
The Auckland Layout Editor:
An Improved GUI Layout Specification Process

Clemens Zeidler, Christof Lutteroth
University of Auckland

Auckland 1010, New Zealand
{clemens,christof}@cs.auckland.ac.nz

Wolfgang Stuerzlinger
York University

Toronto, Canada M3J 1P3
wolfgang@cse.yorku.ca

Gerald Weber
University of Auckland

Auckland 1010, New Zealand
gerald@cs.auckland.ac.nz

ABSTRACT
Layout managers are used to control the placement of widgets
in graphical user interfaces (GUIs). Constraint-based layout
managers are among the most powerful. However, they are
also more complex and their layouts are prone to problems
such as over-constrained specifications and widget overlap.
This poses challenges for GUI builder tools, which ideally
should address these issues automatically.

We present a new GUI builder – the Auckland Layout Edi-
tor (ALE) – that addresses these challenges by enabling GUI
designers to specify constraint-based layouts using simple,
mouse-based operations. We give a detailed description of
ALE’s edit operations, which do not require direct constraint
editing. ALE guarantees that all edit operations lead to sound
specifications, ensuring solvable and non-overlapping lay-
outs. To achieve that, we present a new algorithm that auto-
matically generates the constraints necessary to keep a layout
non-overlapping. Furthermore, we discuss how our innova-
tions can be combined with manual constraint editing in a
sound way. Finally, to aid designers in creating layouts with
good resize behavior, we propose a novel automatic layout
preview. This displays the layout at its minimum and in an
enlarged size, which allows visualizing potential resize issues
directly. All these features permit GUI developers to focus
more on the overall UI design.

ACM Classification Keywords
H.5.2 User Interfaces: Graphical user interfaces (GUI)

Author Keywords
GUI builder; layout editing; constraint-based layout; layout
manager

INTRODUCTION
The use of graphical user interfaces (GUIs) is widespread,
including on web and mobile platforms. WYSIWYG GUI
builders facilitate the creation of GUIs by designers. In such
tools, widgets are dragged and dropped from a palette onto a
GUI canvas. Subsequently, they are selected, moved, resized,
and adjusted in order to compose the final GUI layout.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
UIST’13, October 8–11, 2013, St. Andrews, United Kingdom.
Copyright c© 2013 ACM 978-1-4503-2268-3/13/10...$15.00.
http://dx.doi.org/10.1145/2501988.2502007

Nowadays the same application may be used across a wide
range of screen sizes, such as desktop machines, tablets and
mobile phones. Resizable GUIs are also recommended by
modern GUI guidelines1. Consequently, it is important that a
GUI stays sound at different sizes. To create resizable GUIs
with dynamic layouts, a layout manager can be used. A lay-
out manager implements a layout model that defines how ob-
jects in a layout, the widgets, can be arranged and how their
resize behavior can be specified.

Constraint-based layout models are naturally powerful: with
the notable exception of flow layouts, many other layout
models, including gridbag layout [26], can be reduced to
constraint-based layouts (see also Figure 1). For example, the
“LCD” display in iTunes2 is always centered at the top of the
window between other widgets, but this is usually not possi-
ble with other layout models. Many other layout managers
rely on a hierarchy of nested layouts to define more complex
layouts. Within nested layouts, widgets typically cannot be
aligned across different levels of the hierarchy. In contrast,
constraint-based layout models greatly reduce the need for
nested layouts, even for visually hierarchical layouts. Con-
straints can align widgets that are situated in different parts of
a visually hierarchical layout [17]. Constraint-based layout
managers use a dedicated or off-the-shelf constraint solver to
compute widget positions and sizes.

Figure 1. Example constraint-based layout. The behavior of the middle
row is independent from the top and bottom rows when resizing. This is
impossible to achieve with a single gridbag layout.

While constraint-based layouts are more powerful, their cre-
ation may be more complex and poses challenges. General
constraints are difficult to visualize and even harder to ma-
nipulate directly. Specifying individual constraints can be te-
dious and error-prone, as they are situated at a low level of
abstraction. Thus widgets may overlap each other (Figure 2)

1developer.android.com/training/multiscreen/
screensizes.html
msdn.microsoft.com/en-us/library/windows/desktop/
aa511331.aspx
2apple.com/itunes

developer.android.com/training/multiscreen/screensizes.html
developer.android.com/training/multiscreen/screensizes.html
msdn.microsoft.com/en-us/library/windows/desktop/aa511331.aspx
msdn.microsoft.com/en-us/library/windows/desktop/aa511331.aspx
apple.com/itunes

or become over-constrained, i.e., the layout may have no so-
lution. This makes it harder for GUI designers to leverage the
advantages of constraints.

The novel Auckland Layout Editor (ALE) addresses these
issues and simplifies the creation and modification of
constraint-based layouts. Here, we present a complete de-
scription of ALE’s layout edit operations, which maintain
constraints automatically and hence require fewer operations
to configure widgets correctly. In particular, we present a new
method for automatically identifying all constraints necessary
to maintain a given layout, based on a tiling of orthogonal
polygons into rectangles, and we explain how this method is
used during layout editing. The output of this method en-
sures that layouts stay non-overlapping for all sizes and that
they always have a unique solution. While ALE’s edit opera-
tions enable quick creation of the most common layouts, arbi-
trary constraints can also be added via auxiliary dialogs. We
demonstrate how ALE’s edit operations can work together
with general constraint editing while keeping the layout spec-
ifications sound, i.e., non-overlapping and solvable. A recent
user study found that ALE’s edit operations can make lay-
out creation and editing significantly faster than other modern
GUI builders [29]. Furthermore, we present a novel approach
to visualizing the resize behavior of a window. Layout design
usually happens at a fixed size, yet the resulting layout should
also look good at different sizes. Currently this requires ex-
plicit manual testing by the designer. To help the designer to
better evaluate the resize behavior, we present a new preview
that automatically shows appropriately shrunk and enlarged
versions during editing.

Contributions
We present several innovations and improvements to the GUI
layout creation process. In particular, we introduce:

• Detailed specifications of edit operations for constraint-
based layouts that automatically keep a layout sound and
solvable and speed up layout editing.
• A new algorithm that automatically adds constraints at

design-time to prevent widget overlap at all sizes.
• An extension to permit manual constraint addition and edit-

ing in the system.
• A novel way to visualize the resize behavior of a layout

during the design phase.

REQUIREMENTS FOR LAYOUT EDITING
In this section we specify our design goals for ALE. These
are derived from related work, existing usability guidelines,
and our own experience with layout creation. We also de-
fine requirements for all layout specifications that can be cre-
ated with a GUI builder. We differentiate between concrete
layouts, as they are rendered on a screen, and layout speci-
fications, which can be rendered at many different sizes and
hence lead to many concrete layouts. Our design goals can
be subdivided into usability, completeness, and soundness re-
quirements. Common usability guidelines [14, 18] naturally
apply to GUI builders. In particular, a builder should be in-
tuitive, easy to use, and edit operations should lead to pre-
dictable results. Common GUI design guidelines, such as [6],

Figure 2. The constraint-based layout on the left appears sound. Yet,
at the smaller size shown on the right, widgets overlap due to a missing
constraint. The constraint-based GUI builder used, Apple Xcode, gave
no indication of this issue.

emphasize that it is not desirable to place widgets completely
“freely”, i.e., at an arbitrary position in a layout. Aligned lay-
outs are more compact and easier to understand [9]. Con-
sequently, widgets should be easy to align and the system
should automatically maintain such alignments.

Completeness guarantees that every correct layout specifica-
tion that is both possible in the underlying layout model and
appropriate in practice can actually be created.

Soundness ensures that every layout specification that can be
created is correct and adequate, i.e., no erroneous layouts can
be created. Here we use three soundness requirements.

Unique Solution A layout specification must have exactly
one solution. When computing a layout, the underlying speci-
fication needs to be solved, i.e., a concrete visual layout needs
to be generated. If the specification contains conflicts, then
there is no solution. If there is more than one solution, then
the layout may behave non-deterministically. For example, if
the position of a widget is underspecified it may “randomly”
change its position during resizing, which is undesirable.

Non-Overlap A layout specification must be non-
overlapping, i.e., in all layouts derived from the specification,
widgets may not intersect each other or the boundaries. This
property ensures that all widgets are completely visible and
accessible at all GUI sizes. A widget that is overlapped by
another may be inaccessible and thus useless (Figure 2).

Well-Defined Layout Sizes Each layout specification must
have a single minimum, preferred, and maximum layout size.
It is theoretically possible for a layout specification to have
multiple valid extreme sizes (Figure 3). Yet, such situations
are not desirable. First, window managers support only a sin-
gle minimum and maximum window size. Secondly, in order
to keep the layout non-overlapping, “or” constraints must be
used, which are difficult to solve. Last, a layout with multiple
extreme sizes potentially has a very different appearance at
different sizes, which may confuse users. Note that we still
permit discrete layout specification changes at runtime. For
example, when the screen is rotated one can switch between
different layout specifications with different extreme sizes.

RELATED WORK
Myers [19] summarized various non-constraint-based tech-
niques for creating GUIs, including graphical tools for plac-
ing interface objects on screens. IBuild [25] enabled the cre-

Figure 3. Layout with two possible minimum sizes.

ation of complex GUIs in a WYSIWYG manner. It already
supported nested layouts, spring-like layout elements, and in-
teractive testing of resizing. Druid [23] predicted intended
alignment and spacing of a widget during editing, facilitating
placement. FormsVBT [1] supported simultaneous editing of
a textual and a graphical representation of a layout.

Some GUI builders permit manual constraint editing. OPUS
used tabstops for specifying constraints [10]. Lapidary [27]
provided rich constraint editing functions. In the Gilt sys-
tem [8], widgets could be aligned relative to user-specified
tabstops or other widgets. In the Intui GUI builder [22],
constraints can be toggled between struts and springs, be-
tween and inside widgets. Yet, only one constraint per wid-
get side is supported, which can make it impossible to cre-
ate non-overlapping layout specifications. Peridot [20] an-
alyzes objects drawn by the user and guesses constraints to
be added. The user then has to confirm the proposed con-
straints. Rockit [16] automatically proposes constraints based
on the “gravity field” of other objects. The user can select
the desired constraints from a set. This is similar to previ-
ous work where constraints are inferred by snapping graphi-
cal objects relative to other objects [11]. In ALE widgets can
be snapped to others in order to set up the corresponding con-
straints. However, ALE adds more powerful edit operations,
such as inserting a widget between others and swapping wid-
gets. Bramble [7] connects objects using a set of interactors,
which establish non-linear constraints. While this can be used
to prevent overlap, the user has to add interactors manually.
ALE adds such constraints automatically.

Today, there are many open-source GUI builders, such as
WindowBuilder Pro3, Matisse/Swing4, and Qt Designer5.
There are also commercial GUI builders, such as MS Ex-
pression Blend6 and Visual Studio7. Most of them support
aligning widgets via snapping, but do not maintain alignment
when objects are moved or resized. Also, layouts must be
resized manually in order to evaluate their resize behavior.
In contrast, ALE’s edit operations keep widgets aligned by
default. ALE also provides an automatic preview of resize
behavior.

Apple added support for constraints to the Xcode Interface
Builder8 in 2012. It aligns objects via snapping, but permits
3eclipse.org/windowbuilder
4netbeans.org/features/java/swing.html
5qt.nokia.com
6microsoft.com/expression/products/Blend_Overview.
aspx
7microsoft.com/visualstudio/en-us
8developer.apple.com/technologies/tools

also free placement of widgets. Constraints between widgets
can be added manually but are removed upon conflict. All
the abovementioned constraint-based approaches require that
the user knows how to specify constraints manually. In con-
trast, ALE enables the creation of many interesting layouts
without exposing a single constraint to the user. Moreover,
the edit operations automatically maintain all constraints for
snapped items and for non-overlap. ALE disables conflicting
manual constraints to support error diagnosis. Finally, a re-
cent comparison between Xcode and ALE confirms that our
new approach results in better usability [29].

Adaptive document layout [12] in the print and web domains
is somewhat similar to GUI layout. However, the flow of a
document constrains placement differently than a GUI. Doc-
uments typically arrange text and images in a sequential man-
ner, and support more flexibility in the layout using algo-
rithms for figure placement, line-break, and pagination. Grid-
based [15] as well as constraint-based [3, 13] methods have
been used for document layout.

Firefox’s responsive design view9 can simulate a GUI at dif-
ferent screen sizes. Also Android Studio10 shows layouts at
different device sizes. However, this does not take an opti-
mally enlarged layout size into account. FormsVBT [1] sup-
ports a graphical and a textual edit view as well as a result
view. However, the result and graphical edit views are dis-
played at a fixed size and give no indication of how a layout
would look at a different size. In contrast, ALE shows a live
preview of the layout at the minimum and an optimally en-
larged layout size. This reduces the potential for user errors,
as the resize behavior is visualized immediately and directly.
ALE’s layout previews are targeted particularly at situations
where enough constraints exist, but do not lead to the desired
resize behavior. In these situations, displaying all constraints
clutters the design view, which does little to help the designer
quickly identify the problem.

THE AUCKLAND LAYOUT EDITOR (ALE)
Similarly to other GUI builders, ALE uses a component
palette and an editing canvas (Figure 4). Widgets are dragged
from the palette into the editing canvas, where the designer
can change the layout using a rich set of edit operations. We
first describe the constraint system used in ALE, which is
conceptually similar to other such systems.

A layout consists of various types of layout items, such as
widgets and nested layouts. In the following and for brevity,
we refer to all layout items simply as widgets. Each widget
has an intrinsic minimum, preferred, and maximum size. A
widget assumes its preferred size if there are no other con-
straints for it, similarly to the behavior of a sponge. ALE
includes a special type of widget that can act as a strut or
spring.

Layout items are connected via constraints. ALE supports
two types of linear constraints: hard constraints, which have

9developer.mozilla.org/en-US/docs/Tools/
Responsive_Design_View

10developer.android.com/sdk/installing/studio.html

eclipse.org/windowbuilder
netbeans.org/features/java/swing.html
qt.nokia.com
microsoft.com/expression/products/Blend_Overview.aspx
microsoft.com/expression/products/Blend_Overview.aspx
microsoft.com/visualstudio/en-us
developer.apple.com/technologies/tools
developer.mozilla.org/en-US/docs/Tools/Responsive_Design_View
developer.mozilla.org/en-US/docs/Tools/Responsive_Design_View
developer.android.com/sdk/installing/studio.html

Figure 4. Screenshot of the ALE GUI builder. New widgets can be in-
serted into the editing canvas on the left via drag and drop from the
component palette on the right.

to be satisfied, and soft ones, which may be violated if neces-
sary. We support both equality and inequality constraints.

Variables in a constraint are called tabstops and represent hor-
izontal or vertical grid lines. Other frequently used names
for the same concept are aligners, guides, and snap or anchor
lines. Each window defines tabstops for its four borders, so
that they can be used for alignment. Tabstops are reference
counted, which allows unused ones to be removed automati-
cally.

Figure 5. Left: Widgets are by default automatically centered in their
layout area (light gray). The area is surrounded by a margin and four
tabstops. ALE shows tabstops as blue lines. Right: A combo box and
a button are connected to the same vertical tabstops. As the combo box
cannot shrink further, the button is centered.

Within the overall layout, each widget is associated with a
rectangular layout area that is surrounded by four tabstops.
As most layouts use margins, there is by default a small mar-
gin between the layout areas and their tabstops (Figure 5).
When inserting a widget into a layout, some constraints are
automatically derived from the intrinsic sizes of a widget: a
hard inequality for the minimum, a soft equality for the pre-
ferred, and a soft inequality for the maximum size. These
constraints are defined both horizontally and vertically and
are managed by the associated layout area. Consequently,
users do not need to manage constraints for intrinsic sizes
manually. The preferred size of a widget can be fine-tuned
in the properties window. This is comparable to changing the
“weight” of a row or column in a gridbag layout. If the size
of the layout area is between a widget’s minimum and max-
imum size, the widget uses the whole space of the area. If

the widget cannot grow, it is centered in the area by default
(Figure 5). The user has the option to align the widget to
any border or corner of the layout area. Also, the user can
fine-tune widget positions by changing the margins.

In contrast to most other systems, ALE uses a quadratic opti-
mization function with an active set solver [5]. This method is
fast enough for GUI problems [4]. We found that solving lay-
outs with 30 widgets can be done in the order of 10 ms (Intel
Core 2 Duo 3GHz). Soft preferred size constraints together
with a quadratic optimization function ensure that there is a
unique layout solution, as a convex objective function has a
unique minimum. A linear optimization function cannot en-
sure this, as there is in general an infinite number of solutions
for the soft constraints, which leads to underdetermined wid-
get sizes [28].

Many useful layouts can be specified simply by aligning lay-
out areas with each other. Such layouts naturally reuse tab-
stops for multiple layout areas and thus need no additional
constraints. See, e.g., Figure 5, where the top tabstop of the
button is reused as the bottom tabstop of the combo box. A
layout consisting of fully connected layout areas is always
solvable as long as the containing window is large enough,
because the maximum constraints are soft and thus no con-
flicts can occur (e.g., in Figure 5 the button’s maximum size
constraint is violated, as it has a fixed size).

ALE LAYOUT EDIT OPERATIONS
Ideally, a GUI builder should make the creation of a
constraint-based layout easy and intuitive. If a GUI builder
exposes each constraint, margin, tabstop, strut or spring di-
rectly to the user, this significantly increases the complexity
of layout editing. In other words, the user has to create, cor-
rectly configure, and maintain a substantially larger number
of entities to achieve a given result. To avoid this, ALE’s lay-
out edit operations were designed to automate the construc-
tion and maintenance of the layout specification as much as
possible, while still ensuring that the operations are sufficient
to create and edit complex GUIs.

As in most GUI builders, a GUI can be created and edited by
drag and drop operations. The edit operations provided are
moving, swapping, resizing, inserting, and removing of a lay-
out area and the widget contained therein. All operations try
to connect layout areas to existing tabstops through snapping,
and create as few new tabstops as possible. Reusing tabstops
leads to good alignment and simpler layout specifications that
are easier to understand. Only the intrinsic size constraints
are updated when a layout area is connected to new tabstops,
and new constraints are added only in a few cases. Further-
more, all operations are designed to leave an initially sound
layout in a sound state. Thus no overlap between widgets can
be generated. In the following sections and for brevity, we
describe only the horizontal case for each operation. Vertical
cases are handled analogously.

Edit operations are started by dragging a widget or a border of
a selected widget. Then, ALE checks at each mouse position
whether an operation can be applied and gives corresponding
visual feedback (Figure 6). This is done by applying the op-

eration tentatively in the background and checking the result.
If an operation is applicable, the user can commit it by “drop-
ping” the widget, and the result becomes visible. In general,
edit operations can affect multiple widgets and a layout may
differ in several places after an operation. To help the user
understand the changes, a short animation visualizes how af-
fected widgets are altered. All edit operations can be reverted
using undo. Inserting, removing, moving and swapping of
widgets are done via dragging the widget; dragging a border
is used for resizing.

Inserting a Widget
New widgets can be inserted into the layout by drag and drop
from the widget palette into the edit canvas. When dragging
a widget, it is visualized as a dotted rectangle, the dragged
widget outline, which has the preferred size of the dragged
widget. We limit the size of the dragged widget outline to
a reasonable one to avoid problems with very large widgets.
Two cases need to be considered when inserting a new widget
into the layout. A widget can be inserted into an empty area
(Figure 7) or it can be placed between an existing tabstop and
a widget adjacent to that tabstop (Figure 8).

Inserting into an Empty Area
A widget can be inserted into an empty area if the mouse
position is in that empty area. Dropping the dragged widget
into an empty area must constrain that widget to at least two
tabstops, one in each direction, because of the requirement
for a unique solution. If an edge of the widget is close to a
tabstop, the widget is snapped to that tabstop. If the widget
can only be snapped to a single tabstop in one direction, a
new tabstop is created at the opposite widget edge.

If the widget cannot be snapped to any existing tabstop in a
given direction, we solve the problem in a novel way. In this
case, the largest rectangular empty area that completely con-
tains the dragged widget outline is identified (Figure 6). If
the outline overlaps another non-empty layout area, i.e., no
rectangular empty area completely contains the outline, the
largest empty rectangular area that contains the mouse po-
sition is used. For the direction in question, the widget is
then connected to the outer tabstops of this largest rectan-
gular empty area. This is also an easy way to fill a whole
rectangular empty area with a resizable widget.

Figure 6. ALE automatically selects the largest empty area, depending
on user input. The area where the widget will be inserted when dropped
is highlighted in green. Here, the widget is entirely within the lower
empty area (left) or within the right one (right). In the lower-right quad-
rant, the larger (right) area would be used.

These rules enable the user to select the desired area in an
intuitive way. The combination of being able to use the full

extent of an empty area or simply to snap a widget to one cor-
ner or border makes this operation quite versatile (Figure 7),
see also the Tk pack model11.

Figure 7. A widget can be inserted at various positions within an empty
rectangular area. Left: Far from the tabstops, the dragged widget fills
the whole empty area. Middle: When close to only the left tabstop, the
widget snaps to that tabstop and resizes vertically. The right edge creates
a new tabstop. Right: When close to the left and bottom tabstops, the
widget is constrained to the corner.

Inserting between Tabstop and Area
A widget can be inserted at any existing tabstop. To trigger
this operation, the mouse position must be over an existing
widget and close to a tabstop, i.e., an edge, of that widget.
One edge of the new widget then aligns with that existing tab-
stop, while a new tabstop is created for the opposite edge. The
existing widget is connected to the new tabstop (Figure 8).
Initially, the size of the new widget is temporarily set to zero,
as the final size is determined later by the solver.

Figure 8. When inserting a new widget A2 between area A1 and tabstop
x1, a new tabstop x2 is added.

Once the new widget has been inserted at an existing tabstop
in one direction (say horizontal), it must also be connected in
the other (vertical) direction. If its preferred height is smaller
than the height of the existing widget, the new widget is either
connected to the top or the bottom tabstop of the existing wid-
get, whichever is closer. In this case, a new tabstop is added at
the opposite vertical side of the new widget. Figure 9 shows
such an example where a small button is inserted beside a
larger text view. If the preferred height of the new widget is
larger or close to the height of the existing widget, the new
widget is connected to both the top and the bottom tabstop of
the existing widget. Because the maximum size constraints
of the existing widget are soft, this never generates a conflict.

Figure 9. Inserting a small button at an existing tabstop between a list
and a text view. The existing tabstop and widget are highlighted in green.
As the button is dropped close to the top of the text view, it is connected
to its top tabstop.

11tcl.tk/man/tcl8.6/TkCmd/pack.htm

tcl.tk/man/tcl8.6/TkCmd/pack.htm

Removing Widgets
A widget is removed from the layout by dragging it outside
the edit canvas. Any created gaps are filled, see below.

Moving Widgets
When moving a widget, a valid position for the insertion is
determined and then the widget is moved from its original
place. Here the same logic is used as for insertion. However,
when looking for an insertion position the area occupied by
the moving widget is ignored. This makes it impossible to
snap a widget to itself, for example.

Swapping Two Widgets
Dropping one widget onto another swaps the positions of the
two widgets. Here it is sufficient to connect the moved widget
to the tabstops of the other one and vice versa.

Resizing a Widget
When a widget is connected to wrong/undesired tabstops, the
user can adjust this with a resize operation. Resizing is done
by dragging one of the borders or corners of a widget. During
resizing, all relevant tabstops are visualized as light blue lines
to aid alignment. There are two cases to consider. First, a
widget may be resized to an existing tabstop, via snapping
(Figure 10). Here, the system ensures that the resized widget
does not overlap with any other one; otherwise, the resize
operation is not permitted. Secondly, a widget can be resized
to match its preferred size. This occurs when the dragged
border is released in an empty area, i.e., without snapping.
In this case, a new tabstop is created for the dragged border
(two for a corner). This can also be interpreted as detaching a
widget from a tabstop. Preferred sizes can be adjusted via the
properties window (Figure 4 bottom right).

Figure 10. Resizing the top of the list widget to the bottom of the string.

Filling Gaps
A move, resize, or remove operation can detach adjacent wid-
gets as one or more widgets may lose their connection to a
tapstop. This is usually visible as a “gap”. Such “gaps” and
the associated “floating” widgets violate the unique solution
requirement (Figure 11). ALE avoids this by checking for
unconnected widgets after remove, move and resize opera-
tions. If the layout contains parts that are unconnected, all
“floating” widget groups are moved one after another into the
direction where the removed widget has been located. For
example, if a group was connected to the right side of the
removed or resized widget, the group is moved to the left.
When the foremost widget of the floating group hits the bor-
der of another widget, it is connected with the corresponding
tabstop of the other widget (Figure 11). During this process
the moved group may become connected to another floating

group. Groups are moved until they are connected directly
or indirectly to at least one horizontal and one vertical layout
border.

Figure 11. Filling gaps: Upon removal of the list widget, the two buttons
both “float” vertically. Moving the button group up fills the gap. The
tops of the buttons are connected to the bottom of the combo box.

NON-OVERLAPPING LAYOUTS
We start with a formal definition of non-overlap to explain
how ALE guarantees non-overlapping layouts. A widget is
completely left of another if the right side of the first wid-
get is left of the left side of the other widget. Two wid-
gets are called horizontally non-overlapping if either one is
completely left of the other. Vertically non-overlapping is
defined analogously. Two widgets are non-overlapping if
they are horizontally or vertically non-overlapping. A layout
is non-overlapping if all possible pairs of widgets are non-
overlapping.

While a given layout may be non-overlapping, this does not
imply that the underlying specification produces only non-
overlapping layouts. This is a central problem in GUI lay-
out. For example, the layout on the left of Figure 2 is non-
overlapping. Yet, as the size is reduced, the check box starts
to overlap the button due to a missing constraint. Any speci-
fication that produces only non-overlapping layouts is a non-
overlapping specification.

The main idea of the non-overlap algorithm presented here is
that for a given non-overlapping layout, the underlying spec-
ification can be made non-overlapping by adding additional
non-overlap constraints. These are simple hard linear con-
straints that ensure a non-negative distance between two wid-
gets. In the following, we show that all layouts created using
ALE’s operations are non-overlapping. Moreover, we explain
where non-overlap constraints are added.

Non-Overlap of Created Layouts
All edit operations transform a non-overlapping layout so that
it stays non-overlapping. Starting from the naturally non-
overlapping empty layout we prove via structural induction
that all layouts evolving from there are non-overlapping. In-
serting or moving a widget into an empty area keeps the lay-
out non-overlapping by definition. When inserting or moving
a widget horizontally between a tabstop and another widget,
it does not overlap the involved widget as a new “column”
is created between the tabstop and the existing widget, and
the new widget is temporarily assigned zero size. Further-
more, the new widget does not overlap any existing widgets
above or below in a vertical direction because per definition

Figure 12. The empty area is an orthogonal polygon (black outline) that
is filled with tiles (red). Each tile has a minimum size of zero, which
guarantees a non-overlapping layout specification.

of the operation it has at most the height of the existing wid-
get, and this widget did not overlap any other widgets before.
Swapping two widgets does not change the topology of the
tabstops and thus works as well. When increasing the size
of a widget, the system always verifies that the resized wid-
get does not intersect with another; otherwise the operation
fails. Decreasing a widget’s size also keeps the layout non-
overlapping because the resulting widget is always smaller
than the old one.

The last case that has to be considered is gap filling. When
filling a gap, floating groups are moved one after another into
the direction of the removed widget. Because a floating group
is only moved until it hits another widget, this operation also
keeps the layout non-overlapping. Given that each edit oper-
ation leaves the layout non-overlapping, the system can never
get into a state where the layout has overlaps. Thus ALE
is suitable for creating and editing a concrete layout under
the non-overlap requirement. In the next section we discuss
how we expand this to keep all layout specifications non-
overlapping.

Non-Overlapping Layout Specifications
To maintain the non-overlap requirement of a layout specifi-
cation during all resize operations, one needs to ensure that all
pairs of widgets are non-overlapping. Yet, checking all pairs
would be inefficient, so we propose a more sophisticated ap-
proach. We first recall that in full layouts, i.e., layouts without
empty space, all widgets share tabstops with all neighbors.
Thus the layout is non-overlapping.

Tiling of Empty Areas
It remains to argue what to do if a layout has one or more
empty area(s). If two visually adjacent widgets do not share
a tabstop, the gap between the two widgets is treated as an
empty area with no extent. Otherwise, the empty area(s) are
orthogonal polygons. Our solution is to tile these orthogo-
nal polygons by introducing new, virtual, empty rectangular
widgets (Figure 12). Each such virtual rectangular widget is
connected to existing tabstops. These virtual widgets only
need a minimum size of zero to guarantee non-overlapping
layout specifications.

We now discuss the algorithm for tiling all empty areas. All
empty areas are orthogonal polygons. In general, such poly-
gons can be tiled in O(n3/2 log n) time [24] (n being the
number of polygon edges), producing O(n) tiles. As dis-
cussed later, the algorithm presented here permits a choice
of the shape of the inserted tiles, which affects the resizing
behavior of the layout. In a first step, all U-shaped segments

Figure 13. Empty polygon (black outline). An identified U-shape is vi-
sualized as a red dotted line. Left: The U-shape is tiled up to the shorter
leg (red tile). Right: A widget extends into the U-shape and the U-shape
is tiled only partially.

in the orthogonal polygons are identified. A U-shape has a
horizontal edge and two upwards-pointing vertical legs, the
two neighboring edges. In general, the length of the legs can
differ (Figure 13). In a second step, the identified U-shapes
are tiled. Each U-shape is tiled up to its shorter leg (Figure 13
left). As depicted on the right of Figure 13, it is possible that
a widget may extend into a U-shape. In this case the U-shape
is only filled up to this widget. When inserting a new tile, new
U-shapes may be created and these U-shapes must be added
to the list of U-shapes.

After tiling all U-shapes, all orthogonal polygons are com-
pletely tiled and the layout becomes non-overlapping. More-
over, the requirement that a layout has well-defined layout
sizes is satisfied, as the inserted tiles conserve the topology
of the widgets relative to each other. When tiling U-shapes,
the inserted tiles become “row-like” (Figures 12 and 13). By
choosing C-shapes instead, tiles become “column-like”. This
may affect the resize behavior, i.e., if widgets move horizon-
tally or vertically relative to each other. By default, ALE pro-
duces “row” tiles, but the user can toggle this.

If there are n widgets in the layout, then the empty areas can-
not have more than 4n + 4 corners. This gives us a small
linear bound on the number of necessary constraints, as we
need only two minimum size constraints per tile. In general,
the tiling will have to be recomputed if a layout is modified.

After adding all non-overlap constraints identified by this al-
gorithm the layout becomes non-overlapping. Moreover, the
requirement that a layout can only have a single minimum
and preferred size is satisfied, as the inserted tiles keep the
orientation of the widgets towards each other constant.

When to Add Non-Overlap Constraints
For all edit operations discussed above and to test an oper-
ation for applicability, the operation is temporarily applied,
the resulting specification solved, and then it is verified for
soundness. As a first step, all existing non-overlap constraints
are removed from the current layout so as not to interfere with
the change. After the layout operation is temporarily applied,
non-overlap constraints are inserted for the new specification.
If the resulting specification is solvable, the operation can be
applied. Otherwise the previous layout and non-overlap con-
straints are restored. As a last step of a successful operation,
the solver recalculates the minimum, maximum and preferred
layout sizes. If necessary, the parent window size is updated
to fit the modified layout.

Figure 14. Left: Constraint list. Top-right: Editing canvas. Bottom-
right: Constraint edit dialog. The selected constraint “User 1”
(ComboBoxheight = 20) conflicts with the minimum height constraint
of the combo box (ComboBoxheight ≥ 23). Conflicting constraints are
marked in the list and the corresponding widget is highlighted.

GENERAL CONSTRAINT EDITING
Using the new edit operations described above it is already
possible to specify a large set of layouts. However, it may be
necessary to add additional constraints manually in order to
achieve certain layout specifications. For example, the width
of a widget may be specified to be a multiple of the width of
another. Another case is placing a widget globally centered in
a layout, between other widgets. To fulfill the completeness
requirement, such general constraint editing has to be sup-
ported. This section describes how manual editing techniques
for linear hard and soft constraints can work together with the
new edit operations. Moreover, we discuss how a layout can
still be kept sound (non-overlapping and solvable).

The first step towards general constraint support is to per-
mit the creation of arbitrary horizontal or vertical tabstops,
not associated with widgets. Adding new tabstops relative
or absolute to other tabstops in a constraint-based layout has
been proposed [8]. In existing constraint-based GUI builders,
constraints can be specified between two tabstops of differ-
ent widgets. For general constraint editing, one only has to
extend this to support arbitrary tabstops and also a (theoreti-
cally) unlimited number of tabstops. It is still possible to use
the new edit operations introduced above, as they do not rely
on every tabstop being connected to a widget. However, we
still have to discuss how a layout specification can be kept
non-overlapping. Furthermore, the creation or modification
of manual constraints may create conflicts with other con-
straints. Figure 14 shows ALE’s constraint editing interface
with an example. Conflicting manual constraints are marked
in the constraint list.

Ensuring Non-Overlapping Layouts
With our new edit operations it is only possible to connect
widgets to others in the layout. Thus all widgets are directly
or indirectly connected to a horizontal and a vertical layout
border tabstop. With arbitrary tabstops it is possible to po-
sition a widget so that it is not directly or indirectly con-
nected to a layout border tabstop. For example, a widget can
be aligned to a tabstop at a two-thirds position in an other-
wise empty layout. However, unconnected widgets are not a
problem when calculating the constraints for non-overlapping

layout specifications. The constraint-generation algorithm
described above works for all layouts that are initially non-
overlapping. Although a manually added constraint may af-
fect the position of widgets, the generated non-overlap con-
straints still prevent all widgets from overlapping at all times.

Ensuring Solvable Layouts
There are two types of conflicts that may occur with general
constraints. First, a manually added constraint may conflict
with other manually added constraints or with those of layout
areas, e.g., violate the minimum size constraint of a widget.
Secondly, when performing an edit operation, the resulting
layout may conflict with manually added constraints. Only
hard constraints can cause conflicts and ALE uses these only
for minimum sizes and non-overlap. There are several pos-
sible strategies to detect and handle conflicting constraints.
Here we outline our solution.

By solving the layout after each edit operation on a manual
constraint, it is possible to determine whether the constraint
causes a conflict. If a manual constraint edit operation trig-
gers a conflict, the simplest solution is to disable the manual
constraint. If one of the new edit operations triggers a conflict
with a manual constraint, we search for conflicting manual
constraints and disable them. We choose to disable conflict-
ing manually added constraints, so that the user can recover
from conflicts more easily (Figure 14). This is less drastic
than Xcode, where manual constraints are removed automati-
cally when a widget is moved to a problematic position. ALE
also shows conflicts in the constraint list to make it easier for
the user to understand the problem.

In general, isolating conflicting constraints is a hard problem,
known as maximum feasible subset (MaxFS). One simple so-
lution is to remove one or more constraints from the system
and test whether the conflict exists in the remaining system.
This has to be repeated until the smallest set of constraints
that makes the layout solvable again has been removed. Since
the system has to be solved for each step, this is expensive.
However, conflicts are relatively rare, and the common case
where no conflict is introduced can be detected by solving
only once. A single conflicting constraint can be found in
O(log n) solving steps, using a binary-search-like algorithm.
Furthermore, for our new edit operations and manually added
constraint edits, all involved constraints and affected tabstops
are known. We know which tabstops have possibly caused
the conflict and search for conflicting manual constraints that
(directly or indirectly) use these tabstops. This simplifies the
problem and makes the search more efficient. In practice, the
search usually completes in less than 100ms.

PREVIEW OF RESIZE BEHAVIOR
When constructing a user interface, designers usually con-
struct a reasonably sized instance of the layout. Current GUI
builders then permit designers to test the window resize be-
havior manually. However, this is error-prone, as the designer
may forget to test all aspects of the resize behavior. A com-
mon problem scenario is that the user has connected a widget
to a wrong tabstop. An automatic preview of the resized user
interface, for both increased and decreased sizes, can reveal

Figure 15. Enlarged and minimum size preview for a layout. The left
window shows the preferred size, the bottom the minimum size and the
right the enlarged size. Here it becomes visible that the list and the but-
ton are not connected to each other.

this. Yet, such preview windows consume precious screen
real estate. Also, a small increase or decrease may only yield
differences that are not big enough to (easily) see. To address
this, we introduce the idea of optimal resize previews. The
goal of these previews is that the user is able to see the resize
behavior of the layout quickly, using minimal screen real es-
tate. Such an optimal resize preview shows the window both
at the minimum size and at another size, with a clearly visible
size difference relative to the construction window for every
widget or constraint, so that the user can see whether the lay-
out specification is correct.

The minimum layout size shows the layout in the most com-
pact form. To determine this size, the hard constraint for the
overall layout size is replaced by a strong soft constraint that
sets the layout size to zero. This makes the layout as small
as permitted by its hard constraints, i.e., minimum size ones.
One option for a larger size would be the preferred layout
size. However, this is non-optimal, as this size may not signif-
icantly differ from the minimum size in all aspects. Thus, we
show a second preview that is enlarged enough to enable the
user to easily see all size changes relative to the construction
window. The just noticeable difference between two simul-
taneously visible line segments is less than 5 percent of the
length [21]. To ensure that our resize visualization is above
this threshold, we double the increase by default to 10% and
also introduce a minimum increase, at least 10 pixels larger.
The user can adjust these two parameters according to pref-
erences and screen pixel densities. To calculate the enlarged
size for each widget, we temporarily change the preferred size
of every widget to be 10% larger and at least 10 pixels larger
than the size in the construction window. Then we compute
the size of this modified layout and show it (Figure 15).

DISCUSSION
Here we discuss some of the consequences of the design de-
cisions behind ALE in more detail. ALE uses layout areas
to place widgets, and these areas automatically manage all
necessary size constraints. This makes editing simpler as all
corresponding constraints are hidden from the user. Our use
of a quadratic objective function ensures that the preferred
size soft constraints are uniquely determined. This makes it
impossible to create under-constrained GUIs and makes lay-

outs created with ALE predictable. Also, this approach leads
to aesthetically more pleasant layouts [28].

The new edit operations make it easy to create and edit lay-
outs quickly. For example, automatically moving existing
widgets aside saves significant time. Also, inserting a widget
into the whole available empty space simplifies some tasks.
In general, users need to perform fewer steps. Our previ-
ous user study confirms this [29]. Since all non-overlap con-
straints are handled by the system, there is no need to vi-
sualize them. There is also no need to display intrinsic size
constraints. Thus only manually added constraints are shown,
as appropriate. Furthermore, ALE displays tabstops only on
demand, and only those that are relevant for the current oper-
ation. This leads to a less cluttered design view and permits
designers to concentrate on the layout itself.

Moreover, ALE automatically generates non-overlapping lay-
out specifications. This not only reduces the number of con-
straints that have to be created and maintained, but also re-
duces the potential for design errors. Tiling the empty space
prevents widgets from overlapping, and has the side effect
that the extreme layout sizes are well-defined. The designer
has some control over this by toggling the tiling algorithm to
work horizontally or vertically.

With an increasing number of widgets, the number of tab-
stops also increases and it may become difficult to select the
correct tapstop in a “dense” area. In our experience, this is
only rarely the case. One solution is to use snap-and-go [2],
as long as each tabstop is at a distinct location. Another is
to automatically merge all tabstops at the same location. We
will explore whether this leads to unexpected results in future
work.

Our current implementation of the active set method is not
optimal, as it uses a dense matrix representation. The con-
straint system has to be solved each time the layout is resized,
which happens fast enough. Yet during the edit process the
layout has to be solved even more frequently in order to ten-
tatively test a new layout specification. In ALE this usually
takes less than 100ms (Intel Core 2 Duo 3GHz), which is suf-
ficient for interactive use and keeps the system responsive and
usable at all times. Also, our implementation of the algorithm
for generating non-overlapping layout specifications does not
guarantee a minimal set of constraints, as some unnecessary
constraints may be inserted. Since the runtime performance
of an application is more important than the editing process,
a pre-solve process could remove redundant constraints.

ALE’s source code is available on github 12. At a recent open-
source meeting (BeGeistert, November 2012) we received
much positive feedback on ALE.

CONCLUSION
This paper has presented ALE, a GUI builder that makes
it possible to create and edit constraint-based layouts with
simple operations. ALE’s new edit operations automatically
keep the layout sound and solvable. They also keep widgets
aligned relative to each other, which leads to well-structured

12https://github.com/czeidler/haiku

https://github.com/czeidler/haiku

layouts. Through a new algorithm that automatically gen-
erates non-overlap constraints, ALE can create layouts that
are guaranteed to be non-overlapping for all possible layout
sizes. We have also discussed how ALE’s edit operations can
be combined with general constraint editing, and how con-
flicts are resolved. This keeps common layout editing tasks
easy, while making arbitrary constraint-based layouts possi-
ble. Moreover, we have introduced optimal resize previews
to help GUI designers validate the resize behavior of a layout
specification. These real-time previews show the layout at a
minimum and a sufficiently enlarged size, which optimizes
the screen space used for the previews.

In the future, we plan to integrate a sparse matrix represen-
tation into the active set solver to accelerate interactions in
the GUI builder further. This is a fairly common optimiza-
tion. Moreover, we plan to add a pre-solver to prune the
constraint system further and improve performance. In ex-
ceptional cases designers may want widgets to overlap, and
we might explore this in the future. Furthermore, the inter-
face for manual constraint editing could be improved, e.g., to
make it easier to center widgets globally in the layout, similar
to Xcode.

REFERENCES
1. Avrahami, G., Brooks, K. P., and Brown, M. H. A

two-view approach to constructing user interfaces.
SIGGRAPH (1989), 137–146.

2. Baudisch, P., Cutrell, E., Hinckley, K., and Eversole, A.
Snap-and-go: helping users align objects without the
modality of traditional snapping. CHI (2005), 301–310.

3. Borning, A., Lin, R. K.-H., and Marriott, K.
Constraint-based document layout for the web.
Multimedia Syst. 8, 3 (Oct. 2000), 177–189.

4. Borning, A., Marriott, K., Stuckey, P., and Xiao, Y.
Solving linear arithmetic constraints for user interface
applications. UIST (1997), 87–96.

5. Fletcher, R. Practical methods of optimization; (2nd
ed.). Wiley-Interscience, 1987, ch. 10.3.

6. Galitz, W. The essential guide to user interface design:
an introduction to GUI design principles and
techniques. Wiley, 2007.

7. Gleicher, M. A graphics toolkit based on differential
constraints. UIST (1993), 109–120.

8. Hashimoto, O., and Myers, B. A. Graphical styles for
building interfaces by demonstration. UIST (1992),
117–124.

9. Heim, S. The resonant interface: HCI foundations for
interaction design. Pearson, 2007, ch. 6.6.

10. Hudson, S. E., and Mohamed, S. P. Interactive
specification of flexible user interface displays. ACM
Trans. Inf. Syst. 8, 3 (July 1990), 269–288.

11. Hudson, S. E., and Yeatts, A. K. Smoothly integrating
rule-based techniques into a direct manipulation
interface builder. UIST (1991), 145–153.

12. Hurst, N., Li, W., and Marriott, K. Review of automatic
document formatting. DocEng (2009), 99–108.

13. Hurst, N., Marriott, K., and Moulder, P. Cobweb: a
constraint-based web browser. Australasian Computer
Science Conference (2003), 247–254.

14. International Organization for Standardization. ISO
9241-10: Ergonomic Requirements for Office Work
with Visual Display Terminals (VDT) – Part 10:
Dialogue Principles, 1996.

15. Jacobs, C., Li, W., Schrier, E., Bargeron, D., and
Salesin, D. Adaptive document layout. Commun. ACM
47, 8 (Aug. 2004), 60–66.

16. Karsenty, S., Landay, J. A., and Weikart, C. Inferring
graphical constraints with Rockit. HCI’92 (1993),
137–153.

17. Lutteroth, C., Strandh, R., and Weber, G. Domain
Specific High-Level Constraints for User Interface
Layout. Constraints 13, 3 (2008).

18. Molich, R., and Nielsen, J. Improving a
human-computer dialogue. Commun. ACM 33, 3 (Mar.
1990), 338–348.

19. Myers, B. A. User-Interface Tools: Introduction and
Survey. IEEE Software 6 (1989), 15–23.

20. Myers, B. A., and Buxton, W. Creating
highly-interactive and graphical user interfaces by
demonstration. SIGGRAPH (1986), 249–258.

21. Ono, H. Difference threshold for stimulus length under
simultaneous and nonsimultaneous viewing conditions.
Perception & Psychophysics 2 (1967), 201–207.

22. Scoditti, A., and Stuerzlinger, W. A new layout method
for graphical user interfaces. IEEE (2009), 642–647.

23. Singh, G., Kok, C. H., and Ngan, T. Y. Druid: a system
for demonstrational rapid user interface development.
UIST (1990), 167–177.

24. Soltan, V., and Gorpinevich, A. Minimum dissection of
a rectilinear polygon with arbitrary holes into rectangles.
Discrete & Computational Geometry 9, 1 (1993), 57–79.

25. Vlissides, J. M., and Tang, S. A unidraw-based user
interface builder. UIST (1991), 201–210.

26. Weber, G. A reduction of grid-bag layout to Auckland
layout. Australasian Software Engineering Conference
(ASWEC) (April 2010), 67 –74.

27. Zanden, B. V., and Myers, B. A. The Lapidary graphical
interface design tool. CHI (1991), 465–466.

28. Zeidler, C., Lutteroth, C., and Weber, G. Constraint
solving for beautiful user interfaces: how solving
strategies support layout aesthetics. CHINZ (2012),
72–79.

29. Zeidler, C., Stuerzlinger, W., Lutteroth, C., and Weber,
G. Evaluating direct manipulation operations for
constraint-based layout. INTERACT’13 (to appear).

	Introduction
	Contributions

	Requirements for Layout Editing
	Related Work
	The Auckland Layout Editor (ALE)
	ALE Layout Edit Operations
	Inserting a Widget
	Inserting into an Empty Area
	Inserting between Tabstop and Area

	Removing Widgets
	Moving Widgets
	Swapping Two Widgets
	Resizing a Widget
	Filling Gaps

	Non-Overlapping Layouts
	Non-Overlap of Created Layouts
	Non-Overlapping Layout Specifications
	Tiling of Empty Areas

	When to Add Non-Overlap Constraints

	General Constraint Editing
	Ensuring Non-Overlapping Layouts
	Ensuring Solvable Layouts

	Preview Of Resize Behavior
	Discussion
	Conclusion
	REFERENCES

