
1

Load Balancing for a Parallel Radiosity Algorithm

W. Stürzlinger, G. Schaufler and J. Volkert

GUP Linz

Johannes Kepler University Linz

Altenbergerstraße 69, A-4040 Linz, Austria/Europe

[stuerzlinger | schaufler | volkert]@gup.uni-linz.ac.at

Tel.: +43 732 2468 9228

Fax: +43 732 2468 10

Abstract

The radiosity method models the interaction of light between diffuse sur-
faces, thereby accurately predicting global illumination effects. Due to the high
computational effort to calculate the transfer of light between surfaces and the
memory requirements for the scene description, a distributed, parallelized version
of the algorithm is needed for scenes consisting of thousands of surfaces.

We present several load distribution schemes for such a parallel algorithm
which includes progressive refinement and adaptive subdivision for fast solutions
of high quality. The load is distributed before the calculations in a static way. Dur-
ing the computation the load is redistributed dynamically to make up for individual
differences in processor loads. The dynamic load balancing scheme never gener-
ates more data packets than the original algorithm and avoids overloading proces-
sors through actions taken by the scheme.

1 Introduction
Radiosity has become a popular method for image synthesis due to its ability to generate
images of high realism. It was first introduced to computer graphics by Goral et al. [Gora84].
Further research resulted in the progressive refinement method, which quickly produces good
approximations of the final solution [Cohe88]. For recent developments see [Cohe93],[Sill94].

Common to all these methods is the representation of the surfaces of the environment by a
mesh of quadrilaterals and triangles. These “patches” are used to store the radiosity on the
respective part of the surface.

A formfactor is a value describing the “influence” of two patches onto each other. These form-
factors were first calculated by the use of a hemicube [Cohe85]. A hemicube is placed around
the centre of a patch and all other patches are projected onto its surfaces. The projected area
gives an estimate for the formfactor between the patches. As this estimate of the formfactors
may be inexact even for simple cases [Baum89], other methods for computing the formfactors
were suggested [Wall89], [Sill89], [Mall88], [Tamp91].

During the calculation of the formfactors the visibility calculations account for most of the
computation time of the radiosity method (e.g. 70 - 95%) and the memory requirement
increases with the number of patches. These problems led to the development of parallel
implementations of the progressive refinement radiosity method [Baum90], [Reck90],
[Feda91], [Chal91].

2

1.1 Progressive Refinement

The radiosity method partitions the surfaces of the scene in small, flat patches and computes
the illumination for each of those patches. The radiosity of a patch is determined by the radios-
ity it emits directly plus all light that is reflected. This is described by the radiosity equation

where

• n is the number of the patches.

• Bi is the radiosity of thei-th patch.

• Ei is the emitted radiosity of thei-th patch.

• ρi is the reflectivity of thei-th patch.

• Fi,j is the formfactor from patchi to patchj.

The linear equation system defined above can be solved with an iterative Gauss-Seidel solution
method and converges quickly in practice. As the memory requirement for the formfactor
matrix is proportional ton2 this method becomes impractical for largern (n > 10000). Also the
computational effort to compute allFi,j becomes prohibitively large.

The progressive refinement method [Cohe88] uses a reordering of the solution process which
just needs to calculate (and store) one column of the matrix per iteration step. The patch with
most unshot radiosity is selected as the shooter and its radiosity is distributed to all other
patches in the environment by calculating form factors from the shooter to the receiving
patches. While the solution converges an intermediate picture can be displayed after each iter-
ation step.

1.2 Patches and Elements

If the patches are too big, the quality of the approximation of the illumination function across
the objects’ surfaces will be poor. One solution is to use smaller patches which increases both
memory and cpu time consumption. However, for shooting the radiosity bigger patches have
been found to give sufficiently accurate results and, therefore, a two-level hierarchy of patches
and elements was proposed by Cohen et al. [Cohe86]. Each patch is subdivided into elements.
The radiosity is computed for all elements which are used during display of the solution. The
average of the element radiosities is used as the patch radiosity for shooting.

1.3 Adaptive Subdivision

Adaptive subdivision [Cohe93] extends the two level hierarchy of patches and elements to a
hierarchy of several levels: whenever the radiosities at the corners of an element differ by more
than a given threshold the element is subdivided into several smaller elements and only the
influence of the current shooter must be recalculated for the new elements. As a result more
elements are generated in areas of large illumination variations (shadow boundaries) and a bet-
ter approximation of the illumination function is achieved.

Bi Ei ρi Fi j, Bj
j 0=

n 1–

∑+= (1)

3

2 Parallelization of the Progressive Refinement Method

2.1 Previous Research

Parallelizations of the progressive refinement method have been proposed by Baum [Baum90]
for a multiprocessor workstation and Recker [Reck90] for a cluster of workstations. Feda
[Feda91] and Chalmers [Chal91] presented an implementation on a transputer network with
local memory on each transputer.

Both the hemicube used by Baum and Feda and the analytical method used by Chalmers and
Recker suffer from the problem that the formfactors and the visibilities are determined using
the shooter as the projection centre which leads to noticeable artifacts. A better method is to
calculate formfactors and visibilities directly for each receiver.

Even most recent implementations such as those by Capin et al.[Capi93], Ng et al. [Ng93] and
Lamotte et al. [Lamo93] are not easily extended to parallel computers of several hundred proc-
essors. Capin uses one ring of processors where round trip times become prohibitively large.
Ng and Lamotte use master-slave approaches where the master soon becomes the bottle neck.

In the following sections we assume that we have a number of processors with local memory
and an interconnecting network.

2.2 Parallel Progressive Refinement

This paper presents an approach based on the calculation of formfactors by raycasting as
described by Wallace [Wall89]. Raycasting is used to determine the visible parts of the shooter
as seen from each receiving patch. The formfactor of these visible parts is then calculated
using the analytical solution to the contour integral. The visibility is determined by subdividing
the shooter regularly intoM parts and casting a ray from the receiving patch to each of these
parts.

We distribute then patches evenly among theN processors, and each processor computes the
radiosity for it’s patches. For visibility computations we must store the complete scene
geometry on each processor. Therefore, the maximum number of patches which can be han-
dled by the algorithm is limited by the available memory on each processor. In section 3 we
will show how this algorithm can be extended for larger numbers of patches.

The following steps are performed until the solution has converged:

• All processors send their local shooter to the master processor, i.e. the patch which
has the most unshot radiosity.

• The master processor chooses the global shooter and sends this information to all
processors. Note that the shooter-geometry and the associated radiosity values are dis-
tributed to all processors in this step also.

• The following steps are performed on all processors in parallel:

For each receiving patch we determine the visibility of the shooter by casting rays
to the shooter. Each ray is intersected with all other patches. For the visible parts
the geometric formfactor is calculated and the resulting contribution is added to the
receiver’s radiosity.

In contrast to many previously presented algorithms, no radiosity values need to be updated on
other processors. The only communication overhead is generated by the selection and distribu-
tion of the shooter once for each iteration step and can be optimized using the topology of the
parallel machine.

n
N

4

After every p-th iteration (p is user selectable) an intermediate picture can be rendered by
sending all patches to a graphics workstation. This image generation is not discussed further in
this paper.

3 Parallel Visibility Calculation
The major shortcoming of the algorithm presented in section 2.2 is that the number of patches
is limited by the available memory on each processor because the visibility of the shooter is
determined locally.

When there is not enough memory to store all patches on one processor the data transfer over-
head becomes prohibitively large if patch geometries are retrieved from other processors
[Feda91], [Chal91].

Instead of transferring patches to compute visibility, we transfer the sampling points with
respective visibility information. Using a fixed subdivision of the shooter intoM (e.g. 16 or 64)
parts the visibility for each part is determined by casting a ray to the part’s centre. The ratio of
all visible parts to the total number of parts gives an approximation to the visibility of the
shooter from the sampling point. This visibility information for each sampling point can be
stored in a bit vector of lengthM.

Once the scene patches are evenly distributed among the available processors, every processor
can calculate the visibility of the shooter using its set of patches. The binary AND operation of
the visibility vectors of all processors determines the visibility of the shooter with respect to
the whole scene.

Stürzlinger et al. [Stür94c] proposed to arrange the processors in a ring which is used as a pipe-
line for packets of sampling point. Each processor generates a packet, sends it around the ring,
computes the local visibility of the samples in the packet and ANDs it to the visibility vectors
in the packet. When the packet returns to the processor it originated from the local visibility is
ANDed and the form factors can be calculated.

3.1 Optimized Parallel Visibility Calculations

As long as the processors have enough local memory so that not all of them are needed to store
the samples and the scene, more than one ring can be used in parallel. The processors are
organized into several separate rings and the patch geometries are stored once in each ring.
One processor holds the patches and elements it computes radiosities for and a set of patch
geometries for visibility computations.

In figure 1 an example patch assignment for a scene consisting of 6 patches onto 2 rings with 3
processors each is shown. The bold numbers (p1 - p6) denote patches for which radiosity is
calculated and the italic numbers (g1-g6) denote patch geometries stored for visibility calcula-
tions.

The geometric formfactor and the maximum energy transferred between the sampling point
and the shooter gives a measure how precise visibilities need to be calculated and how many
rays must be cast to the shooter.

4 The Global BSP-Tree
The overwhelming amount of computation carried out on all processors is the intersection of
rays with scene patches to determine the visibility of the shooter. A BSP-tree is commonly
used to speed up the intersection of rays with a large number of polygons. Polygons are classi-

5

fied as lying in one or more of the subspaces defined by the BSP-tree. Only those polygons sit-
uated in subspaces penetrated by the ray must be considered (e.g. [Sung92]).

Caspary et al. [Casp89] introduced a new method of storing such a BSP-tree in the local mem-
ory of processors of a parallel computer. The upper part of the tree from the root node down to
some predetermined level of subdivision is stored on all processors. This part of the BSP-tree
is referred to as the global BSP-tree. The subtrees below the global BSP-tree are each stored on
one processor only. All other processors replace the subtree with a reference pointing to the
processor storing the respective subtree.

Note that one processor may store more than one subtree and that the global BSP-tree is not
balanced (figure 1).

During setup the global BSP-tree is generated on the host computer and broadcast to all proc-
essors. This global BSP-tree defines a subdivision of the scene-space which is the same on all
processors. Now the patches are broadcasted to the processors as well and all processors in
parallel filter out the patches which intersect their subspaces and insert them into their local
subtree.

Figure 1 Sample patch assignments for 2 rings with 3 processors each.

p1

p3 p2

g1 g2

g3 g4g5 g6

p4

p6 p5

g1 g2

g3 g4g5 g6

Figure 2 The global BSP-tree

Subtree
on Proc 0

Subtree
on Proc 1

Subtree
on Proc 2

Subtree
on Proc 1

Subtree
on Proc 0

Subtree
on Proc 3

Global BSP-Tree

6

The global BSP-tree allows each processor to determine for any ray which processors must
contribute to the intersection of the ray with all polygons in the global BSP-tree. On the ring-
topology of processors introduced by Stürzlinger [Stür94c] it can be calculated in advance to
which processors in the ring the packet must be sent and which can be left out. This informa-
tion is added to the contents of the packet as a processor vector.

4.1 Processor Vectors

The processor vector is an array of flags in the sample packet containing one flag for each
processor in the ring. If the flag for a processor is set, the sample packet must be sent to and
processed by the corresponding processor. By the use of the global BSP-tree the processor vec-
tor can be computed by any processor, in particular by the processor generating the sample
packet. Whenever a packet is sent around the ring the next processor is determined by finding
the next set flag in the processor vector, thereby leaving out processors which do not influence
the visibility bitvector of the samples in the packet and reducing the communication in the
rings.

Two user defined limits determine the maximum number of samples in one packet and the
maximum number of processors which must be visited in the ring. If one of the limits is
exceeded, no more samples are added to the packet and the packet is processed by the ring.

5 Static Load Balancing
At the begin of each iteration all processors are synchronized by the selection of the shooting
patch. As a result the slowest processor dictates the total iteration time. Load Balancing aims at
distributing storage and computational demand equally among processors so that the iteration
time is approximately the same on all processors. Static load balancing distributes the data
needed during computation in a way so that comparable load can be expected on all proces-
sors.

5.1 Static Load Balancing of Radiosity Samples

Supposed that each radiosity element causes the same amount of computation equal load can
be expected on each processor if each processor computes the same amount of element radios-
ities. As different patches are subdivided into different numbers of elements it is insufficient to
only assign the same amount of patches to one processor. Patches with large numbers of ele-
ments must be split into smaller ones to allow an even distribution of elements among proces-
sors [Stür94b]. This necessity slightly increases the total number of patches but results in
considerable gain in processing speed as equal amounts of computation are initially assigned
to each processor (see table 2 in section 8 for timings of this load balancing scheme applied in
combination with the scheme described in the following section 6.2). When adaptive refine-
ment is used the balance of computation will be destroyed as new elements are introduced on
selected processors. It cannot be determined in advance (during setup) where such refinement
will occur and, therefore, static load balancing is not suitable to compensate for the resulting
imbalance. A dynamic scheme is needed which is introduced in section 7.2.

5.2 Static Load Balancing of Visibility Complexity

For each sample on an element the visibility of the shooter must be determined. The complex-
ity of these visibility tests is primarily due to the number of polygons stored in one processors
local BSP-trees. Therefore, the size of the global BSP-tree must be chosen big enough, so that
approximately the same number of patches is assigned to each processor by selecting the local

7

BSP-trees stored on it. The selection of the global BSP-tree size is subject to a memory vs. dis-
tribution quality trade-off: the bigger the global BSP-tree, the lower variations in the distribu-
tion of polygons onto processors can be achieved. At the same time a bigger global BSP-tree
results in more memory consumption on each processor as the global BSP-tree must be stored
on each of them. The time savings attained with static load balancing of visibility complexity
are summarized in table 2 in section 8 and should be compared with table 1 which lists the cal-
culation times without static load balancing.

However, the time needed to compute the visibility tests may still vary when large subtrees of
the processor’s local BSP-tree can be classified as not being intersected by the ray. Such varia-
tions cannot be compensated for by static load balancing as they are not predictable at the
beginning of the computation. Moreover, adaptive refinement can introduce an arbitrary
number of additional elements on any processor which increases this processor’s load signifi-
cantly.

6 Dynamic Load Balancing
Dynamic load balancing tries to influence individual processors iteration times by transferring
work from loaded to less loaded processors in order to speed up the completion of one itera-
tion.

6.1 Dynamic Load Balancing of Visibility Tests

As a first attempt dynamic load balancing of visibility tests was tried but did not yield satisfac-
tory results for reasons which were not evident from the beginning. In this scheme the time
needed to process all sample packets arriving at a processor in a ring is used as a measure for
the load of the processor. After each iteration loaded processors are determined and an ade-
quate part of their work for the next iteration is transferred to less loaded processors.

As the computational load is primarily due to visibility tests the distribution of the patches
must be rearranged to perform dynamic load balancing of visibility tests. However, changing
the distribution of patches among processors and rearranging the BSP-tree is a very costly
operation. Moreover the load of the last iteration is rarely a good estimate for the load of the
next iteration as a new shooter is selected for each iteration and the spatial relations of samples
and shooter change completely. The implementation of such a dynamic load balancing scheme
of visibility tests did always slow down the iterations and, therefore, no timings are given in
section 8.

6.2 Dynamic Load Balancing of Sample Packets

A better possibility for dynamic load balancing is to transfer computation from loaded proces-
sors to processors which already finished the current iteration. In this way the load of the cur-
rent iteration is used to guide the balancing of computations. Moving the computation of a
sample packet from one ring to another means transfering all the visibility computations for
this packet to the other ring at very little cost: all the information for these computations are
already available on the other ring and this ring also has the available capacity to process the
packet as the processor is already idle and will not generate any further packets itself.

The idea of balancing sample packets is to make use of processors which have already finished
generating sample packets in the current iteration and identify them as idle. An idle processors
in one ring request sample packets from loaded processors in other rings, has them processed
in its own ring and sends them back to the loaded processor. These steps are repeated until all
processors have finished the current iteration.

8

The figure below depicts the involved steps in detail: when processor A in ring 1 has finished
the calculations on the last sampling package generated by it, it sends an “Idle” message to a
processor B in a randomly chosen other ring but at the same position in the ring. If Processor B
still has unprocessed sample packets it sends a packet P to processor A. Processor A initializes
the visibility computations of packet P, sends it around the ring and returns it to Processor B
afterwards. Processor A repeats the random polling until all processors have finished the cur-
rent iteration.

The method of random polling was chosen as the work of Kumar et al. [Kuma94] shows that
this method is in general superior to all other methods considered by them in a comprehensive
survey, especially when used with massively parallel computer systems.

As idle processors do not generate any packets themselves but only introduce one packet from
another ring at a time this scheme guarantees that a ring with idle processors is not overloaded
by too many packets from other rings. The amount of packets circulating in a ring is not
increased by this dynamic load balancing scheme as there are never more packets in the ring
than processors.

Processors which are polled for load balancing packets and are already idle themselves
respond with a list of processors which they already found to be idle so that unnecessary ran-
dom polling is minimized. A parallel termination algorithm determines when the global
shooter selection can initiate for the next iteration.

Table 3 in section 8 shows the time advantage of this dynamic load balancing scheme when
compared to the tables before and table 4 gives timings for dynamic load balancing in combi-
nation with full static load balancing.

7 Implementation and Results
Our approach was implemented on an nCube2S with 512 processors - a distributed memory
computer the nodes of which are connected with a hypercube topology network. The perform-
ance of a single processor is approximately 3 MFLOPS.

As a basis we used the progressive radiosity program described by Stürzlinger et al. [Stür93].
The algorithm has been improved to use a global BSP-Tree (described in section 4) and it
includes static load balancing of radiosity samples (see section 6.1) and of visibility complex-
ity (see section 6.2). Moreover two dynamic load balancing schemes have been implemented

Figure 3 Dynamic Load Distribution of Sample Packets

Ring 1 Ring 2

ProcessorA B

➀ “Idle”

➁ Packet P

➃ Processed P

➂ Calculation
of Visibility

for P

A

B

Idle

Loaded

9

(section 7.1 and section 7.2) of which the latter performs very well both in combination with
and without static load balancing. The tests have shown dynamic load balancing to be particu-
larly useful with adaptive refinement as it increases the number of certain samples in a way not
predictable before the begin of the calculations [Scha95].

All times were measured using sample packets of 50 samples each. In the following tables and
figuresN denotes the number of processors andR denotes the length of the rings. A scene of a
simple living room consisting of 4738 patches with a total of 17251 elements was used. Due to
the memory constraints it took at least rings of 4 processors to store the scene and at least a
total of 8 processors to store all the samples. All timings are given in seconds for the average of
the first four iterations of the algorithm to complete. Later shooting operations generally take
less time as less energy is distributed. Configurations where the processors ran out of local
memory are marked “out of mem”. Table 1 summarizes run-times with load balancing disa-
bled.

Table 1 No Load Balancing (N=#processors, R=#rings)

Table 2 gives the run-times of the algorithm when static load balancing has been performed
before the iterations are started.

Table 2 Static Load Balancing (N=#processors, R=#rings)

N \ R 4 8 16 32 64 128 256

4 out of mem

8 out of mem 155

16 out of mem 79 129

32 35.5 51 74 117.5

64 29.5 38.3 45.3 66.3 113.3

128 31.5 39 46.5 49 67.5 108.5

256 29.5 36 39 47 67.3 74.8 81

N \ R 4 8 16 32 64 128 256

4 out of mem

8 out of mem 155

16 out of mem 79.5 129

32 25 37.5 54 82.5

64 13.3 20.5 28.5 48.3 74.8

128 7 8.5 13 21.5 36.5 57

256 5 8.3 7.8 9 13.3 16.3 28.3

10

The run-times for dynamic load balancing (described in section 7.2), i.e. without static load
balancing are summarized in table 3.

Table 3 Dynamic Load Balancing (N=#processors, R=#rings)

Table 4 shows the run-times for the first iteration of the algorithm when both static and
dynamic load balancing are enabled. The values given in the diagonal of the table are equal to
those given in Table 2 as no dynamic load balancing is possible with just one ring. However,
with all other configurations the combination of static and dynamic load balancing yields the
best results.

Table 4 Static and Dynamic Load Balancing (N=#processors, R=#rings)

With adaptive subdivision dynamic load balancing made a speed-up of 26% possible on a
scene with approximately 60000 patches.

The following two diagrams allow to compare the speed-up of the different load balancing
schemes for configurations with rings of 4 processors from a total of 32 to 256 processors and
for 8 processors from a total of 8 to 256 processors. The speed-up was calculated in relation to
an extrapolated timing using a serial version of the program running on a Sun 4/330. Consider-
ing the MFLOPS performance of both the Sun and one processor node of the parallel computer
the extrapolated runtime for this serial version on a single processor node is estimated to be
242 seconds.

N \ R 4 8 16 32 64 128 256

4 out of mem

8 out of mem 155

16 out of mem 73.3 129

32 32.3 39.3 65.3 117.5

64 20.5 21.5 34.3 62.8 113.3

128 15.5 14.5 20 33 56,8 108.5

256 11.5 13.3 11.3 15 28 75,5 81

N \ R 4 8 16 32 64 128 256

4 out of mem

8 out of mem 155

16 out of mem 73.5 129

32 22.8 34.8 50 82.5

64 12.5 19.5 25.3 44 74.8

128 6 7.8 12 21.5 36.5 57

256 4.8 7.8 7.5 8.5 12.3 16 28.3

11

Figure 4 Comparison of speed-up with and without static/dynamic load balancing for R = 4

Figure 5 Comparison of speed-up with and without static/dynamic load balancing for R=8

6432168421

sp
ee

d
-u

p

CPUs ld N

4
16

256128

no load balancing

static

dynamic

both

2
8

6432168421

sp
ee

d
-u

p

CPUs ld N

4
16

256128

no load balancing

static

dynamic

both

2
8

12

8 Conclusions
This paper reports on several major improvements over the parallel radiosity algorithm
described by Stürzlinger et al. [Stür94c]. First a global BSP-Tree has been introduced as a data
structure to speed up ray-patch intersections and to optimize the routing of sample packets
around the processor rings in conjunction with processor vectors.

Second, two strategies for static load balancing have been proposed: static load balancing of
radiosity samples provides an even distribution of radiosity samples and associated computa-
tions over the processors; static load balancing of visibility complexity makes best use of local
processor memory and computational capacity to solve the visibility problem which is respon-
sible of about 70-90% of the computation in a radiosity solution.

Third, two strategies for dynamic load balancing have been implemented and the second one
has been found to be particularly successful on massively parallel computers in combination
with the method of adaptive refinement.

Further research will be carried out to increase the accuracy of the form factor calculations and
to compare them to exact methods. Moreover, the existing meshing algorithms could be
improved by using discontinuity meshing to better approximate the illumination of the scene.

9 References
[Baum89] Daniel R. Baum, Holly E. Rushmeier, James M. Winget,“Improving Radiosity

Solutions through the Use of Analytically Determined Form-Factors”, Computer
Graphics (SIGGRAPH ‘89 Proceedings), July 1989.

[Baum90] Daniel R. Baum, James M. Winget,“Real Time Radiosity Through Parallel
Processing and Hardware Acceleration”, Computer Graphics (SIGGRAPH ‘90),
July 1990.

[Capi93] T. K. Capin, C. Aykanat, B. Özgüc,“Progressive Refinement Radiosiy on Ring-
Connected Multicomputers”, Parallel Rendering Symposium, pp 71-88, 1993.

[Casp89] E. Caspary, I. D. Scherson,“A self-balanced parallel ray-tracing algorithm”, Par-
allel Processing for Computer Vision and Display, P. M. Dew, R. A. Earnskaw,
T.R. Heywood (Ed.), Addison Wesley, 1989.

[Chal91] Alan G. Chalmers, Derek J. Paddon,“Parallel Processing of Progressive Refine-
ment Radiosity Methods”, in Proceedings of the Second Eurographics Workshop
on Rendering, May 1991.

[Cohe85] Michael Cohen, Donald P. Greenberg,“The Hemicube: A Radiosity Solution for
Complex Environments”, Computer Graphics (SIGGRAPH ‘85 Proceedings),
August 1985.

[Cohe86] Michael Cohen, Donald P. Greenberg, Dave S. Immel, Phillip J. Brock,“An Effi-
cient Radiosity Approach for Realistic Image Synthesis”, IEEE Computer Graph-
ics and Applications, March 1986.

[Cohe88] Michael Cohen, Shenchang Eric Chen, John R. Wallace, Donald P. Greenberg,“A
Progressive Refinement Approach to Fast Radiosity Image Generation”, Computer
Graphics (SIGGRAPH ‘88 Proceedings), August 1988.

[Cohe93] Michael F. Cohen, John R. Wallace,“Radiosity and Realistic Image Synthesis”,
Academic Press Professional, Harcourt Brace & Company, Publishers, 1993.

[Feda91] Martin Feda, Werner Purgathofer,“Progressive Refinement Radiosity on a Trans-
puter Network”, in Proceedings of the Second Eurographics Workshop on Render-
ing, May 1991.

13

[Gora84] Cindy M. Goral, Kenneth E. Torrance, Donald P. Greenberg, Bennett Battaile,
“Modelling the Interaction of Light Between Diffuse Surfaces”, Computer Graph-
ics (SIGGRAPH ‘84 Proceedings), July 1984.

[Kuma94] Vipin Kumar, Ananth Y. Grama, Nageshwara Rao Vempaty,“Scalable Load Bal-
ancing Techniques for Parallel Computers”, Journal of Parallel and Distributed
Computing 22, 60-79 (1994).

[Lamo93] W. Lamotte, F.Reeth, L. Vandeurzen, E. Flerackers,“Parallel Processing in Radi-
osity Calculations”, Computer Graphics International, pp 485-495, 1993.

[Mall88] Thomas J.V. Malley,“A Shading Method for Computer Generated Images”, Mas-
ter’s Thesis, University of Utah, June 1988.

[Ng93] Adelene Ng, Mel Slater,“A Multiprocessor Implementation of Radiosity”, Com-
puter Graphics forum, Volume 12, 5, pp 329-342, 1993.

[Reck90] Rodney J. Recker, David W. George, Donald P. Greenberg,“Acceleration tech-
nique for Progressive Refinement Radiosity”, Computer Graphics (SIGGRAPH
‘90), July 1990.

[Scha95] G. Schaufler, W. Stürzlinger, C. Wild,“Load Balancing Schemes for a Parallel
Radiosity Algorithm”, Technical Report, Institute for Computer Science, Univer-
sity of Linz, Austria, January 1995.

[Sill89] Francois Sillion, Claude Puech,“A General Two-Pass Method Integrating Specu-
lar and Diffuse Reflection”, Computer Graphics (SIGGRAPH ‘89 Proceedings),
July 1989.

[Sill91] Francois X. Sillion, James R. Arvo, Stephen H. Westin, Donald P. Greenberg,“A
Global Illumination Solution for General Reflectance Distributions”, Computer
Graphics (SIGGRAPH ‘91 Proceedings), July 1991.

[Sill94] Francois X. Sillion, Claude Puech,“Radiosity & Global Illumination”, Morgan
Kaufmann, 1994.

[Stür93] W. Stürzlinger,“FXFIRE - Global Illumination with Radiosity”, Technical Report,
Institute for Computer Science, University of Linz, Austria, December 1993.

[Stür94a] W. Stürzlinger, C. Wild, G. Schaufler,“Description and Implementation of a Par-
allel Radiosity Algorithm”, Technical Report , Institute for Computer Science,
University of Linz, Austria, July 1994.

[Stür94b] W. Stürzlinger, C. Wild,“Parallel Progressive Radiosity with Parallel Visibility
Computations”, Winter School of Computer Graphics and CAD Systems 94,
Plzen, CZ, pp 66--74, Feb. 1994.

[Stür94c] W. Stürzlinger, C. Wild,“Parallel Visibility Calculations for Radiosity”, ACPC
Paragraph Workshop, Hagenberg, Austria, pp 32-40, March 1994.

[Sung92] Kelvin Sung, Peter Shirley,“Ray Tracing with the BSP Tree”, Graphics Gems III,
Academic Press, 1992.

[Tamp91] F. Tampieri, D. Lischinski,“The Constant Radiosity Assumption Syndrome”, in
Proceedings of the Second Eurographics Workshop on Rendering, May 1991.

[Wall89] John R. Wallace, Kells A. Elmquist, Eric A. Haines,“A Ray Tracing Algorithm for
Progressive Radiosity”, Computer Graphics (SIGGRAPH ‘89 Proceedings), July
1989.

