑓 = 𝑎 +𝑏 · (1 + 𝑐′ · 𝐿total) · ID𝑓 , (2)

where 𝐿total is the total end-to-end latency that sums a system’s
inherent and (programmatically) added latencies, with 𝑐′ = 𝑐/𝑏.
Their derivations were also similar; reaching a target consists of
several discrete sub-movements, and the latency increases each
sub-movement’s time, resulting in the linear increase in ID𝑓 and
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Figure 2: Without programmatically added latency, the steering law holds for (a) constant-width linear and (b) circular paths.

thus this model linearly increases MT . Typical Fitts’ law experi-
ments use a single apparatus and thus 𝐿total is constant on average.
Consequently, Equation 2 is equivalent to the baseline model of
Equation 1.

MacKenzie and Ware used a mouse, examined 𝐿total = 8.3, 25, 75,
and 225 ms, and reported that the baseline model showed 𝑅 = 0.560
while their proposed model showed 𝑅 = 0.967. The smallest 𝐿total =
8.3 ms was explained as “half the screen refresh period of 16.67
ms,” but Pavlovych and Stuerzlinger identified that MacKenzie and
Ware’s experiment likely had a system latency of more than 60
ms [67]. Still, the model fit is not affected by such an additional
constant latency because 𝐿total is a linear term, while the coeffi-
cient values change accordingly. To identify this issue more clearly
and assuming that the apparatus’s inherent, unavoidable latency is
“𝐿base”, such as 50 ms [18], we call a latency added by the experi-
mental program “𝐿added”. The total latency is then the sum of both
these term 𝐿total = 𝐿added + 𝐿base.

Ware and Balakrishnan tested Equation 2 for pointing in a vir-
tual reality environment with hand- and head-motion tracking
systems, and reported 𝑅2 = 0.90 [90]. Hoffmann used a potentio-
metric recorder, and the participants rotated a knob to move a pen
onto a target on the monitor [37]. He tested 𝐿total = 30, 200, 500, and
1000 ms, and reported that Equation 2 showed 𝑅2 = 0.97. Hoffmann
and Karri later conducted a follow-up study using a mouse with
𝐿added = 0, 300, 600, 1000, and 2000 ms, and reported that Equation 2
showed 𝑅2 = 0.97 after excluding the 𝐿added = 0-ms data [39]. They
also provided a reanalysis of So et al.’s study on head motion-based
pointing with 𝐿added = 0, 133, and 267 ms [75], obtaining 𝑅2 = 0.97
by Equation 2 under reasonably difficult conditions.

Friston et al. examined very low-latency conditions using 𝐿added
= 0, 10, 20, 30, 50, and 80 ms, with 𝐿base = 6 ms in their mouse-
tracking system [31]. Equation 2 showed a poor fit of 𝑅2 = 0.384,
and thus they claimed that this model holds when the latency is suf-
ficiently long to be noticeable for users. This matches observations
by Pavlovych and Stuerzlinger, where a drop-off of performance
was only observed above (about) 60 ms [67].

2.3 Steering Law and Path-steering Tasks with
Latency

The steering law is a model to predict MT to pass through a path
whose width is𝑊 and the length is 𝐴 [2, 26, 70]:

MT = 𝑎 + 𝑏 · ID𝑠 and ID𝑠 =
𝐴

𝑊
, (3)

where ID𝑠 is the index of difficulty for the steering law (indicated
by corresponding subscript). This model applies to both linear and
circular paths (see Figure 2, where 𝐴 = 2𝜋𝑟 for the circular one)
[4, 38, 112] and various types of input devices [3, 72].

Friston et al. tested a path-steering task with 𝐿added ranging from
0 to 80 ms, and reported that MT and ER increased as 𝐿added in-
creased [31]. However, the paths were manually drawn and twisted
substantially with parameters 𝐴 and𝑊 not being controlled. To-
chioka et al. conducted an experiment in which the participants
dragged a circle on a touchscreen to pass through three straight-
path segments connected with two corners [85]. The image of the
user’s hand and the screen was captured by an overhead camera,
and the participants viewed it with latency (𝐿added ranging 4.3–
154.3 ms). They reported that MT increased for 𝐿added ≥ 64.3 ms,
but did not mention the steering-law fit.

The most recent work in the field by Wiese and Henze examined
negative latencies [91]. This was achieved by using artificial neural
networks to predict the position of the cursor in the future. They
used straight paths and examined 𝐿total values of −50, −16.67, 0,
+16.67, and +50 ms, where smaller latencies decreased MT more.
For each latency, the steering law held with 𝑅2 = 0.83–0.93, but the
model fit across all latency conditions was not reported (only for
individual fits).

2.4 Steering Tasks under Other Types of Latency
Drury measured the pen-movement speed to steer through a circu-
lar path drawn on a piece of paper, with the light in the experiment
room being repeatedly turned on/off [27]. To avoid deviating from
the path, the participants could not move the pen during the dark
period, and thus they had to stand by for the light being turned on,
resulting in a delayed operation. Later, similar studies have been
conducted using an indirect input pen tablet, where (instead of the
room light turning on/off) the mouse cursor appeared/disappeared
[48] or using a direct input pen tablet where the screen was turned
on/off [47, 49]. In these studies, the light/cursor/display were blink-
ing, but no additional end-to-end latency was added because the
participants could see the current pen/cursor position in real time
during the bright period.

Yamanaka et al. evaluated another type of latency, which allows
the cursor to deviate from the path for a short period, such as 400
ms [35, 95]. However, in their experiments, the system responded
to cursor movements and clicking operations immediately, and thus
there is little relationship of their work with our current study.
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2.5 Summary of Previous Results
Previous work consistently found that latency negatively affects
quantitative performance for pointing such as MT and ER [21, 31,
53, 56] and subjective feelings [52]. Also, in moving-target tracking
tasks, the deviation from the intended trajectory increases with
latency [65, 68], which might suggest that users have to be more
careful in path-steering tasks in long latency conditions to avoid
deviating from path boundaries.

Even though we looked even at research on robot arms and
teleoperations, some of which investigated Fitts’ tasks [28, 36, 57,
74], we found no work on the accuracy of models of the effect
of latency on the steering law, i.e., whether it applies to MT data
regardless of latency. The most relevant previous studies are those
of Friston et al. [31] and Tochioka et al. [85]. They investigated path-
steering tasks with several levels of added latency 𝐿added, but did
not report the steering-law fits. The exception is the work by Wiese
and Henze who reported 𝑅2 values for each of their artificially
generated 𝐿total values from −50 to +50 ms [91]. A larger 𝐿total
increasedMT from 610 to 680 ms, which motivated us to investigate
the goodness of fit under more clearly noticeable latency conditions,
i.e., exceeding +60 ms [67].

Drury [27] and Lin et al. [48, 49] investigated situations where
the participants could not see the path or cursor for a given period.
However, the relationship between their blinking conditions and
our current interest in end-to-end latency is unclear or, at least,
there is no evidence that their results are guaranteed to apply. In
summary, while the path-steering performance under latency has
been measured, there are no quantitative models to predict steering
times, even though researchers have emphasized the necessity of
modeling operational times with latency [31, 91].

3 EXPERIMENTS
3.1 Choice of Crowdsourced User Experiments
We conducted all five experiments on the Yahoo! Crowdsourcing
platform [94]. The experimental systems were developed in the
Hot Soup Processor programming language and set to run at 200
Hz (i.e., in a 5-ms loop). The crowdworkers downloaded and ran
an executable file to perform a given task. Our affiliation’s IRB-
equivalent ethics team and the crowdsourcing platform approved
this study1.

Our choice of using a crowdsourcing service was motivated by
the relative ease of recruitment of a large number of participants.
Also, the steering law and our modified models are designed to
predict average MTs exhibited by a group of participants. Thus,
using a larger number of participants performing more trials will
increase the likelihood that the models are more representative. On
the other hand, one concern with crowdsourcing is that there is less
control over the experimental environment (e.g., the device, lack
of distractions in the room) and instruction compliance compared

1According to the decision by the ethics team and legal department of our affiliation,
data can be disclosed after statistical summarizing, e.g., by reporting mean and 95% CI
of MT . In contrast, for example, the following results and demographics cannot be
mentioned: “two workers were left-handed,” “six workers used Windows 8,” and “the
task-completion times ranged from 10 min and 1 sec to 31 min and 7 sec” as these are
related to individuals’ results. This decision does not affect our research conclusion,
since we only discuss the prediction accuracy of the averageMT data, as in previous
studies on the steering law.

to laboratory experiments. Yet, this approach also increases the
external validity of the results, as it involves participants performing
tasks in real environments.

This might introduce some issues for model evaluation; if a mod-
ified model provides the same level of prediction accuracy as the
baseline model, this outcome might be due to the lack of control
in the experiment rather than our model’s inferiority. However,
previous studies have reported that for GUI model validity crowd-
sourced experiments lead to conclusions that are consistent with
laboratory-based ones, e.g., for Fitts’ law [29, 43, 97], a scrolling-
time model [71], rectangular-target pointing models [96], or the
steering law for linear and circular paths [107]. We see this as ev-
idence that our hypothesis (that the proposed models fit the MT
data more accurately than baseline formulations) can be tested
accurately through crowdsourced experiments.

If a potential future laboratory-based replication study reaches
a different conclusion than our work, this would provide evidence
in the ongoing discussion of comparisons of laboratory vs. crowd-
sourcing environments, e.g., whether a model fit changes when
screen sizes are controlled or not, as previous work has investigated
[29, 43]. The topic of laboratory vs. crowdsourcing experiments
is worthy of investigation but is beyond the scope of our current
study, which focuses on model derivation and validation in a crowd-
sourced environment.

3.2 Participants and Recruitment
We recruited crowdworkers who used Windows Vista or later ver-
sions and a display having a resolution of at least 1280 × 720 pixels
to run our experimental software. We used an option in the crowd-
sourcing platform for screening newly created accounts, which
enabled us to offer the task only to workers who were – on the ba-
sis of their previous task history – considered reliable (but without
their task history details being disclosed).

To reduce the noise that would be introduced by using a variety
of input devices, we asked workers to use a mouse if available. Nev-
ertheless and to avoid potential biases, we still mentioned that any
pointing device was acceptable but then simply removed data from
non-mouse users from the analysis. The mouse specifications (e.g.,
DPI, wired/wireless) were not controlled. To increase ecological
validity, we also did not require any changes to the cursor speed or
pointer-acceleration function in the Control Panel. When displays
with different pixel densities or mice with different DPIs are used,
the distance in mm that the cursor moves on the screen varies for a
fixed mouse movement. However, previous studies found that, after
merging the data from numerous participants who used unknown
displays, mice, and possibly with different pointer-acceleration
functions, and then analyzing the averageMT , both Fitts’ and steer-
ing laws still yielded good fits [29, 97, 107]. Thus, we expect similar
outcomes for our proposed models.

Once workers accepted the task, they were asked to read the
text-based instructions and watch a 30-sec demo video in which
one of the authors performed the task. After they had then finished
all experimental trials and completed a follow-up questionnaire,
they uploaded the log data file to a server to receive payment.
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4 EXPERIMENT 1: GOAL CROSSING TASK
The goal-crossing task is the basis for all our modified models
on path-steering tasks. Because Fitts’ law holds for crossing tasks
[2, 5, 10, 54], one could simply assume that the version of Fitts’ law
that accounts for latency (Equation 2) also holds for a crossing task
with latency. Yet, as there is no real evidence to support such a
speculation in the literature, we decided to conduct an empirical
test to strengthen our model derivation for steering tasks.

4.1 Participants
In total, 38 mouse-users completed this experiment. The reward
was JPY 300 (∼USD 2.28 as of April 2023). The average task duration
was 16 min 35 sec, and thus the mean effective hourly payment was
JPY 1,107 (∼USD 8.42).

4.2 Task
The task window (1200 × 700 pixels) depicted two vertical target
lines (start and goal, respectively) with length𝑊 lying at a distance
𝐴 (Figure 1b). The task was to click within the orange start area
located at the left edge of the window and then cross the two lines as
rapidly and accurately as possible. Movement direction was always
to the right. The crosshair cursor left a red trace. If the cursor missed
the start line (i.e., passed over an extension of the start line), the
participants had to click the start area again to retry the same target
condition. This was not counted as a valid trial, as we consider that
the core goal-crossing task had not been begun at this stage. We
(also) forced participants who passed through the start line and
then missed the goal line, i.e., performed an erroneous trial, to redo
the same trial. After crossing the goal line, the results for each trial
(the time elapsed and the number of retrials) were shown in the
start area. The next pair of target lines appeared whenever the user
moved the cursor back to the left half of the window.

4.3 Design and Procedure
Experiment 1 used a 5 × 2 × 3 within-subjects design: five 𝐿added
values (0, 50, 100, 150, and 200 ms), two 𝐴s (420 and 700 pixels),
and three𝑊 s (11, 23, and 51 pixels). The ID𝑓 ranged from 3.21 to
6.01 bits, which covered a range from easy to difficult task condi-
tions [76]. Because we could not measure 𝐿base for each worker’s
apparatus, on the basis of [18] we used 𝐿base = 50 ms as an ap-
proximation, resulting in 𝐿total ranging from 50 to 250 ms. We
deliberately set 𝐿total to adequately cover a range of typical local
latencies of mouse-and-PC systems, such as 50–83 ms [18], 28–32
ms [82], and 23–158 ms [41], but our 𝐿total also covers latencies
typical for network-connected displays, e.g., 240–400-ms [33].

We measured two dependent variables: MT and ER. MT was the
time between crossing the start and goal lines. Because failed trials
were redone from the beginning, and erroneous trials were ignored,
the MT data involved only error-free trials. We defined the ER as
the percentage of the number of missed goal lines over the number
of total valid trials.

For a fixed 𝐿added condition, the participants repeatedly per-
formed seven repetitions for each of the 2𝐴×3𝑊 conditions that ap-
peared in a random order; 42 trials in total. The first repetition was
considered as practice, and the remaining six repetitions (i.e., 36 tri-
als) were used for data collection. Thus, the participants performed

180 data-collection trials (36trials × 5𝐿added ). Before a new 𝐿added
condition began, a large circular button informed participants of
the change. The order of the five 𝐿added values was randomized. In
total, we analyzed the data from 5𝐿added × 2𝐴 × 3𝑊 × 6repetitions ×
38participants = 6,840 trials.

4.4 Result of Experiment 1
While we followed a conventional approach to analyze the data
statistically, such as running ANOVAs and pairwise tests, we only
list the results that relate to our main research question (model-fit
comparison) in this section. Other, secondary results, including
𝐹 -values, 𝑝-values, and 𝜂2𝑝 values, are listed in the supplementary
materials. Overall, our results were consistent with previous studies
such as that MT increased with the task difficulty and 𝐿total, and
thus the participants performed the task appropriately as intended
in this experiment.

4.4.1 Data Screening to RemoveOutliers. Weused the inter-quartile
range (IQR) method to detect trial-level outliers and removed trials
with extremely fast or slow operations, as done in previous work
[29]. The IQR is defined as the difference between the first and third
quartiles of theMT for each of the task conditions (5𝐿added×2𝐴×3𝑊 )
for each participant. Trials in which the MT deviated by more than
3 · IQR from the first or third quartile [25] were removed. Among the
6,840 error-free trials, we identified 124 trial-level outliers (1.81%).2

To identify participant-level outliers, we calculated the meanMT
across all task conditions for each participant. We applied the IQR
method using each participant’s mean MT to identify extremely
rapid or slow participants, but found no participant-level outliers.

4.4.2 Model Fit. We first applied the baseline Fitts’ law to the six
corresponding (= 2𝐴 × 3𝑊 ) fitting points for each 𝐿total condition.
Figure 3a shows that Fitts’ law held with adjusted 𝑅2 > 0.94, which
is close to results for pointing (𝑅2 > 0.93 [37, 75]). The fact that the
results show negative intercepts is also consistent with previous
work on crossing tasks [10, 54, 86, 92, 102].

Next, we compared the two candidate models using all 30 (=
5𝐿total × 2𝐴 × 3𝑊 ) fitting points. One is the baseline Fitts’ law model
(Equation 1 denoted as Model #1.1 in Figure 3b), and the other is
the version with the added latency term (Equation 2 denoted as
Model #1.2 in Figure 3c). As mentioned above, we used 𝐿base = 50
ms, but note that this choice did not affect the model fit.

Because Models #1.1 and #1.2 have different numbers of coeffi-
cients, we use an adjusted 𝑅2 measure (higher is better). In addi-
tion, to compare the model fit statistically, we computed the AIC
(smaller is better) [8]. As a brief guideline, (a) a model with AIC ≤
(𝐴𝐼𝐶minimum + 2) is probably comparable with a better model; and
(b) a model with AIC ≥ (𝐴𝐼𝐶minimum + 10) should be rejected [17].

Model #1.2 yielded a higher adjusted 𝑅2 and a significantly
smaller AIC than Model #1.1. Also, Model #1.2 showed significance
𝑝 < 0.001 for all coefficients. To create the scatter plot shown in

2When the number of repetitions per task condition is small, outlier detection is not
that robust, and the IQR method may identify a large number of outliers, whereas
other criteria may identify fewer outliers. To check this, we applied the 3𝜎 method,
which excluded fewer outliers, but still confirmed that our main conclusion holds:
models with the latency term can predict MT more accurately. See Section 6 of the
Supplementary Material for details.
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Ltotal Regression Adj. R2

250 ms 𝑀𝑀𝑀𝑀 = −1357 + 553.3 � 𝐼𝐼𝐼𝐼𝑓𝑓 0.9699

200 ms 𝑀𝑀𝑀𝑀 = −1316 + 525.0 � 𝐼𝐼𝐼𝐼𝑓𝑓 0.9475

150 ms 𝑀𝑀𝑀𝑀 = −1150 + 468.8 � 𝐼𝐼𝐼𝐼𝑓𝑓 0.9692

100 ms 𝑀𝑀𝑀𝑀 = −1057 + 421.9 � 𝐼𝐼𝐼𝐼𝑓𝑓 0.9773

50 ms 𝑀𝑀𝑀𝑀 = −881.5 + 366.8 � 𝐼𝐼𝐼𝐼𝑓𝑓 0.9830

グラフは「summarizedCSVs」の「fit1.xlsx」から．
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Model Coefficients Adj. R2 AIC RMSE [ms]
(#1.1) 𝑀𝑀𝑀𝑀 = 𝑎𝑎 + 𝑏𝑏 � 𝐼𝐼𝐼𝐼𝑓𝑓 𝑎𝑎 = −1152***, 𝑏𝑏 = 467.1*** 0.8635 397.0 182.6

(#1.2) 𝑀𝑀𝑀𝑀 = 𝑎𝑎 + 𝑏𝑏 � 𝐼𝐼𝐼𝐼𝑓𝑓 + 𝑐𝑐 � 𝐿𝐿total � 𝐼𝐼𝐼𝐼𝑓𝑓 𝑎𝑎 = −1152***, 𝑏𝑏 = 400.0***, 𝑐𝑐 = 0.4478*** 0.9679 354.5 89.63

𝑀𝑀𝑀𝑀 = −1152 + 400(1 + 0.001120 � 𝐿𝐿added) � 𝐼𝐼𝐼𝐼𝑓𝑓

Model #1.1 Model #1.2

a

b c

D_total = 250.0, MT = -1356.54 + 553.28×IDf, adj R^2 = 0.9699
D_total = 200.0, MT = -1316.12 + 525.04×IDf, adj R^2 = 0.9475
D_total = 150.0, MT = -1149.87 + 468.76×IDf, adj R^2 = 0.9692
D_total = 100.0, MT = -1057.13 + 421.93×IDf, adj R^2 = 0.9773
D_total = 50.0, MT = -881.54 + 366.76×IDf, adj R^2 = 0.983

Figure 3: Model-fit results of Experiment 1. (a) Fitts’ law regressions for each 𝐿total. Results using all 30 fitting points for (b) the
baseline version of Fitts’ law and (c) the model with an added latency term. Throughout this paper, the 𝑝-values for coefficients
are annotated as “∗” 𝑝 < 0.05, “∗∗” 𝑝 < 0.01, and “∗∗∗” 𝑝 < 0.001.

Model Adj. 𝑅2 AIC RMSE [ms]
(#1.a) MT = 𝑎 + 𝑏 · 𝐿total 0.0566 455.0 477.2
(#1.b) MT = 𝑎 + 𝑏 · ID𝑓 + 𝑐 · 𝐿total 0.9541 365.2 109.0
(#1.c) MT = 𝑎 + 𝑏 · 𝐿total + 𝑐 · 𝐿total · ID𝑓 0.8918 391.0 168.5

Table 1: Model-fit result of additional candidate formulations in Experiment 1.

Figure 3c, we transformed the regression expression as follows:

MT = −1152 + 400.0 · IDf + 0.4478 · IDf · 𝐿total
= −1152 + 400.0 · (1 + 0.0011195 · 𝐿total) · IDf .

(4)

With this transformation and when visually comparing Figure 3b
with Figure 3c, we can confirm that more data points are located
closer to the regression line.

Lastly, to evaluate the prediction accuracy for a new (untested)
task condition, we ran a leave-one-condition-out cross-validation
(LOOCV). For this cross-validation, we predicted the MT of one
fitting point by using the coefficients computed from a regression
for the remaining 29 points, and repeated this process for all the 30
points. Then, we computed the root mean square error RMSE across
all 30 observed and predicted MTs. Model #1.1 yielded RMSE =

182.6 ms, while Model #1.2 gave 89.63 ms, indicating the better
prediction accuracy for #1.2.

We conclude that introducing the latency term yields a signif-
icantly better model fit due to higher adjusted 𝑅2, smaller AIC,

significant 𝑝-values for coefficients, smaller RMSE of LOOCV, and
less data-point deviation from the regression line, as visible in the
corresponding graph. This result supports that the same latency
term as for target-pointing tasks also yields significantly better pre-
diction accuracy for a goal-crossing task, strengthening our model
derivation for path-steering tasks described in the next section.

4.4.3 Comparison with Other Potential Model Formulations. While
we do not have theoretical derivations for them, we tested three
additional model variants to provide a better understanding of the
influence of latency on MT . The first new candidate has only a
latency term:

Candidate model (a) : MT = 𝑎 + 𝑏 · 𝐿total (5)

The second one does not use the interaction term of 𝐿total · ID𝑓 , but
models latency independently:

Candidate model (b) : MT = 𝑎 + 𝑏 · ID𝑓 + 𝑐 · 𝐿total (6)
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Figure 4: Model derivation for steering through a linear path with latency.

The third and last model does not include just the ID𝑓 term but
also the 𝐿total term and the interaction term 𝐿total · ID𝑓 :

Candidate model (c) : MT = 𝑎 + 𝑏 · 𝐿total + 𝑐 · 𝐿total · ID𝑓 (7)

As in the main analysis, we set 𝐿base = 50 ms. Table 1 shows that
each model-fit metric (adjusted 𝑅2, AIC, and RMSE) was worse than
those for our proposed Model #1.2. Thus, we empirically confirmed
that there is no justification for the three new candidates.

5 EXPERIMENT 2: STEERING THROUGH
CONSTANT-WIDTH LINEAR PATHS

Here, we first derive a model for theMT to steer through a constant-
width linear path in the same manner as Accot and Zhai’s devel-
opment of the steering law [2] and then empirically evaluate the
model.

5.1 Model Derivation
According to the result of Experiment 1, the time of a single crossing
motion MT (1) to cross two lines with latency is

MT (1) = 𝑎+𝑏 · ID (1) , where ID (1) = (1+𝑐′ ·𝐿total) · log2
(
𝐴

𝑊
+ 1

)
.

(8)
We then put another goal line in the center of the two original
lines (Figure 4a). When a user successively crosses Goal1, Goal2,
and Goal3, the movement distance is 𝐴/2 for each of the two goal-
crossing tasks, and thus the total difficulty of the task ID (2) is

ID (2) = 2 ×
[
(1 + 𝑐′ · 𝐿total) · log2

(
𝐴

2𝑊
+ 1

)]
= (1 + 𝑐′ · 𝐿total) · 2 · log2

(
𝐴

2𝑊
+ 1

)
.

(9)

In the same manner, when there are 𝑁 + 1 lines (Figure 4b), the
movement distance for each part is𝐴/𝑁 , and the total task difficulty
ID (𝑁 ) is

ID (𝑁 ) = (1 + 𝑐′ · 𝐿total) · 𝑁 · log2
(

𝐴

𝑁𝑊
+ 1

)
. (10)

When 𝑁 → ∞, the task turns into steering through a constrained
path (Figure 4c). Using a first-order Taylor series expansion of
log2 (𝑥 + 1) yields

ID (∞) = (1 + 𝑐′ · 𝐿total) ·
𝐴

𝑊 ln 2
. (11)

Accordingly, the MT for steering through a path with a delayed
cursor is MT = 𝑎 + 𝑏 · ID (∞) . Because ln 2 is a constant that can be
absorbed into the slope, we have

𝑀𝑇 = 𝑎 + 𝑏 · (1 + 𝑐′ · 𝐿total) ·
𝐴

𝑊
= 𝑎 + 𝑏 · 𝐴

𝑊
+ 𝑐 · 𝐿total ·

𝐴

𝑊
, (12)

where 𝑐′ = 𝑐/𝑏. Since 𝐴/𝑊 is the steering-law difficulty ID𝑠 , we
can reformulate this to

𝑀𝑇 = 𝑎 +𝑏 · (1 + 𝑐′ · 𝐿total) · ID𝑠 = 𝑎 +𝑏 · ID𝑠 + 𝑐 · 𝐿total · ID𝑠 . (13)

As a result, our model states that 𝐿total linearly relates to ID𝑠 , which
is the same as the latency model of Fitts’ law.

5.2 Participants, Task, Design, and Procedure
In total, 38 mouse-users completed this experiment. We did not
restrict duplicate participation in all five experiments, and thus it is
possible that the same worker participated more than once. Each of
them received a reward of JPY 300. With an average task duration
of 18 min 42 sec, the mean effective hourly rate was JPY 963 (∼USD
7.32).

The task was to click on the blue start area, move the cursor along
the white path, and then click on the green end area (Figure 2a).
Movement direction was always to the right. If the cursor deviated
from the path, participants had to try the same task condition again,
starting from re-clicking in the start area. After each successful
trial, a large circular button labeled “Next”, which also displayed the
results for the current trial (the time and number of failed attempts),
appeared at the bottom-left of the window, and participants needed
to click on it to reveal the next path condition. Participants were
asked to complete each trial as quickly and accurately as possible.

Experiment 2 had a 5 × 2 × 3 within-subjects design: five 𝐿added
values (0, 50, 100, 150, and 200 ms), two 𝐴s (480 and 640 pixels),
and three𝑊 s (19, 29, and 47 pixels). ID𝑠 ranged from 10.2 to 33.7,
corresponding to a range of tasks that are challenging enough to
require continuous visually controlled movements [72, 84].

For a fixed 𝐿added condition, the participants performed seven
repetitions for each 2𝐴 ×3𝑊 conditions, which appeared in random
order. The first repetition was again considered to be practice. In
total, we analyzed the data from 5𝐿added × 2𝐴 × 3𝑊 × 6repetitions ×
38participants = 6,840 trials.

5.3 Result of Experiment 2
Among the 6,840 error-free trials the IQR method identified 135
trial-level outliers (1.97%), but we found no participant-level out-
liers. Figure 5a shows that the baseline steering law held well for
each 𝐿total condition with adjusted 𝑅2 > 0.98. Comparing the two
candidate models using all 30 (= 5𝐿total × 2𝐴 × 3𝑊 ) fitting points, we
found that according to the AIC measure the steering law (Model
#2.1 in Figure 5b) yielded a significantly worse fit than the version
with the latency term (Model #2.2 in Figure 5c).

Similar to the result in Experiment 1, theMT difference increased
with ID𝑠 due to the effect of 𝐿total (Figure 5a). While almost all data
points are located on or very close to the regression line for the
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Ltotal Regression Adj. R2

250 ms 𝑀𝑀𝑀𝑀 = −226.3 + 90.09 � 𝐼𝐼𝐼𝐼𝑠𝑠 0.9889

200 ms 𝑀𝑀𝑀𝑀 = −293.3 + 89.34 � 𝐼𝐼𝐼𝐼𝑠𝑠 0.9913

150 ms 𝑀𝑀𝑀𝑀 = −224.1 + 70.45 � 𝐼𝐼𝐼𝐼𝑠𝑠 0.9930

100 ms 𝑀𝑀𝑀𝑀 = −256.0 + 68.59 � 𝐼𝐼𝐼𝐼𝑠𝑠 0.9916

50 ms 𝑀𝑀𝑀𝑀 = −215.8 + 61.23 � 𝐼𝐼𝐼𝐼𝑠𝑠 0.9936

グラフは「summarizedCSVs」の「fit1.xlsx」から．

Model Coefficients Adj. R2 AIC RMSE [ms]
(#2.1) 𝑀𝑀𝑀𝑀 = 𝑎𝑎 + 𝑏𝑏 � 𝐼𝐼𝐼𝐼𝑠𝑠 𝑎𝑎 = −243.1, 𝑏𝑏 = 75.94*** 0.8484 419.5 270.0

(#2.2) 𝑀𝑀𝑀𝑀 = 𝑎𝑎 + 𝑏𝑏 � 𝐼𝐼𝐼𝐼𝑠𝑠 + 𝑐𝑐 � 𝐿𝐿total � 𝐼𝐼𝐼𝐼𝑠𝑠 𝑎𝑎 = −243.1***, 𝑏𝑏 = 53.15***, 𝑐𝑐 = 0.1519*** 0.9838 353.3 90.17

Model #2.1 Model #2.2

a

b c

MT = -243.09 + 75.94×IDs, adj R^2 = 0.8484,  AIC = 419.48

a = -243.09, b = 53.15, c = 0.1519, adj R^2 = 0.9838,  AIC = 
353.27

D_total = 250.0, MT = -226.26 + 90.09×IDs, adj R^2 = 0.9889
D_total = 200.0, MT = -293.31 + 89.34×IDs, adj R^2 = 0.9913
D_total = 150.0, MT = -224.1 + 70.45×IDs, adj R^2 = 0.993
D_total = 100.0, MT = -255.97 + 68.59×IDs, adj R^2 = 0.9916
D_total = 50.0, MT = -215.83 + 61.23×IDs, adj R^2 = 0.9936

Figure 5: Model-fit results of Experiment 2. (a) Steering law regressions for each 𝐿total. Results using all 30 fitting points for (b)
the baseline and (c) latency models.

Model Adj. 𝑅2 AIC RMSE [ms]
(#2.a) MT = 𝑎 + 𝑏 · 𝐿total 0.0814 473.5 650.1
(#2.b) MT = 𝑎 + 𝑏 · ID𝑠 + 𝑐 · 𝐿total 0.9643 377.0 136.5
(#2.c) MT = 𝑎 + 𝑏 · 𝐿total + 𝑐 · 𝐿total · ID𝑠 0.9045 406.5 218.3

Table 2: Model-fit result of additional candidate formulations in Experiment 2.

model with the latency term, as shown in Figure 5c, this phenome-
non could not be captured by the baseline steering law (Figure 5b).
Model #2.2 exhibited 𝑝 < 0.001 for all coefficients, and the three
prediction-accuracy metrics (adjusted 𝑅2, AIC, and RMSE) all sup-
port that our new model better predicted MTs than the baseline
steering law.

Table 2 lists the model fits for the three additional candidate
formulations, which are derived in the same way as in Experiment
1 (Section 4.4.3). The results were worse than those for our proposed
Model #2.2, and again did not support the three new candidates.

6 EXPERIMENT 3: STEERING THROUGH
CONSTANT-WIDTH CIRCULAR PATHS

Steering through a circular path requires dynamical changes in the
movement direction, and thus requires a significantly largerMT and
ER than a linear path under the same ID𝑠 condition [3, 4, 79, 111].
Previous work has shown that the baseline steering law model
applies to linear and circular paths, both theoretically [38, 58] and
empirically [3, 79, 111]. Thus it is logical to assume that themodified

model with latency (Equation 13) can model the MTs in tasks to
steer through circular paths better than the baseline, and we verify
this assumption in this experiment.

6.1 Participants, Task, Design, and Procedure
In total, 36 mouse-users completed this experiment. For this exper-
iment, the reward was JPY 300. The task duration was 17 min 28
sec on average, and thus the mean effective hourly payment was
JPY 1,031 (∼USD 7.83).

The task was to click on any point to the left of the top start line,
move the cursor along the white path clockwise, cross the top end
line, and then click somewhere on the right side of the end line
(Figure 2b). Since steering through a circular path takes up to three
time as long as a linear path under the same ID𝑠 condition [3, 111],
we had to reduce the numbers of independent-variable levels and
repetitions to adapt the task to our crowdsourced experiment. As it
has been well-demonstrated that the steering law holds for circular
paths, we decided not to explore a variety of ID𝑠 levels at this stage.
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Ltotal Regression Adj. R2

250 ms 𝑀𝑀𝑀𝑀 = −115.6 + 397.6 � 𝐼𝐼𝐼𝐼𝑠𝑠 0.9908

200 ms 𝑀𝑀𝑀𝑀 = +134.7 + 334.2 � 𝐼𝐼𝐼𝐼𝑠𝑠 0.9935

150 ms 𝑀𝑀𝑀𝑀 = −244.2 + 316.3 � 𝐼𝐼𝐼𝐼𝑠𝑠 0.9907

100 ms 𝑀𝑀𝑀𝑀 = −203.6 + 260.9 � 𝐼𝐼𝐼𝐼𝑠𝑠 0.9905

50 ms 𝑀𝑀𝑀𝑀 = −298.2 + 252.0 � 𝐼𝐼𝐼𝐼𝑠𝑠 0.9932

グラフは「summarizedCSVs」の「fit1.xlsx」から．

Model Coefficients Adj. R2 AIC RMSE [ms]
(#3.1) 𝑀𝑀𝑀𝑀 = 𝑎𝑎 + 𝑏𝑏 � 𝐼𝐼𝐼𝐼𝑠𝑠 𝑎𝑎 = −145.4, 𝑏𝑏 = 312.2*** 0.7073 329.5 936.6

(#3.2) 𝑀𝑀𝑀𝑀 = 𝑎𝑎 + 𝑏𝑏 � 𝐼𝐼𝐼𝐼𝑠𝑠 + 𝑐𝑐 � 𝐿𝐿total � 𝐼𝐼𝐼𝐼𝑠𝑠 𝑎𝑎 = −145.4***, 𝑏𝑏 = 188.4***, 𝑐𝑐 = 0.8252*** 0.9879 266.7 204.2

Model #3.1 Model #3.2

a

b c

a = -145.4, b = 188.42, c = 0.8252, adj R^2 = 0.9879,  AIC = 
266.68

MT = -145.4 + 312.19×IDs, adj R^2 = 0.7073,  AIC = 329.51

ベース : RMSE = 936.59902
提案   : RMSE = 204.22769

D_total = 250.0, MT = -115.55 + 397.59×IDs, adj R^2 = 0.9908
D_total = 200.0, MT = 134.65 + 334.17×IDs, adj R^2 = 0.9935
D_total = 150.0, MT = -244.24 + 316.3×IDs, adj R^2 = 0.9907
D_total = 100.0, MT = -203.63 + 260.87×IDs, adj R^2 = 0.9905
D_total = 50.0, MT = -298.22 + 252.02×IDs, adj R^2 = 0.9932

Figure 6: Model-fit results of Experiment 3. (a) Steering law regressions for each 𝐿total. Results using all 20 fitting points for (b)
the baseline and (c) the latency models.

Model Adj. 𝑅2 AIC RMSE [ms]
(#3.a) MT = 𝑎 + 𝑏 · 𝐿total 0.2053 349.5 1526
(#3.b) MT = 𝑎 + 𝑏 · ID𝑠 + 𝑐 · 𝐿total 0.9663 287.1 343.9
(#3.c) MT = 𝑎 + 𝑏 · 𝐿total + 𝑐 · 𝐿total · ID𝑠 0.9263 302.8 488.8

Table 3: Model-fit result of additional candidate formulations in Experiment 3.

In comparison to Experiment 2, we thus used only two shorter 𝐴s
and two wider𝑊 s, resulting in four smaller ID𝑠 values.

Experiment 3 used a 5× 2× 2 within-subjects design: five 𝐿added
values (0, 50, 100, 150, and 200 ms), two 𝐴s (330 and 450 pixels),
and three𝑊 s (23 and 41 pixels). ID𝑠 ranged from 8.05 to 19.6. The
number of repetitions was six, including the first one, which we
considered as a practice trial. In total, we analyzed the data from
5𝐿added × 2𝐴 × 2𝑊 × 5repetitions × 36participants = 3,600 trials.

6.2 Result of Experiment 3
Among the 3,600 error-free trials, the IQR method identified 136
trial-level outliers (3.78%). We found no participant-level outliers.
We observed an adjusted 𝑅2 > 0.99 for each 𝐿total using the baseline
steering law (Figure 6a). When all 20 conditions (= 5𝐿total ×2𝐴×2𝑊 )
were analyzed simultaneously, the baseline steering law (Model
#3.1 in Figure 6b) exhibited a significantly worse fit than the latency
model (Model #3.2 in Figure 6c) judging on the basis of the adjusted
𝑅2, AIC, and RMSE measures, see Figure 6. Also, Model #3.2 yielded

𝑝 < 0.001 for all coefficients, and thus the latency term is necessary
to predict MTs more accurately than the baseline steering law.

Table 3 lists the model fits for the three additional candidate
formulations. The results were worse than those for our proposed
Model #3.2, and again document that the three new candidates are
not supported.

7 EXPERIMENT 4: STEERING THROUGH
NARROWING PATHS

Steering tasks sometimes require dynamical changes in speed, e.g.,
when the current path width changes, which occurs when users
need to select multiple objects through a single stroke, i.e., via lasso
selection [106]. We thus develop a model for narrowing paths on
the basis of Accot and Zhai’s derivation [2].

7.1 Model Derivation
As shown in Figure 7, we define the widths of the start and end lines
as𝑊start and𝑊end, respectively, where𝑊start >𝑊end. According
to Accot and Zhai [2], the index of difficulty of a narrowing path
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Figure 7: Model derivation for steering through a narrowing
path.

ID𝑛 is

ID𝑛 =
𝐴

𝑊end −𝑊start
ln

𝑊end
𝑊start

. (14)

We revisit the derivation of this model to develop a modified for-
mulation to account for latency. Dividing a narrowing path into
infinitesimal sections whose length is dx, we consider the difficulty
in steering through one section at the position 𝑥 . The width of this
section is𝑊 (𝑥) =𝑊start + 𝑥 (𝑊end −𝑊start)/𝐴. Based on the result
of our Experiment 2, the task difficulty with latency 𝑑ID𝑥 of this
section can then be modeled as the movement distance divided by
the width, and thus we obtain

𝑑ID𝑥 = (1 + 𝑐′ · 𝐿total) · ID𝑠

= (1 + 𝑐′ · 𝐿total) ·
dx

𝑊start + 𝑥
𝐴
(𝑊end −𝑊start)

. (15)

To compute the MT to steer through the entire narrowing path, we
integrate 𝑑ID𝑥 along the path for 0 ≤ 𝑥 ≤ 𝐴:

MT = 𝑎 + 𝑏
∫ 𝐴

0
(1 + 𝑐′ · 𝐿total) ·

dx
𝑊start + 𝑥

𝐴
(𝑊end −𝑊start)

= 𝑎 + 𝑏 · (1 + 𝑐′ · 𝐿total) ·
𝐴

𝑊end −𝑊start
ln

𝑊end
𝑊start

.

(16)

The resulting derived formulation is similar to the latency model
for constant-width paths (Equation 13):

MT = 𝑎 +𝑏 · (1 + 𝑐′ · 𝐿total) · ID𝑛 = 𝑎 +𝑏 · ID𝑛 + 𝑐 · 𝐿total · ID𝑛 . (17)

7.2 Participants, Task, Design, and Procedure
In total, 32 mouse-users completed this experiment. They received
JPY 300 as compensation. With an average task duration of 16 min
15 sec the mean effective hourly payment was JPY 1,108 (∼USD
8.42).

The task, design, and procedure were almost identical to Exper-
iment 2. The exception was that we used three𝑊start values and
one𝑊end of 16 pixels. This experimental design, with a fixed𝑊end
matches Accot and Zhai’s work [2].

Experiment 4 used a 5× 2× 3 within-subjects design: five 𝐿added
values (0, 50, 100, 150, and 200 ms), two𝐴s (480 and 640 pixels), and
three𝑊start values (32, 64, and 96 pixels). ID𝑛 ranged from 10.8 to
27.7. The first of the six repetitions was again counted as practice,
leaving five data points for analysis. In total, we analyzed the data
from 5𝐿added × 2𝐴 × 3𝑊start × 5repetitions × 32participants = 4,800 trials.

7.3 Result of Experiment 4
Among the 4,800 error-free trials, the IQR method identified 166
trial-level outliers (3.46%). We found no participant-level outliers.
The baseline ID𝑛 model held with adjusted 𝑅2 > 0.92 for each
𝐿total (Figure 8a). When all 30 conditions (= 5𝐿total × 2𝐴 × 3𝑊start )
were analyzed simultaneously, the baseline Model #4.1 (Figure 8b)
resulted in a significantly worse fit than the latency model (Model
#4.2 in Figure 8c), on the basis of adjusted 𝑅2, AIC, and RMSE
measures. Also, Model #4.2 yielded 𝑝 < 0.001 for all coefficients,
and thus we can state that the inclusion of the latency term enabled
us to predict MTs more accurately than the baseline ID𝑛 model.

Table 4 lists the model fits for the three additional candidate
formulations. The results were worse than those for our proposed
Model #4.2, and again do not support the three new candidates.

8 EXPERIMENT 5: TARGETED-STEERING
TASK

Experiments 2–4 used a single path segment, but in actual GUIs,
other operations may require a combination of actions to be per-
formed. For example, in cascaded-menu navigation, after passing
through the desired parent menu item, users then can click on one
of its submenu items. Such an operation is called a targeted-steering
task [45, 73] and several models that combine Fitts’ and steering
law terms have been proposed. In Experiment 5, we derive several
candidate models for targeted-steering with latency and evaluate
them.

8.1 Model Derivation
8.1.1 Baseline Models for Targeted-steering Task. In this task, as
shown in Figure 9a, users click in the start area, pass through the
white path, and then click on the green target. We measure the
time from entering the white path to clicking on the target. Kulikov
and Stuerzlinger’s model is the simplest candidate, where the task
difficulty is the sum of those for steering and pointing:

MT = 𝑎 + 𝑏 · IDsum,

where IDsum = ID𝑠 + ID𝑓 =
𝐴

𝑊
+ log2

(
𝐴 + 𝑆/2

𝑆
+ 1

)
.
(18)

The second candidate is Dennerlein et al.’s model, which assumes
that the gradients of ID𝑠 and ID𝑓 for MT are unequal:

MT = 𝑎 + 𝑏𝑠 · ID𝑠 + 𝑏 𝑓 · ID𝑓 , (19)

where 𝑏𝑠 and 𝑏 𝑓 are the slopes on the steering and Fitts’ law re-
gressions, respectively. Both models define the target distance of
Fitts’ law as 𝐴 + 𝑆/2, which is the total length of the path and the
distance to the target center.

According to Thibbotuwawa et al., for steering through a linear
path, when the path is sufficiently short or wide (𝐴 < 𝑛 ×𝑊 ,
where 𝑛 ≈ 5), the steering motion can be completed with a ballistic
motion using no visual feedback [84]. Based on this, Senanayake et
al. hypothesized that once the cursor reaches 5𝑊 before the path
end, users do not need to pay attention to the path boundaries for
the remainder of the path, and can concentrate on the pointing
motion [73]. Thus, the distance for the steering-law difficulty is
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Ltotal Regression Adj. R2

250 ms 𝑀𝑀𝑀𝑀 = +753.0 + 91.75 � 𝐼𝐼𝐼𝐼𝑛𝑛 0.9359

200 ms 𝑀𝑀𝑀𝑀 = +656.7 + 75.20 � 𝐼𝐼𝐼𝐼𝑛𝑛 0.9384

150 ms 𝑀𝑀𝑀𝑀 = +611.8 + 69.26 � 𝐼𝐼𝐼𝐼𝑛𝑛 0.9256

100 ms 𝑀𝑀𝑀𝑀 = +558.2 + 61.50 � 𝐼𝐼𝐼𝐼𝑛𝑛 0.9205

50 ms 𝑀𝑀𝑀𝑀 = +468.8 + 56.94 � 𝐼𝐼𝐼𝐼𝑛𝑛 0.9354

グラフは「summarizedCSVs」の「fit1.xlsx」から．

Model Coefficients Adj. R2 AIC RMSE [ms]
(#4.1) 𝑀𝑀𝑀𝑀 = 𝑎𝑎 + 𝑏𝑏 � 𝐼𝐼𝐼𝐼𝑛𝑛 𝑎𝑎 = −609.7**, 𝑏𝑏 = 70.93*** 0.5734 437.0 356.8

(#4.2) 𝑀𝑀𝑀𝑀 = 𝑎𝑎 + 𝑏𝑏 � 𝐼𝐼𝐼𝐼𝑛𝑛 + 𝑐𝑐 � 𝐿𝐿total � 𝐼𝐼𝐼𝐼𝑛𝑛 𝑎𝑎 = −609.7***, 𝑏𝑏 = 35.63***, 𝑐𝑐 = 0.2353*** 0.9439 377.0 131.2

Model #4.1 Model #4.2

a

b c

ベース : RMSE = 936.59902
提案   : RMSE = 204.22769

MT = 609.7 + 70.93×IDs, adj R^2 = 0.5734,  AIC = 437.02

a = 609.7, b = 35.6282, c = 0.23534, adj R^2 = 0.9439,  AIC = 
377.04

D_total = 250.0, MT = 752.99 + 91.75×IDs, adj R^2 = 0.9359
D_total = 200.0, MT = 656.7 + 75.2×IDs, adj R^2 = 0.9384
D_total = 150.0, MT = 611.8 + 69.26×IDs, adj R^2 = 0.9256
D_total = 100.0, MT = 558.18 + 61.5×IDs, adj R^2 = 0.9206
D_total = 50.0, MT = 468.82 + 56.94×IDs, adj R^2 = 0.9354

Figure 8: Model-fit results of Experiment 4. (a) Steering law regressions for each 𝐿total. Results using all 30 fitting points for (b)
the baseline and (c) the latency models.

Model Adj. 𝑅2 AIC RMSE [ms]
(#4.a) MT = 𝑎 + 𝑏 · 𝐿total 0.3232 450.9 446.8
(#4.b) MT = 𝑎 + 𝑏 · ID𝑛 + 𝑐 · 𝐿total 0.9298 383.8 148.5
(#4.c) MT = 𝑎 + 𝑏 · 𝐿total + 𝑐 · 𝐿total · ID𝑛 0.8990 394.7 175.6

Table 4: Model-fit result of additional candidate formulations in Experiment 4.

start line target

start area 𝐴𝐴 − 𝑛𝑛𝑛𝑛 𝑛𝑛𝑛𝑛 + 𝑆𝑆/2

steering pointing

𝐴𝐴 𝑆𝑆

𝑛𝑛

a b

Figure 9: (a) Parameters in a targeted-steering task. (b) Senanayake’s model assumes that a steering motion ends 𝑛𝑊 pixels
before entering the target.

𝐴 − 𝑛𝑊 , and the distance for Fitts’ law is 𝑛𝑊 + 𝑆/2 (see Figure 9b):

MT = 𝑎 + 𝑏𝑠 ·
𝐴 − 𝑛𝑊

𝑊
+ 𝑏 𝑓 · log2

(
𝑛𝑊 + 𝑆/2

𝑆
+ 1

)
(20)

This model yielded 𝑅2 = 0.869 when both the steering and pointing
tasks require visually controlled movements.

8.1.2 Modified Models in the Presence of Latency. According to the
result of our Experiment 2 and previous studies on Fitts’ law with
latency, the latency term has linear effects on both difficulties in the

steering and Fitts’ laws. Thus, introducing the effect of latency into
Kulikov and Stuerzlinger’s model yields the following formulation.

MT = 𝑎+𝑏 · (1+𝑐′ ·𝐿total) ·IDsum = 𝑎+𝑏 ·IDsum+𝑐 ·𝐿total ·IDsum, (21)

It is unclear whether the effects of 𝐿total are the same for ID𝑠 and
ID𝑓 , thus the modified version of the model of Dennerlein et al. is

MT = 𝑎 + 𝑏𝑠 · (1 + 𝑐′𝑠 · 𝐿total) · ID𝑠 + 𝑏 𝑓 · (1 + 𝑐′
𝑓
· 𝐿total) · ID𝑓

= 𝑎 + 𝑏𝑠 · ID𝑠 + 𝑐𝑠 · 𝐿total · ID𝑠 + 𝑏 𝑓 · ID𝑓 + 𝑐 𝑓 · 𝐿total · ID𝑓 ,

(22)
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where 𝑐𝑠 is a coefficient for the interaction term of the latency and
ID𝑠 , 𝑐 𝑓 is that of the latency and ID𝑓 , 𝑐′𝑠 = 𝑐𝑠/𝑏𝑠 , and 𝑐′𝑓 = 𝑐 𝑓 /𝑏 𝑓 .
Lastly, the modified version of Senanayake et al. model is

MT = 𝑎 + 𝑏𝑠 · (1 + 𝑐′𝑠 · 𝐿total ) ·
𝐴 − 𝑛𝑊

𝑊

+ 𝑏𝑓 · (1 + 𝑐′
𝑓
· 𝐿total ) · log2

(
𝑛𝑊 + 𝑆/2

𝑆
+ 1

)
= 𝑎 + 𝑏𝑠 · 𝐴 − 𝑛𝑊

𝑊
+ 𝑐𝑠 · 𝐿total ·

𝐴 − 𝑛𝑊

𝑊

+ 𝑏𝑓 · log2
(
𝑛𝑊 + 𝑆/2

𝑆
+ 1

)
+ 𝑐 𝑓 · 𝐿total · log2

(
𝑛𝑊 + 𝑆/2

𝑆
+ 1

)
.

(23)
In our model fitting analysis, we test both a fixed value of 𝑛 = 5
and an optimized 𝑛. Since 𝑛 = 5 was fixed based on a previous
study, Senanayake et al. considered it not to be a free parameter,
i.e., 𝑛 = 5 does not change depending on the observedMT values to
maximize 𝑅2. We followed this when we calculated adjusted 𝑅2 and
AIC, while we considered it is a free parameter when optimizing 𝑛.

8.2 Participants, Task, Design, and Procedure
In total, 35 mouse-users completed this experiment. Each received
an amount of JPY 400 for the task, which lasted on average 25 min
48 sec. Thus the mean effective hourly rate was JPY 930 (∼USD
7.07).

Experiment 5 utilized a 4 × 2 × 2 × 3 within-subjects design:
four 𝐿added values (0, 67, 133, and 200 ms), two 𝐴s (480 and 640
pixels), two 𝑊 s (19 and 47 pixels), and three 𝑆s (15, 25, and 45
pixels). Because we used the additional independent variable 𝑆 ,
we reduced the number of levels for 𝐿added. ID𝑠 = 𝐴/𝑊 ranged
from 10.2 to 33.7, and ID𝑓 = log2 [(𝐴 + 𝑆/2)/𝑆 + 1] ranged from
3.60 to 5.46 bits. For a fixed 𝐿added, the participants performed six
repetitions (including a first one for practice) for the 2𝐴 × 2𝑊 × 3𝑆
conditions that appeared in a random order. The order of the four
𝐿added values was also randomized. In total, we analyzed the data
from 4𝐿added × 2𝐴 × 2𝑊 × 3𝑆 × 5repetitions × 35participants = 8,400
trials.

8.3 Result of Experiment 5
Among the 8,400 error-free trials, the IQR method identified 299
trial-level outliers (3.56%). We found no participant-level outliers.

8.3.1 Model Fit for each 𝐿total Condition. Figure 10 shows the fits
for each model for each 𝐿total. Kulikov’s model showed compara-
tively lower adjusted 𝑅2 values than the other three candidates. In
contrast, Dennerlein’s and Senanayake’s models exhibited > 0.99
under all 𝐿total conditions. For the regression graphs of Denner-
lein’s and Senanayake’s models, the ID values on the horizontal axis
are obtained by dividing the second and subsequent terms by the
second coefficient. For example, under the 𝐿total = 50 ms condition
of Dennerlein’s model, we have

MT = −527.3 + 49.79 · ID𝑠 + 254.0 · ID𝑓

= −527.3 + 49.79 · (ID𝑠 + 5.101 · ID𝑓 ),
(24)

where the term inside the parentheses is shown on the horizontal
axis as the “ID” value.

In Senanayake’s model with an optimized 𝑛, for 𝐿total = 50, 117,
183, and 250 ms, we obtained 𝑛 = 6.727, 37.95, 10.18, and 15.27,

respectively, with adjusted 𝑅2 > 0.99 for all. Yet, the results of
𝑛 = 37.95 or 15.27 are inappropriate with respect to the structure
of Senanayake’s model; if 𝑛 = 37.95 is correct, then the pointing
motion would have started 1784 pixels before the path end under
the𝑊 = 47-pixel condition, which is practically infeasible as𝐴 was
up to 640 pixels and the experimental system window’s width was
only 1200 pixels.

Therefore, we decided to impose the constraint that 𝑛𝑊 ≤ 𝐴

under all task conditions. With this constraint, we obtained 𝑛 =

10.21 for 𝐿total = 50 and 183 ms. This gives the upper limit for
𝑛 when𝑊 is 47 pixels, and thus the steering difficulty was zero.
Figure 10d shows the fits with this constraint.

Accordingly, the use of 𝑛 as an extra free parameter led to the in-
terpretation that the participants did not perform steering motions
for several task conditions, although we had explicitly set 𝐴/𝑊 to
always be greater than 10, requiring a visually controlled steering
motion. Overall, we did not confirm a clear benefit of using an extra
free parameter in Senanayake’s model, since a fixed 𝑛 = 5 from the
previous study already exhibited a similar prediction accuracy to
when using an optimized 𝑛.

8.3.2 Model Fit for all 𝐿total Conditions. Figure 11a–d shows the
model fits for each model without the latency term (Equations 18–
20), and Figure 11e–h with the latency terms (Equations 21–23).
First, we visually confirmed that the data points are further away
from the regression lines for the models without the latency term
(Models #8.1–8.4). In contrast, for Models #8.5–8.8, the data points
are close to the line and thus the MTs could be predicted more
accurately. The better prediction accuracy for Models #8.5–8.8 is
also validated through the measures of adjusted 𝑅2, AIC, and RMSE.

We need to be careful when interpreting Model #8.7 (fixed 𝑛 = 5)
in comparison to #8.8 (optimized 𝑛). Given that the optimal value
of 𝑛 was 7.419, the reason why Model #8.7 yielded the best adjusted
𝑅2 and AIC was due to the fact that a fixed 𝑛 = 5 is somewhat
close to 7.419, while 𝑛 = 5 was not counted as a free parameter, as
explained earlier. We are currently unable to determine from this
experiment alone whether Model #8.7 would work better than #8.8
in other studies or application contexts.

We then attempted to identify the best model among all can-
didates, particularly Models #8.6, #8.7, and #8.8. The difference in
adjusted 𝑅2 for these models was trivial (less than 0.0005). The
difference in RMSE values was less than 3 ms (less than one frame),
and thus we cannot argue for the superiority of any model. Finally,
the AIC difference was less than 2 and we thus could not confirm
a statistically significant difference in prediction accuracy. From
these results, it is logical to conclude that we cannot make a clear
decision which one the best model is. On the other hand, when com-
paring Models #8.5–8.8 with #8.1–8.4, all of the prediction-accuracy
metrics were improved. This indicated that our proposed method
worked well, i.e., modifying the existingmodels by integrating 𝐿total
to linearly increase the ID values led significant improvements in
predicting MT .

We also examine the new three candidates for each of the four
models: Kulikov and Stuerzlinger, Dennerlein et al., Senanayake et
al. (𝑛 = 5), and Senanayake et al. (optimized 𝑛). For Senanayake et
al.’s model, we name its steering-difficulty part IDSenaS = 𝐴−𝑛𝑊

𝑊
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グラフは「summarizedCSVs」の「fit2-3実測MTとX軸の値でグラフ用.xlsx」から． fit2-2全部のDelayの適合度.xlsx

Dennerlein

Senanayake
(n = 5)

a b

c

Kulikov

Senanayake 
(Optimized 𝑛𝑛 with
constraint that
𝑛𝑛 × 𝑊𝑊 ≤ 𝐴𝐴)

d

Ltotal
[ms] Adj. R2 Coefficients

250 0.8948 𝑎𝑎 = 903.3, 𝑏𝑏 = 72.40
183 0.9394 𝑎𝑎 = 632, 𝑏𝑏 = 64.20
117 0.9203 𝑎𝑎 = 452.4, 𝑏𝑏 = 56.92
50 0.9220 𝑎𝑎 = 352.5, 𝑏𝑏 = 51.72

Ltotal
[ms] Adj. R2 Coefficients

250 0.9921 𝑎𝑎 = −534.9, 𝑏𝑏𝑠𝑠 = 69.24,
𝑏𝑏𝑓𝑓 = 403.1

183 0.9951 𝑎𝑎 = −312.1, 𝑏𝑏𝑠𝑠 = 62.12,
𝑏𝑏𝑓𝑓 = 281.3

117 0.9917 𝑎𝑎 = −506.3, 𝑏𝑏𝑠𝑠 = 54.81,
𝑏𝑏𝑓𝑓 = 277.4

50 0.9954 𝑎𝑎 = −527.3, 𝑏𝑏𝑠𝑠 = 49.79,
𝑏𝑏𝑓𝑓 = 254.0

Ltotal
[ms] Adj. R2 Coefficients

250 0.9950 𝑎𝑎 = −212.3, 𝑏𝑏𝑠𝑠 = 6.350,
𝑏𝑏𝑓𝑓 = 489.9

183 0.9946 𝑎𝑎 = −3.743, 𝑏𝑏𝑠𝑠 = 80.84,
𝑏𝑏𝑓𝑓= 338.0

117 0.9934 𝑎𝑎 = −245.4, 𝑏𝑏𝑠𝑠 = 73.43,
𝑏𝑏𝑓𝑓 = 336.3

50 0.9942 𝑎𝑎 = −277.6, 𝑏𝑏𝑠𝑠 = 66.66,
𝑏𝑏𝑓𝑓 = 304.5

Ltotal
[ms] Adj. R2 Coefficients

250 0.9944 𝑎𝑎 = −129.4, 𝑏𝑏𝑠𝑠 = 96.38,
𝑏𝑏𝑓𝑓 = 464.0, 𝑛𝑛 = 6.728

183 0.9946 𝑎𝑎 = 256.8, 𝑏𝑏𝑠𝑠 = 80.99,
𝑏𝑏𝑓𝑓 = 303.8, 𝑛𝑛 = 10.21

117 0.9929 𝑎𝑎 = −16.5, 𝑏𝑏𝑠𝑠 = 73.46,
𝑏𝑏𝑓𝑓 = 300.6, 𝑛𝑛 = 10.18

50 0.9939 𝑎𝑎 = −71.41, 𝑏𝑏𝑠𝑠 = 66.74,
𝑏𝑏𝑓𝑓 = 272.9, 𝑛𝑛 = 10.21

Figure 10: Fitting results for each candidate model in Experiment 5.
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グラフは「summarizedCSVs」の「fit2-3実測MTとX軸の値でグラフ用.xlsx」から． fit2-2全部のDelayの適合度.xlsx

Model description Eq. Adj. R2 AIC RMSE [ms] Coefficients
(#8.1) Kulikov (no latency term) 18 0.6201 725.5 464.8 𝑎𝑎 = 585.0**, 𝑏𝑏 = 61.31***
(#8.2) Dennerlein (no latency term) 19 0.6602 721.0 444.4 𝑎𝑎 = −470.1, 𝑏𝑏𝑠𝑠 = 58.99***, 𝑏𝑏𝑓𝑓 = 304.0**
(#8.3) Senanayake, n = 5 (no latency term) 20 0.6606 721.0 443.9 𝑎𝑎 = −184.8, 𝑏𝑏𝑠𝑠 = 79.32***, 𝑏𝑏𝑓𝑓 = 367.2**
(#8.4) Senanayake, opt. n (no latency term) 20 0.6531 723.0 448.9 𝑎𝑎 = −261.6, 𝑏𝑏𝑠𝑠 = 81.01, 𝑏𝑏𝑓𝑓 = 380.9, 𝑛𝑛 = 5.275
(#8.5) Kulikov (with latency term) 21 0.9276 646.8 205.6 𝑎𝑎 = 585.0***, 𝑏𝑏 = 31.35***, 𝑐𝑐 = 0.1997***

(#8.6) Dennerlein (with latency term) 22 0.9872 565.48 89.36 𝑎𝑎 = −470.1***, 𝑏𝑏𝑠𝑠 = 44.07***, 𝑐𝑐𝑠𝑠 = 0.09947 ***,
𝑏𝑏𝑓𝑓 = 194.6***, 𝑐𝑐𝑓𝑓 = 0.7290***

(#8.7) Senanayake, n = 5 (with latency term) 23 0.9877 563.46 86.58 𝑎𝑎 = −184.7*, 𝑏𝑏𝑠𝑠 = 55.99***, 𝑐𝑐𝑠𝑠 = 0.1555***,
𝑏𝑏𝑓𝑓 = 217.0***, 𝑐𝑐𝑓𝑓 = 1.001***

(#8.8) Senanayake, opt. n (with latency term) 23 0.9875 565.12 87.58 𝑎𝑎 = −83.57, 𝑏𝑏𝑠𝑠 = 63.66, 𝑐𝑐𝑠𝑠 = 0.1578,
𝑏𝑏𝑓𝑓 = 247.0, 𝑐𝑐𝑓𝑓 = 0.9643, 𝑛𝑛 = 7.419
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Figure 11:Model-fit results of Experiment 5. The 𝑝-values cannot be calculated for the nonlinear regressions used in Senanayake’s
model with optimized 𝑛. The green cell shows the best result, and yellow ones are close-to-best results according to AIC.

and the Fitts-difficulty part IDSenaF = log2
(
𝑛𝑊 +𝑆/2

𝑆
+ 1

)
. Thus, the

baseline model without the latency term can be written as

MT = 𝑎 + 𝑏𝑠 · IDSenaS + 𝑏 𝑓 · IDSenaF . (25)

We then modified this model in the same manner as those for
Experiments 1–4. The results are listed in Tables 5–8. The model-fit
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Model Adj. 𝑅2 AIC RMSE [ms]
(#5.a) MT = 𝑎 + 𝑏 · 𝐿total 0.2870 755.7 635.7
(#5.b) MT = 𝑎 + 𝑏 · IDsum + 𝑐 · 𝐿total 0.9272 647.1 206.7
(#5.c) MT = 𝑎 + 𝑏 · 𝐿total + 𝑐 · 𝐿total · IDsum 0.8657 676.5 280.1

Table 5: Model-fit result for additional candidate formulations of Kulikov and Stuerzlinger’s model in Experiment 5.

Model Adj. 𝑅2 AIC RMSE [ms]
(#5.d) MT = 𝑎 + 𝑏 · 𝐿total 0.2870 755.7 635.7
(#5.e) MT = 𝑎 + 𝑏𝑠 · ID𝑠 + 𝑏 𝑓 · ID𝑓 + 𝑐 · 𝐿total 0.9752 596.2 122.9
(#5.f) MT = 𝑎 + 𝑏 · 𝐿total + 𝑐𝑠 · 𝐿total · ID𝑠 + 𝑐 𝑓 · 𝐿total · ID𝑓 0.9097 658.3 229.7

Table 6: Model-fit result for additional candidate formulations of Dennerlein et al.’s model in Experiment 5.

Model Adj. 𝑅2 AIC RMSE [ms]
(#5.g) MT = 𝑎 + 𝑏 · 𝐿total 0.2870 755.7 635.7
(#5.h) MT = 𝑎 + 𝑏𝑠 · IDSenaS + 𝑏 𝑓 · IDSenaF + 𝑐 · 𝐿total 0.9757 595.3 121.6
(#5.i) MT = 𝑎 + 𝑏 · 𝐿total + 𝑐𝑠 · 𝐿total · IDSenaS + 𝑐 𝑓 · 𝐿total · IDSenaF 0.9104 658.0 228.8

Table 7: Model-fit result for additional candidate formulations of Senanayake et al.’s model with fixed value of 𝑛 = 5 in
Experiment 5.

Model Adj. 𝑅2 AIC RMSE [ms]
(#5.g) MT = 𝑎 + 𝑏 · 𝐿total 0.2870 755.7 635.7
(#5.h) MT = 𝑎 + 𝑏𝑠 · IDSenaS + 𝑏 𝑓 · IDSenaF + 𝑐 · 𝐿total 0.9753 597.0 122.4
(#5.i) MT = 𝑎 + 𝑏 · 𝐿total + 𝑐𝑠 · 𝐿total · IDSenaS + 𝑐 𝑓 · 𝐿total · IDSenaF 0.8087 695.3 326.7

Table 8: Model-fit result for additional candidate formulations of Senanayake et al.’s model with the optimized value of 𝑛 in
Experiment 5.

measures showed that these additional formulations did not yield
better prediction accuracy than those shown in Figure 11.

9 DISCUSSION
9.1 Effects of Added Latency on User

Performance
In all five experiments, 𝐿added had significant main effects on MT
and ER. The effect sizes for MT ranged from 𝜂2𝑝 = 0.312 to 0.778
(see the supplementary materials), which all correspond to large
effect sizes [88], indicating solid results. When we analyzed the MT
data across all 𝐿total conditions, the models including the 𝐿total term
showed substantially better fits according to the results of higher
adjusted 𝑅2s, significantly lower AICs, better visual fits, and smaller
RMSEs in cross-validation.

In all modified models in Experiments 1 through 5, 𝐿total linearly
increased the task difficulty. As a linear term does not affect the
model fit, changing 𝐿base from 50 ms only changes the coefficients,
but does not affect the model-fit. Thus, the choice of 𝐿base does not
affect our conclusion that the modified models will always predict
MTs more accurately than the baselines, regardless of the actual
base latency of the system used.

Smaller RMSE values exhibited by the modified models indicate
thatMTs can be more accurately predicted than the baselines, even
for untested path parameters and 𝐿added values, as long as they are

within the investigated range (i.e., extrapolation is not guaranteed).
For example, our proposed models will still be able to predict MT
accurately for an untested condition with 𝐿added = 300 ms, but
experimental evidence is necessary to confirm this assumption.

We designed Experiments 2 to 5 with the goal of validating as
many different elements of steering tasks as possible, but previ-
ous studies have examined additional factors, e.g., the direction
of movement [83, 112], curvature [58, 60, 100], paths with corners
[64, 87, 101], widening paths [98, 99], and conditions where multi-
ple paths are connected [103, 104]. Even under these conditions, we
expectMT to increase with 𝐿total, but verification of further refined
models requires additional experiments. It might be possible that
any of these conditions could show counterexamples relative to
our current conclusion, such as that 𝐿total does not significantly
affectMT . Such a new finding does not negate the results of our five
experiments; rather, it would provide an additional contribution to
deepen our understanding of steering performance with latency.
Still, based on the evidence of our outcomes we believe this to be
an unlikely outcome.

9.2 Implications
Given the lower frequency of steering tasks compared to pointing
in interactive systems, we acknowledge that implications based on
our models are likely less broad compared to those of Fitts’ law.
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However, as steering tasks are more challenging than pointing
(exhibiting longer MTs and higher ERs), good steering-facilitation
techniques are potentially strong contributions, and previous re-
searchers have proposed several techniques based on the steering
law.

For example, Attribute gates can activate multiple commands
by performing a single stroke through them and the MT of this
operation is modeled by the steering law [78]. Sloppy selection intel-
ligently determines the selected objects when a user circles several
objects in a note-taking tool, while estimating the imaginary path
width that the user is trying to pass through [46]. More specifically,
with lower movement speed, the width of the path boundaries
formed by the objects that the user does not want to select are
assumed to be closer, and thus the path narrower. However, as we
have shown, the baseline steering law model does not predict the
MT (thus movement speed) well for conditions with added latency.

Suppose that a user is operating a PC with a dual-display setup
and that the two displays have different latencies, e.g., because the
secondary display is connected through a network-based display
adapter [33] in presentation scenarios, with a 240-ms latency. De-
pending on which screen the user is then working on, the objects
selected by Sloppy selection would be different because the steering
speed naturally changes due to the latency. If existing interaction
methods could use a refined version of the steering law that takes
latency into account, with appropriate model coefficients to match
each user’s environment, usability could be improved.

In a more common example and again in systems with unequal
latencies on different displays, an effective design choice would be
to improve usability by shortening the path length or increasing
the path width within a GUI to keep the MT constant (or decrease
it). For example, using the data from Experiment 2 (𝑀𝑇 = −243.1 +
53.15 · ID𝑠 + 0.1519 · 𝐿total · ID𝑠 ), we predict 𝑀𝑇 = 769 ms when
𝐴 = 500,𝑊 = 30 pixels, and 𝐿total = 50 ms in the primary display.
However, if 𝐿total is 240 ms, 𝑀𝑇 = 1250 ms is estimated for the
same path. If 𝑀𝑇 = 769 ms is to be maintained on the secondary
display, 𝐴 must either be shortened to 339 pixels,𝑊 widened to 45
pixels, or any combination that yields the same ID𝑠 . We developed
a proof-of-concept application of this idea; see the supplementary
materials.

For target pointing, a similar method to maintain MTs is cur-
rently already included in Microsoft Office. On the basis of Fitts’
law item sizes in the Ribbon Menu are automatically adapted so
that the pointing time is constant regardless of the display resolu-
tion [34]. This insight can also be implemented for path-steering
tasks, for example, by obtaining the latency of the connected dis-
play from its device information (or through manual measurement)
and appropriately widening the path width so that, for example,
the navigation time in a cascaded menu remains constant.

Simulation results for this idea are shown in Figure 12a for the
case where𝑊 varies. By using the data from Experiment 2 and
(without loss of generality) fixing 𝐴 to 500 pixels, we change𝑊
and obtain graphs for four 𝐿total values. When𝑊 is large, the MTs
are (relatively) close to each other regardless of the 𝐿total value
because the task is easy. However, when𝑊 is small, MT tends
to increase with 𝐿total because errors occur unless the speed is
considerably reduced. Figure 12b shows this non-linear relationship
in a 3D surface graph. Although such MT prediction might require

a

b

Figure 12: Simulations to predictMT by changing𝑊 and 𝐿total.

a user test every time the path parameters and 𝐿total are changed
substantially, unless a quantitative model is available, our proposed
models can reduce that cost and time.

9.3 Potential Applications for Future GUIs
beyond Mouse-based Operations

We conducted all experiments only with mouse-based operations.
However, the steering law is applicable to various situations and
devices beyond the classical desktop environment. For example,
in tasks where participants wear augmented reality (AR) glasses
and perform a linear-path steering task with their head motions
to support communication among doctors in surgery, the baseline
steering lawmodel held [12]. Another example is to use stereoscopic
glasses and a motion-capturing stylus to steer through a 3D tunnel,
for which a steering law with a curvature term holds [50]. This
result is useful for predicting the difficulty of using 3D drawing
tools in virtual reality (VR) spaces (e.g., [11, 19, 108]). For example,
the task difficulty of the lasso selection tool in 2D drawing tools can
be modeled by the steering law [87, 101], and thus it is reasonable
to expect that the operational difficulty and time for drawing tools
in 3D spaces could potentially be similarly predicted.

In immersive environments such as AR and VR, where operations
are conducted using head or 3D stylus motions, it is valuable to
verify whether our proposed models yield high prediction accuracy.
This is relevant, as the end-to-end latency in VR environments is
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today (generally) comparable to those of recent mouse and LCD dis-
play combinations. For example, in environments using the Unity
game engine and SteamVR, the average latency with controllers,
such as the HTC Vive, Oculus Rift, Oculus Rift S, and Valve Index
ones, can range from 21 to 42 ms, but individually observed laten-
cies can be even longer [82, 89], especially in AR systems, where
latencies are typically higher [59]. In addition, network conditions
could influence usability; e.g., in the above-mentioned steering
tasks with head motions, the data transmission between HoloLens
and Unity can happen either over USB or Wi-Fi [12]. If the Wi-Fi
connection is not fast and stable, significant latency may occur and
possibly increases the task difficulty.

As we believe that our proposed models are applicable to AR/VR
tasks, the difficulty adjustment application that shortens the path’s
𝐴 or widens its𝑊 (Section 9.2) are likely directly relevant. For
scenarios where changing the path’s appearance is undesirable, ex-
panding only the collision detection of boundaries in either spatial
[80, 81] or temporal dimensions [35, 95] are potential alternatives.
However, these techniques have only been validated through user
experiments in 2D desktop environments, so the future develop-
ment of 3D user interfaces requires the following further studies:

• Verifying whether our latency-inclusive models hold for
AR/VR systems with head motions or handheld controllers.

• Conducting 3D versions in AR/VR environments for experi-
ments that have been validated only in 2D desktop settings,
such as the reduction in difficulty by widening the path
[35, 80] or the time prediction of lasso selection tasks using
the steering law [87, 101], is also needed.

9.4 Limitations
Our experiments used only a mouse as input device, but it is known
that the steering and Fitts’ laws hold for a variety of devices.We thus
expect that our proposed models will also fit the data when other
input devices are used. In addition, the specifications of the mice,
PCs, and displays naturally varied across crowdworkers. Conduct-
ing follow-up experiments in a more controlled laboratory-based
environment, using a single apparatus is thus a potential avenue
for future work.

Our findings are also limited by the task parameters we tested.
For latency, previous studies have examined values ranging from
much shorter to substantially longer than those in our experiments,
such as 6 ms [31] and 2,000 ms [39]. In contrast, our 𝐿totals ranged
from 50 to 250ms, which covers the range from a typical mouse-and-
display condition [18] to a short-ranged network-connected display
extension [33]. Consequently, future work could explore up to what
upper limit of latency our proposed models work effectively.

The steering and Fitts’ laws are known to be applicable to a wide
range of task difficulty levels, but if the task is too easy (when 𝐴 is
too short,𝑊 is too wide, or 𝑆 is too large), the task can be completed
with only a ballistic movement and MT depends then only on

√
𝐴

[32, 84]. Also, for the rectangular target used in Experiment 5,
previous studies have recommended using a linear [23] or nonlinear
addition [6] depending on the target height. However, we limited
our comparison to existing targeted-steering models based on the
standard formulation of Fitts’ law, because our research focus was
to test the effects of latency on MT and model fit.

Lastly, our models are all empirical, grounded in experimental
psychology and ergonomics. In contrast, recent development in ma-
chine learning (ML) have led to HCI studies using more complicated
models that focus just on precise outcome prediction. For example,
for gaze-based target selection, a model incorporating numerous
parameters such as gaze coordinates and pupil diameter (127 in
total) has been proposed, but it is acknowledged that discussing
whether each coefficient is appropriate is infeasible [40]. In contrast,
there are ML-based studies that engage in discussions about the
appropriateness of each coefficient (cf. explainable ML). Park et al.
proposed a reinforcement-learning model incorporating numerous
parameters for pointing tasks, and they stated that “each parameter
of the model has a clear cognitive meaning,” and confirmed that
each coefficient aligns with results from conventional cognitive
psychology [63]. We also discussed in Section 8.3.1 that the value
of 𝑛 = 37.95 in Senanayake et al.’s model is inappropriate, which
is possible because our tested models are interpretable. To enable
future researchers who would like to focus on the prediction ac-
curacy to reanalyze our data, the supplementary materials include
the MT data for each task condition obtained in our experiments.

10 CONCLUSION
An end-to-end latency is a fundamental property of any interactive
system, but the impact of such latency has only been examined for a
limited set of interaction paradigms, mainly for target pointing. Yet,
since various path-steering operations are also commonly used in
GUIs, we investigated models that predict how MT increases with
latency through four path-steering and one goal-crossing experi-
ment. We derived models that assume that the end-to-end latency
linearly increases the steering-law difficulty, and showed that MT
could be predicted significantly more accurately than the baseline
models in all cases. We hope that our work will help designers to
predict the performance of interaction methods and GUI design in
systems that are subject to notable latency.
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