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Display (VR HMD), and (c) Augmented Reality (AR) HMD.

ABSTRACT

Previous studies on Eye-Hand Coordination Training (EHCT) fo-
cused on the comparison of user motor performance across different
hardware with cross-sectional studies. In this paper, we compare
user motor performance with an EHCT setup in Augmented Reality
(AR), Virtual Reality (VR), and on a 2D touchscreen display in a
longitudinal study. Through a ten-day user study, we thoroughly
analyzed the motor performance of twenty participants with five
task instructions focusing on speed, error rate, accuracy, precision,
and none. As a novel evaluation criterion, we also analyzed the
participants’ performance in terms of effective throughput. The
results showed that each task instruction has a different effect on
one or more psychomotor characteristics of the trainee, which high-
lights the importance of personalized training programs. Regarding
different display technologies, the majority of participants could
see more improvement in VR than in 2D or AR. We also identified
that effective throughput is a good candidate for monitoring overall
motor performance progress in EHCT systems.
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puter Interaction (HCI); Human-centered computing—Virtual Re-
ality; Human-centered computing—Pointing; Human-centered
computing—Touch screens

*e-mail: aliza.rind@stu.khas.edu.tr
†e-mail: irene.zaugg@colostate.edu
‡e-mail: elifcelik@stu.khas.edu.tr
§e-mail: w.s@sfu.ca
¶e-mail: fortega@colostate.edu
||e-mail: ufuk.batmaz@concordia.ca

**e-mail: mine.sarac@khas.edu.tr

1 INTRODUCTION

In recent years, the affordability and accessibility of current Virtual
Reality (VR) systems has revolutionized training methods in many
different fields. These VR systems create immersion into lifelike
virtual environments that offer a promising avenue for efficient skill
development and improvement. Typically, these experiences are fa-
cilitated through Head-Mounted Displays (HMDs), providing users
with an immersive, interactive environment and clear benefits over
conventional techniques in various applications [65]. In addition,
Augmented Reality (AR) blends the tangible and virtual components
with the real environment to enrich users’ immediate surroundings
with contextually pertinent information.

Virtual training environments offer today a more effective ap-
proach to learning and skill development, as VR HMDs enable
trainees to track their progress and pinpoint areas that require im-
provement [36] while repeatedly engaging with specific, controlled
scenarios [33, 47]. Such repetitive training promotes deliberate prac-
tice and skill refinement [31]. These virtual systems closely replicate
real-world situations, providing trainees with a sense of physical
presence and allowing them to engage in training scenarios [2].
This enhanced immersion increases the engagement of the trainees
while enhancing information retention [30]. Finally, virtual training
is cost-efficient in the long run, as it reduces the need for physical
equipment, materials, maintenance, and travel expenses associated
with traditional training methods [59]. This approach can also ac-
commodate larger numbers of trainees simultaneously, ensuring
scalability and cost savings.

More specifically, in sports training, the use of VR and AR HMDs
has had a considerable influence on performance evaluation through-
out the years [1, 17, 29, 34, 39]. Eye-hand coordination training sys-
tems (EHCTSs) are one of the influential approaches for improving a
user’s reaction time. Beyond systems mounted on real 2-dimensional
(2D) surfaces (e.g., a wall) [22, 55], EHCTSs based on 2D [28, 54]
or 3D displays [13, 15, 16] have expanded the horizons of athlete
training across various sports in terms of sensory-motor abilities and



perception. They encourage athletes to respond to dynamically dis-
played visual stimuli with precise hand gestures that closely mimic
real-game conditions. This approach has proven highly effective in
enhancing athletic performance, providing athletes with a valuable
tool for skill improvement [28,54]. The commercial NIKE’s SPARQ
sensory station [51] is the most common EHCTS based on a touch-
screen display where trainees are instructed to touch a sequence
of randomly activated targets as fast and accurately as possible —
ultimately improving their reaction time and accuracy [61].

VR HMDs have been shown to be a potential alternative to con-
ventional EHCTSs using physical objects and/or interactive 2D
displays [13, 15]. Although there is a single longitudinal study on
EHCTs [48], it used only 3 participants with a VR headset and did
not comprehensively investigate motor learning. Moreover, previous
EHCTS research with AR HMDs did not demonstrate good perfor-
mance – and only evaluated the experience for a single day [13].
This could be due to the fact that AR technology is still unfamiliar to
most participants, and that its true potential might thus not emerge
after using it for only one day. Consequently, a longitudinal AR
HMD EHCT study is needed to demonstrate whether AR HMDs
can be used in EHCT systems and if they demonstrate benefits. Fi-
nally, instructing participants to focus on different strategies while
performing EHCT yields different performance and motor learn-
ing outcomes [48, 52], but a systematic comparison is still missing.
Our novel comparative analysis between a standard 2D touchscreen
display, and a VR and AR HMD also adds valuable insights to the
existing body of knowledge in the field.

This paper presents an extensive and systematic evaluation of
the impact of different display technologies and task instructions
for EHCTs based on a longitudinal user study. By tracking user
performance over time we identify long-term trends in the user ex-
perience, learning curves, and adaption patterns. This design aligns
with real-world usage scenarios, which makes our findings gener-
ally applicable. First, examining different task instructions allows
trainers to identify which specific training methods or techniques are
most effective in improving eye-hand coordination. This information
can help refine training programs, making them more efficient and
enabling targeting to the current needs of trainees. We focus on five
specific task instructions – completing tasks with the fewest errors,
the shortest time, the highest accuracy, the highest precision, or no
specific strategy to focus on. Second of all, the level of immersion
and/or familiarity with the display technology might change the task
performance or the motor learning curve for the trainees. Therefore,
we focus on three display technologies: 2D touchscreen displays,
VR HMDs, and AR HMDs. Finally, over time, individuals can adapt
to training strategies or develop new strategies on their own. Longi-
tudinal studies can capture these adaptations and help researchers
understand how individuals maintain and adapt their eye-hand co-
ordination skills over the long term. In this paper, we designed an
EHCT user study with a training process that consists of 10 days of
sessions together with a pre-training and post-training assessment.
This training approach can be used in different sports that require
eye-hand coordination, such as tennis, baseball, basketball, cricket,
and American football.

2 PREVIOUS WORK

2.1 EHCTSs with 2D Touchscreen, VR, and AR Displays
EHCTSs challenge trainees’ perceptual abilities and necessitate
rapid and precise responses to specific stimuli. This form of training
has the potential to improve cognitive processing speed, visual per-
ception, and motor coordination. Through repeated participation in
such tasks, trainees can improve functioning with their minds and
bodies to respond with greater efficiency and precision. EHCTSs
can be extended to sports training [20, 28, 31, 35, 50, 54], military
training [18], and post-injury rehabilitation [25].

Moreover, EHCTSs help trainees react faster to visual stimuli,

directly affecting the performance of trainees during sports and game
outcomes [28]. Several companies, such as Batak [55], developed an
eye-hand coordination training system with wall-mounted hardware.
EHCT can also be done on a 2D touchscreen display [45], which
is favored by trainers due to their ability to gather precise motor
performance data and provide immediate feedback. This facilitates
real-time adjustments in learning techniques and reduces the trainer’s
time commitment. Previous studies have also investigated the skill
transfer and its efficacy as a response to external factors such as daily
variations (e.g., sleepiness [61]) or technology (e.g., 2D displays [28,
35, 54, 61]).

VR HMDs have been shown to improve the user performance
and decision-making of participants during EHCT tasks [40]. For
example, a VR-based EHCTS used a grid layout of potential targets
in a virtual environment, with only one target being highlighted
at any time [15], similar to the Nike SPARQ sensory station [51].
Participants selected targets with a virtual cursor attached to their
palms while trying to rapidly and accurately select each sequentially
highlighted target by hitting their palms on a wall. Their results illus-
trated that VR HMD-based EHCTSs possess the ability to replace
existing 2D setups. Later on, the authors followed up by extending
their work to AR HMDs and by instructing participants to select
targets using a virtual cursor attached to their index fingertip [13]. In
terms of time and error rate, VR HMDs and 2D touchscreen displays
revealed similar results, while AR HMDs fell significantly short
in terms of user performance. Finally, the optimal performance in
VR-based EHCT was obtained when users interacted with mid-air
objects with increased target size, utilized their dominant hand, and
engaged in a vertically oriented task plane [16].

Another research direction regarding EHCTSs is based on the
dimension of the grid layout in which the potential targets are pre-
sented to the user. In earlier VR-based EHCTSs, a 6x6 grid lay-
out had been adopted to replicate previous 2D touchscreen display
setups [13, 15, 48]. However, investigating the gaze behavior dur-
ing EHCT tasks revealed that many users incurred significant neck
strain to see the overall targets in the 6x6 layout while using VR
HMDs [49], due to the limited field-of-view of such devices. This
result emphasized the need for EHCTS designs that maximize the
effectiveness of the gaze movements.

2.2 Performance assessment in EHCTSs
In the context of training, a central research question is how to
evaluate the performance of trainees and provide feedback [56]. In
EHCT, and to improve feedback quality and refine training strategies,
the trainer should take different assessment criteria simultaneously
into account (such as combinations of accuracy, precision, error
rate, or time) [7, 11, 17, 21, 62]. Previously, precision has been
highlighted as a primary assessment criterion for tasks involving eye-
hand coordination [9]: participants exhibit swifter task execution and
enhanced stimulus perception when emphasizing precision rather
than speed or concentration on feedback. The authors claimed that
adopting a precision-oriented approach can accelerate sensorimotor
learning and optimize skill acquisition, facilitating seamless task
adaptation [10].

On the other hand, participants might get more benefit from
the training process if they focus on certain assessment criteria to
enhance the corresponding performance [48]. Particularly, focusing
on task speed could help trainees improve their task completion time,
albeit at the potential cost of (at least temporarily) increasing their
error rate. This method not only results in notable improvements,
but also recognizes the essential role of a broader development of
psychomotor skills for eye-hand coordination tasks [20, 31].

2.3 Fitts’ Law
Fitts’ Law [24] encapsulates the dynamics of the complete hu-
man receptor-neural-effector system during pointing tasks. De-



rived from information theory, MacKenzie’s Shannon formula (in
Equation 1) [41] stands as a widely employed approach within
human-computer interaction research. It embodies one of the most
frequently utilized methods in this field.

MovementTime = a+b∗ log2

(
A
W

+1
)
= a+b∗ ID (1)

This model employs movement amplitude A and target size W, where
constants a and b are derived through linear regression. The Index
of Difficulty ID, determined by the logarithmic term, signifies task
complexity. Later on, a prominent rendition of this index was put
forth by MacKenzie [41], drawing inspiration from the Shannon
capacity theorem. This formulation has evolved into what is now
recognized as throughput based on effective measures, commonly
known as effective throughput. As per ISO 9241-411:2012, through-
put denotes the “rate of information transfer when a user is operating
an input device to control a pointer on a display” [32]. In alignment
with this, we computed throughput accordingly.

Throughput =
(

IDe

MovementTime

)
(2)

Equation 2 delineates movement time as the interval spanning
movement initiation and target selection. The effective Index of
Difficulty IDe is characterized as the “measure of user precision
attained in task accomplishment” [32] as follows:

IDe = log2

(
Ae

We
+1

)
(3)

Equation 3 introduces the effective distance Ae as the actual move-
ment distance to the target while accounting for participants’ task
performance accuracy. We denote the effective target width, de-
rived from the distribution of selection coordinates – calculated by
We = 4.133×SDx, where SDx represents the standard deviation of
selection coordinates along the task axis — as the task performance
precision [32, 42, 43]. Fitts’ Law in (Equation 1) stands as the fore-
most model for characterizing a user’s pointing performance. It
establishes a link between the user’s movement time and factors like
target size and distance between targets.

The term “throughput” plays an essential role as an assessment
criterion in VR systems and training research to combine task exe-
cution time, accuracy, and precision into a single measure [58]. This
comprehensive measure supports a quick assessment of trainee de-
velopment. Previous studies on VR-based EHCTSs [13,15,16] have
shown the value of throughput in identifying trends like decreased
precision among participants due to difficulties with stereo display
technologies [5,6,8]. Although MacKenzie and Isokoski [42] argued
for throughput’s speed-accuracy invariance, current research indi-
cates that task execution strategies may actually change it [48, 52].

Previous work also investigated the users’ effective throughput
performance with longitudinal studies. Boritz et al. conducted a user
study that spanned four sessions [19]. Mughrabi et al. conducted a
ten-day training session but did not explore different assessment cri-
teria [48]. After all, using only effective throughput might decrease
the ability to monitor motor abilities. Consequently, to best support
trainees, it is crucial to keep track of each different performance
criterion, such as time, accuracy, or precision, and draw conclusions
only based on a more thorough analysis.

Hence our study employed effective throughput to evaluate user
performance. Additionally, ISO 9241-411 defines task precision
as the “measure of the user precision achieved in accomplishing a
task” [32], denoted as ID. In this context, the term “precision” refers
to the relative closeness of selected points to each other. In our study,
we use ISO 9241-411’s equations to assess participants’ accuracy
SDx and precision IDe.

3 MOTIVATION AND RESEARCH QUESTIONS

While the previous work on EHCTSs and its performance assessment
techniques indicate its potential benefits for future use, there are
many other gaps that need to be addressed. In this paper, we are
motivated to address these gaps partially by investigating the impact
of the training period and the task execution instructions and display
technologies used in EHCTSs:

Training Period: Previous EHCTSs have mostly been tested
through preliminary studies to investigate how human performance
and decision-making are affected by different display or task exe-
cution strategies [13, 15, 16]. There is one study focusing on the
impact of EHCTSs on motor learning in a systematic, longitudi-
nal study; but, instead of an extended user study, they present only
the results of a preliminary study with 3 participants with only VR
headset [48]. Similarly, the previous studies on effective throughput
go up to 4 days of longitudinal studies [19], and we did not find a
comprehensive study for longitudinal effective throughput. Thus,
the literature lacks a longitudinal study that analyzes the long-term
performance impact of HMD-based VR EHCTSs for training and
effective throughput. In this paper, we use a 10-day experimental
training protocol, where the participants’ performance was evaluated
with pre-training and post-training sessions on day-0 and day-11.
Such a longitudinal user study allows us to observe changes in be-
havior and skill acquisition over different phases of the learning
process. It also enables a more comprehensive understanding of how
performance evolves. Thus, and following a previous VR training
study [46], we set the longitudinal study duration to 10 days, which
also increases the comparability of our results.

Task Execution Instructions: Previously, a VR-based EHCTS has
been tested on participants focusing on speed, accuracy, or without a
specific task instruction [48]. However, this study did not investigate
some other important task instructions (i.e., error rate and precision),
which might be essential to improve the overall progress and task
performance of trainees in future uses of EHCTSs. This is particu-
larly important since precision had been highlighted as the primary
assessment criterion for tasks involving eye-hand coordination in
other work [9]. In this paper, we instruct the participants to perform
the EHCT tasks focusing on one of the five different task strategies:
precision and error in addition to the previously used strategies of
speed, accuracy, or without a specific task instruction.

Display Technologies: EHCTSs have been previously imple-
mented on 2D touchscreen displays, in VR HMDs, and AR HMDs
to investigate whether using different display technologies would
reveal differences in user performance. 2D displays and VR HMDs
have been reported to yield similar performance, while AR HMDs
were observed to be significantly worse than the first two [13]. Yet,
how these displays affect motor learning at the end of a longitudinal
training process is still unknown. In this paper, each participant was
asked to complete the training tasks while they were displayed on a
2D touchscreen display or in VR and AR HMDs.

In summary, our main motivation is to investigate the impact of
different display technologies and different task execution instruc-
tions for participants on different evaluation metrics as an indication
of user performance at the end of a 10-day training process. At the
end of our study, we aim to answer the following research questions:

• RQ1: Do different task execution instructions yield different
trends in different aspects of the user performance metrics? If
so, does “precision” offer the most optimal training procedure,
as previously hypothesized [9]?

• RQ2: Is “effective throughput” a reliable assessment criterion
to observe the overall performance of trainees with different
task instruction strategies over a 10-day training process? If so,
does it contribute to the speed/accuracy trade-off discussions?



• RQ3: Can VR HMDs be used as an effective display technol-
ogy for virtual EHCTSs?

4 EYE-HAND COORDINATION TRAINING EXPERIMENT

We created an EHCTS in Unity, shown in Fig. 2, following a pre-
viously presented design [48]. Participants see a 5x6 grid of gray
spherical virtual buttons with 6 cm distance between their centers,
which allows them to see and reach every target while reducing the
risk of neck strain [49]. Buttons were identical in terms of color, size,
and shape across all display technologies. At any given time, one of
these buttons is chosen as a target sphere and highlighted in yellow.
We instructed participants to select this target sphere by “clicking”
on it with their index finger. To enhance the virtual interaction and
overcome the lack of haptics, our study strategically incorporated
different visual cues for the participants during different stages of
the selection, following previous work by Batmaz et al. [15]. This
previous work highlighted the issues related to haptic feedback, as
that addition increased the execution time and lowered throughput
value when participants engaged with solid objects during virtual
target selections.

(i) When the virtual cursor associated with the finger is inside
a sphere, it is highlighted in blue. Moving the finger closer to the
target center after seeing the blue cue results in the sphere selection.
(ii) If the participant chooses the target correctly, the selection is
labeled as a “hit”, and the selected sphere becomes green. (iii) If
the participant chooses a different sphere that is not the target, the
selection is labeled as a “miss”, the selected sphere becomes red,
and the system generates a beep sound. The green and red coloring
of the spheres is maintained during the next two selections, but then
revert back to gray.

Once a selection has been made, the next target is automatically
assigned – following a straight path with one of two step sizes: North
(N2 and N4), West (W2 and W4), South (S2 and S4), and East (E2
and E4), or a diagonal path with a single step size: North-west
(NW3), South-west (SW3), South-east (SE3), and North-east (NE3).
The straight directions correspond to target distances of 12 cm and
24 cm, while the diagonals correspond to 25.45 cm. The system
randomly selects the next target among these 12 options under the
constraint that the target has not previously been used in the current
round of trials. Once there are no more unused targets that can be
reached within the constraints, the round of trials stops. On average,
each round of trials thus involved the selection of 20 targets. Each
participant took up to 10 minutes to complete the experiment in
each display technology, and each participant completed a total of

Previous incorrect 
         selection

Previous correct 
selection

Current 
selection

Next 
Target

Figure 2: An image illustrating the virtual task. Participants interacted
with a 5x6 grid of target spheres, initially all grey. The current target is
shown in yellow. When the index finger was in contact with or inside
a sphere, it was highlighted in blue – indicating a possible future
selection. The previous two selections were also shown in green if
successful and in red if missed.

180 trials for each display technology. As a result, each participant
contributed a total of 540 trials in a single day across all three display
technologies and overall 6480 trials over the 12 days. The order of
the displays was counterbalanced across participants. Assuming a
large effect size (η2=0.14, f(U)=0.4035), we performed an a-priori
power analysis to make sure that our sample size was appropriate.
With a selected sample size of 20, the analysis revealed a high level
of statistical power (0.977). This comprehensive validation supports
the robustness of our experiment design.

While a Fitts’ Law task itself may be considered straightforward,
our study systematically explores different task instructions and
different visualization environments (2D touch display, VR HMD,
AR HMD). Also, longitudinal user studies benefit from collecting
much more data from the same participants over a longer time,
which means that statistically valid outcomes can be expected from
a sample size smaller than with typical short-term studies.

4.1 Display Technologies
During the experiment, we showed the EHCT environment to the
participants through various platforms, including a regular 2D touch-
screen display, VR HMDs (e.g., Oculus Quest), and AR HMDs (e.g.,
Microsoft HoloLens), as a within-subjects factor (i.e., all partici-
pants experience all display technologies). We detailed the technical
aspects of each display system in the following.

4.1.1 2D Touchscreen Display
We used an Android 2D display with x64-based processor and 8GB
RAM, running at 3840x2160 resolution. Participants interacted with
the 2D display only using their dominant index finger, as shown in
Fig. 1 (a). During the experiment, the experimenter observed how
they interacted with the screen and gave immediate feedback if they
deviated from these instructions. In the software, we recorded the
exact point they touch on the 2D display in real time. Participants
adjusted the height of the target grid to their eye level on the first day,
and its height was kept constant for the same participant throughout
the rest of the training.

4.1.2 VR HMD

Figure 3: (a)EHCTS with a VR HMD: The cursor attached to the
index finger of their avatar (hand) allows participants to select the
spheres. (b) EHCTS with an AR HMD: The augmented scene allows
participants to visualize the virtual content displayed overlaid over the
real world. During the experiment, participants faced an empty wall to
improve the quality of hand tracking and their attention span. (c) The
cursor attached to the index finger of their avatar allows participants
to select the spheres.

We chose an Oculus Quest 2 with a resolution of 1920 x 1832
pixels and a diagonal field-of-view of 110°. Participants interacted
with the grid using only their dominant index finger, as shown in
Fig. 1 (b). The hand tracking software integrated in the headset
allowed participants’ hand movements to be tracked and visualized
in the virtual environment in real time, so that they could complete
the eye-hand coordination task presented in Fig. 2. A white cursor
attached to their index fingertip allows them to interact with the
virtual targets (Fig. 3 (c)). We adopted a similar GUI to adapt



the virtual environment to the participants’ eye level and to set the
experiment parameters before the experiment.

4.1.3 AR HMD
We used a HoloLens 2, with a resolution of 2K and a field-of-view of
52°. Participants interacted with the grid using only their dominant
index finger, as shown in Fig. 1 (c). The HoloLens 2 features a
transparent display system that allows users to see the real world
while overlaying digital content over it, while also providing an
integrated hand tracking system. Fig. 3 (b) shows how the EHCT
grid appeared within the participant’s view of the real world. How-
ever, to achieve the highest performance with hand tracking and to
increase the user’s ability to focus on the experiment task, we asked
participants to face an empty wall during the experiment.

During the EHCT task, participants can see a series of virtual
links representing the structure of the hand overlaid on top of their
actual hands. At the index fingertip of their virtual dominant hand,
we show a white cursor to allow participants to interact with the
virtual spheres as in Fig. 3 (c). HoloLens 2 automatically renders
the visual display at their eye level, so there is no need for manual
adjustments. For this system, we recorded information such as
experimental conditions and participant ID directly in Unity.

4.2 Task Instructions
We chose the task instructions (i.e., execution strategies) to be a
between-subject factor, where each participant was randomly as-
signed to a group receiving a single, specific task instruction:

Speed-focus participants were instructed to select the targets “as
fast as possible” with a reasonable error rate. They were reminded
to prioritize their movement speed over other performance metrics.

Error-focus participants were instructed to select the targets
“with the fewest errors possible” at a reasonable speed. They were
reminded to prioritize the number of errors they made over other
performance metrics.

Accuracy-focus participants were instructed to select the targets
“as close to the center as possible” (i.e., their midpoint) at a reason-
able speed. They were reminded to prioritize choosing the targets’
center over other performance metrics.

Precision-focus participants were instructed to select each target
“consistently at the same point relative to its center” at a reason-
able speed. The exact location of the selected point did not matter.
They were reminded to prioritize choosing targets at the same point
consistently over other performance metrics.

No-focus participants were only instructed to complete the tasks
with no specifics, except that they should use a reasonable speed and
not make too many errors.

The experimenter observed the participants to remind them about
the assigned task instructions as needed, except for the no-focus
participants. To ensure that the participants followed instructions,
the authors monitored their results and provided daily feedback.

4.3 Participants
20 participants (8 females and 12 males) were recruited from the
local university, with ages ranging between 19 and 33 years (M =
21, SD = 4.6). The local Institutional Review Board approved the
experimental protocol, and all participants gave informed consent.
By enrolling in the experiment, they agreed to participate in the ex-
periment for 12 consecutive days (1 day for pre-training assessment,
10 days for training, and 1 day for post-training assessment). We
assigned 4 participants to each task instruction randomly. Upon
arrival for the first session, they completed a questionnaire (see
supplementary material) about their demographic information and
hand dominance. Sixteen participants were right-handed (four left-
handed).We also collected information about their prior experience
with (i) 2D touchscreen displays (four participants had used it 5+
times, ten 1-3 times, and six had never used it), (ii) VR HMDs (five

participants had used it 5+ times, one 3-5 times, nine 1-3 times, and
five had never used it), and (iii) AR HMDs (one participant had used
it 5+ times, five 1-3 times, and 14 had never used it before).

5 EXPERIMENT RESULTS
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Figure 4: Pre- and Post-training results with different task instructions
for execution time, error rate, IDe (precision), SDx (accuracy), and
throughput. * indicates a significant difference with p < 0.05, ** with
p < 0.01, and *** with p < 0.001.

We evaluated the motor performance of participants using execu-
tion time, error rate, SDx (i.e., accuracy of target selection), IDe (i.e.,
precision of target selection), and throughput and analyzed them
using SPSS 24 and JMP. When the Skewness (S) and Kurtosis (K)
of the data distribution were within ±1.5 [27, 44], we considered the
data to have a normal distribution. Otherwise, we used log-transform.
We performed a 3-factor ANOVA with two within-subject factors
(displays and training days) and one between-subject factor (task
instruction) for each assessment criterion.

5.1 Pre-Training & Post-Training Results
Table 1 and Fig. 4 provide a summary of the main factors and their
interactions only for the pre-training and post-training evaluation.
The supplementary material illustrates the data distributions.

The analysis revealed that all participant groups except the
precision-focus group exhibited a significantly shorter execution
time at post-training compared to the pre-training assessment. Only
the speed-focus and no-focus participant groups exhibited signifi-
cantly fewer errors at post-training compared to pre-training assess-
ment. Accuracy-focus, error-focus, and no-focus participant groups
exhibited a significantly higher IDe (better precision) at post-training
compared to pre-training assessment. All participant groups except
the precision-focus group exhibited a significantly higher SDx (better



Table 1: ANOVA results of the main experiment participants between
pre- and post-training. Statistically significant results are in bold.

Day Display Task instruction
Time F(1,15) = 6.299,

p < 0.05, η2 = 0.296
F(2,30) = 36.310,

p < 0.001, η2 = 0.708
F(4,15) = 5.698,

p < 0.05, η2 = 0.603
Error Rate F(1,15) = 2.517

p > 0.05,η2 = 0.144
F(2,30) = 1.935,

p > 0.05, η2 = 0.114
F(4,15) = 7.298,

p < 0.05, η2 = 0.661
IDe F(1,15) = 14.187,

p < 0.05, η2 = 0.486
F(2,30) = 71.933,

p < 0.001, η2 = 0.827
F(4,15) = 12.309,

p < 0.001, η2 = 0.766
SDx F(1,15) = 8.150,

p < 0.05, η2 = 0.351
F(2,30) = 36.784,

p < 0.001, η2 = 0.710
F(4,15) = 14.835,

p < 0.001, η2 = 0.798
Throughput F(1,15) = 26.670,

p < 0.001, η2 = 0.640
F(2,30) = 43.434,

p < 0.001, η2 = 0.743
F(4,15) = 6.542,

p < 0.05, η2 = 0.636

accuracy) at post-training compared to pre-training assessment. All
participant groups exhibited a significantly higher throughput (better
overall task performance) at post-training compared to pre-training
assessment.

In terms of different display technologies, Fig. 5 shows that all
display technologies are statistically significantly different from each
other for execution time and error rate – with the AR HMD being
significantly worse than the other two for both metrics. Participants
exhibited the shortest execution time using 2D displays and the low-
est error rate using VR HMD. Participants performed the tasks with
significantly higher precision (IDe) and accuracy (SDx) using 2D
displays compared to the other two, but we observed no significance
between VR HMD and AR HMD. Finally, all display technologies
were found to be statistically significantly different from each other
in terms of throughput – 2D displays being statistically the highest
and AR HMDs the lowest.
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Figure 5: Statistically significant results of display condition for average
of pre- and post-training data for (a) execution time, (b) error rate, (c)
IDe, (d) SDx, and (e) throughput.

5.2 Longitudinal Training Results

Table 2 details the results of the main effect values of the longitudinal
study while their interactions, the detailed post-hoc analyses, as
well as the growth rate results, are provided in the supplementary
material. Since Table 2 shows that participants’ performances varied
significantly across training days, we performed a post-hoc analysis
to investigate their motor learning in more detail. Fig. 6 shows
the longitudinal results to select each target for all target distances,
target sizes, and display types for each task instruction. Data points
on each day represent the mean, and the error bars represent the
standard error of the mean. The supplementary material illustrates
the data distributions.

Time: The post-hoc analysis of time across training days indi-
cated that participants’ target selection times improved significantly
in the first 5 days, but starting with the 6th day, their performance did
not vary significantly, indicating a plateau effect. In addition, further
post-hoc analysis indicates that participants selected the targets sta-
tistically significantly slower with the AR HMD than with both the
2D display and the VR HMD, but there was no significant difference
between the 2D display and VR HMD. Finally, we observe a steeper
learning curve with VR and AR HMDs compared to the 2D display.
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Figure 6: Longitudinal study results for 3 displays and 5 task instruc-
tions for execution time, error rate, IDe, SDx, and throughput.

Table 2: ANOVA results of longitudinal training days. Statistically
significant results are in bold.

Day Display Task instruction
Time F(11,165) = 4.795,

p < 0.05, η2 = 0.242
F(2,30) = 37.351,

p < 0.001, η2 = 0.713
F(4,15) = 6.057,

p < 0.05, η2 = 0.618
Error Rate F(11,165) = 3.412,

p < 0.001,η2 = 0.185
F(2,30) = 3.241,

p = 0.053, η2 = 0.178
F(4,15) = 6.112,

p < 0.05, η2 = 0.620
IDe F(11,165) = 5.149,

p < 0.001, η2 = 0.256
F(2,30) = 101.877,

p < 0.001, η2 = 0.872
F(4,15) = 12.213,

p < 0.001, η2 = 0.765
SDx F(11,165) = 5.116,

p < 0.001, η2 = 0.254
F(2,30) = 71.983,

p < 0.001, η2 = 0.828
F(4,15) = 12.802,

p < 0.001, η2 = 0.773
Throughput F(11,165) = 16.202,

p < 0.001, η2 = 0.519
F(2,30) = 58.701,

p < 0.001, η2 = 0.796
F(4,15) = 7.572,

p < 0.05, η2 = 0.669



Error Rate: Post-hoc analysis for error rate across training
days indicated that participants’ error rate seemed to vary system-
atically in the first and fourth day, but then remained statistically
non-significant. Further post-hoc analysis indicates that participants
made significantly more errors with the AR HMD than with both
the 2D display and the VR HMD, and with the 2D display than with
the VR HMD.

IDe: Post-hoc analysis for IDe across training days indicated
that participants’ IDe score (i.e., precision in selecting the targets)
improved systematically for the first two days and then again on the
9th day, while the other days showed no significant difference. Re-
gardless, the change on day 9 seems not to have affected the ultimate
performance of the users, so its longitudinal impact is somewhat
questionable. Further post-hoc analysis indicates that participants
selected the targets with significantly higher precision on a 2D dis-
play compared to the VR and AR HMDs, which were significantly
different. Finally, we observe a more consistent learning curve for
VR and AR HMDs compared to the 2D display.

SDx: Post-hoc analysis for SDx across training days indicated
that participants’ target selection seemed to vary systematically
in the first 2 days, but then remained statistically non-significant.
Further post-hoc analysis indicates that participants selected the
targets significantly more accurately with a 2D display compared to
VR and AR HMDs. There was a significant difference between 2D
and VR and 2D and AR but no significant difference between VR
and AR. Finally, we observe a steeper learning curve for VR and
AR HMDs than 2D display for all groups except speed-focus.

Throughput: Post-hoc analysis for throughput across training
days indicated that participants’ target selection varied systemat-
ically in the first 6 days, but then their performance did not vary
statistically anymore. Further post-hoc analysis indicates that partic-
ipants selected the targets statistically significantly better in terms
of throughput for all display types. Finally, we observe a steeper
learning curve with the VR and AR HMDs than the 2D display.

5.3 Subjective Comments

After the experiment, we asked our participants to fill a questionnaire
regarding their preferences on a 7-point Likert scale and user prefer-
ence questions (see supplementary material). Their rankings on the
user preference questions were analyzed using a Kruskal-Wallis test.
The mean rank obtained from the test for the 2D display was 26.78,
for the VR HMD was 36.83, and 27.90 for the AR HMD. Hence
we observed that participants preferred using the VR HMD over the
AR HMD and using the AR HMD over the 2D display. When asked
about which display technology they preferred for EHCTS, twelve
participants reported the VR HMD — claiming having perceived
an increase in their task performance throughout the longitudinal
training sessions. They further reported: “it was easier to click on
targets’’, “it was more interactive”, “the virtual environment was
good, and the virtual hands were visible clearly”, and “it was the
smoothest experience”. Four participants reported 2D touchscreen
display – claiming “touching the screen makes me more confident
about whether I am pressing exactly the center of the circles or
not” and “it was easy and clearer to choose the options”. Four
participants reported AR HMD – claiming “I am not in a completely
virtual environment, I can see my real hand’s and fingers’ move-
ment”, “I feel extremely comfortable”, and “to perform the task was
very smooth”.

When asked about which display technology they disliked for
EHCTS, seven participants reported 2D touchscreen display – claim-
ing “I cannot tap the exact location of the button”, “it was very
sensitive and after pressing buttons in the air for a while, it felt odd
pressing an actual surface”, “I got used to completing the task in
AR and VR, and they became easier and enjoyable for me”, and

“since there is no feeling of [visual] depth [with the] 2D touchscreen,
I did not feel comfortable”. Ten participants reported AR HMD –

claiming “it was more difficult to locate the yellow button because
my viewport was limited to a few rows, and the contrast between the
yellow button and background was not as visible as the rest of the
environment” and “poor hand tracking made it harder to select the
correct button accurately”. Three participants reported VR HMD
– claiming “I like the view in VR, but touching the circles does not
feel realistic”, and “there is not a feel of depth”.

When asked about frustration, four participants reported the task
as annoying, long, and repetitive; ten participants reported that it
was fun; three participants reported the AR HMD as annoying, but
the other two displays as fun; and three participants reported it as
annoying due to small target sizes. Regarding the level of physical
fatigue, ten participants reported the experiment to be physically
tiring, five participants reported it not to be tiring, and four partici-
pants reported it to be tiring in the first 2-3 days only. Regarding the
level of mental fatigue, six participants reported the experiment to
be mentally tiring in terms of switching between different display
technologies and focusing on the task instructions being (too) hard.
Fourteen participants did not report suffering from mental fatigue.

5.4 Detailed Analysis for Precision-focus Task Execution
The supplementary material illustrates the data distributions. Our re-
sults indicated that the precision-focus participants made the highest
number of errors and did not improve in terms of other evaluation
matrices – contrary to previous work [9]. This conflict raises com-
pelling questions about the relationship between precision-focus
instructions and their task performance. Firstly, we investigated
the user performance separated for each target size and target dis-
tance. Our results show that participants were not able to follow the
precision-focus instructions regardless of the target size and distance
(i.e., different levels of task difficulty) and still deviated from the
first selection point of the targets (see supplementary material).

Since the participants could not follow the precision-focus task
instructions, we assumed that language barriers could be a factor
that might have played an important role. Both the experimenter and
the participants of the experiment were non-native English speakers,
yet the experiment instructions were presented in English. Yet, the
concept of ‘precision’ might be more challenging to capture than
other instructions. To investigate this even further, we established
a collaboration with a university in an English-speaking country
(Colorado State University, Colorado, USA) to conduct a replication
study of the precision-focus group with native English-speaking
participants with the same hardware and software setups of the ex-
periment. This study was conducted with 3 native English speakers
and the results were compared to 3 non-natives.

We conducted a comparative analysis across these two groups
(Native and Non-native English speakers) to investigate the impact
of language on their performance. Table 3 summarizes the results of
RM ANOVA main effect values of pre-training and post-training. We
found no significant differences in any of the performance measures
between native and non-native speakers, but we found significant
interaction results between display and main-language, as shown
in Fig. 7. The results indicate that native English speakers had a
higher IDe performance compared to non-native English speakers.
We present the statistics of the interactions and the longitudinal study
results for this comparison in the supplementary material.

Table 3: ANOVA results for native and non-native English speakers
over pre- and post-training. Statistically significant results are in bold.

Day Display English Nativity
Time F(1,4) = 0.123,

p > 0.05, η2 = 0.030
F(2,8) = 25.856,

p < 0.001, η2 = 0.866
F(1,4) = 2.669,

p > 0.05,η2 = 0.400

Error Rate F(1,4) = 2.715,
p > 0.05, η2 = 0.404

F(2,8) = 2.245,
p > 0.05, η2 = 0.360

F(1,4) = 6.454,
p > 0.05, η2 = 0.617

IDe F(1,4) = 3.003,
p > 0.05, η2 = 0.429

F(2,8) = 8.191,
p < 0.05, η2 = 0.672

F(1,4) = 0.162,
p > 0.05, η2 = 0.039

SDx F(1,4) = 4.418,
p > 0.05, η2 = 0.525

F(2,8) = 8.512,
p < 0.05, η2 = 0.680

F(1,4) = 0.099,
p > 0.05, η2 = 0.024

Throughput F(1,4) = 6.166,
p > 0.05, η2 = 0.607

F(2,8) = 57.989,
p < 0.001, η2 = 0.935

F(1,4) = 1.656,
p > 0.05, η2 = 0.293
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Figure 7: (a) Execution time, (b) error rate, (c) IDe, (d) SDx, and (e)
throughput results for display condition across pre- and post-training
data between native and non-native English speakers.

6 DISCUSSION

In this paper, we studied (i) the skill transfer of EHCTSs using AR-
and VR-based displays [28, 35, 54], (ii) participants’ performance
change over 10 days of training, and (iii) five task execution strate-
gies instead of three with multiple participants for each strategy [48].

6.1 Task Execution Instructions
Our findings of the sub-analysis showed that after 10 days of training,
each participant’s motor skills improved overall, while the specific
evaluation metric that was improved directly depended on the partic-
ipants’ task instructions, as hypothesized.

Speed-focus participants selected the targets in significantly less
time than the other groups while their performance was not high
in other performance metrics – as instructed. Matching the results
of previous work [14], we believe that their ability to follow the
instructions successfully resulted in the highest throughput results.

Error-focus participants completed the experiment with fewer
errors – as instructed, but also more accurately and more precisely.
Further, post-hoc analyses in error rate showed that participants
performed the tasks with a very similar growth rate to accuracy-
focus participants and (interestingly) to no-focus participants.We
also observed no significant difference between error-focus and
accuracy-focus participants in terms of precision (i.e., the consis-
tency of choosing the same point while respecting the target limits,
IDe) and accuracy (i.e., the distance between the points selected
by the participants and the center points of the targets being the
smallest, SDx) – implying that they tend to choose points around the
targets’ center, although not instructed so implicitly.

Accuracy-focus participants demonstrated the highest perfor-
mance in terms of task accuracy – as instructed, but also task pre-
cision. They also showed a similar error-rate performance with
error-focus participants. As a result, they also exhibited the second
highest throughput measure. We speculate that accuracy-focus par-
ticipants aimed to select the center of the targets as instructed, which
intrinsically led to fewer errors and performing precise selections.
However, executing the task so carefully resulted in a significantly

higher completion time, as expected. This implies that focusing
on performing the tasks accurately also yields high performance in
terms of error rate and precision.

Precision-focus participants made relatively fewer errors, albeit
at the cost of exhibiting the highest time. We observed that their level
of choosing the targets accurately and precisely was also poor – but
still slightly higher than speed-focus participants. As a result, they
showed the lowest overall performance in the form of throughput
from the start to the end.

No-focus participants performed the task in less time than
precision-focus, accuracy-focus, or error-focus participants and with
a similar number of errors as error-focus and accuracy-focus partic-
ipants. Interestingly, their task precision and accuracy were in the
middle when ranked among the other groups, as expected. Thus,
it is not surprising that their effective throughput results indicate
that no-focus participants performed the experiment second highest,
following speed-focus participants.

To sum up, as shown by the results, all participant groups followed
the assigned task instructions properly, except the precision-focus
group. Thus, we can state that assigning different task instructions
might, in fact, change the ultimate performance on the task: (i) if
participants need to get faster, they should train with a speed-focus,
(ii) if they need to achieve minimum error, they should train with an
error-focus or accuracy-focus, (iii) if they need to get more accurate,
they should be trained with an accuracy-focus, and (iv) Thus, these
results answer our research question RQ1 as different task execu-
tion instructions yield different trends in different aspects of the
user performance metrics, and different instructions should be
adopted for future training sessions if there are certain expecta-
tions regarding participants’ growing goals.

Since the precision-focus participants were expected to show the
highest performance [9], these findings are particularly surprising
and raise intriguing questions regarding the relationship between
precision-focus instructions and task performance. To understand
the factors affecting the performance of the precision-focus partici-
pants, we conducted a supplementary study to evaluate the potential
effect of language barriers. The results indicate that there was no sig-
nificant difference between native and non-native English speakers.
However, the interaction results showed that native English speakers
were more accurate and precise with AR HMDs and more accurate
with VR HMDs. These results highlight that participants might
require more localized instructions to perform EHCT in VR systems
to optimize training results. Thus, the follow-up question for RQ1
can be concluded as “precision” does not offer the most optimal
training procedure, unlike hypothesized in previous work.

6.2 Effective Throughput

Our results show that speed-focus, error-focus, accuracy-focus, and
no-focus participants followed and complied with the assigned in-
structions. Interestingly, we observed that their throughput rankings
comply with participants’ ability to comply with the assigned in-
structions to them. Speed-focus participants got faster, error-rate
participants made fewer errors, and accuracy-focus participants were
more accurate. In each case, the effective throughput of the partic-
ipants increased. Moreover, since the precision-focus participants
got faster, their effective throughput also increased. In general, any
performance improvement is visible in the throughput, even when
trainees’ performance might not improve in terms of other measures
(e.g., time, accuracy, precision, and error rate). For example, if a
trainee wants to improve their accuracy or precision, they should
focus on accuracy, and this would also be visible in the effective
throughput. Furthermore, if a trainee does not focus on a specific
task execution strategy, their error rate, accuracy, and precision
performance could still improve, which are again reflected in the
effective throughput results. Thus, it is important to plan the task
execution strategy ahead of the training sessions to improve user



performance in specific ways in HMD-based VR EHCTSs. Thus,
these results answer our research question RQ2 as effective through-
put can be used as an assessment criterion for EHCTSs in 2D
touchscreen display, VR-, and AR-based HMD.

The speed-accuracy trade-off in Fitts’ Law and effective through-
put is still inconclusive. While MacKenzie and Isokoski showed that
effective throughput is speed-accuracy invariant [42], Olafsadir et
al. [52] and Batmaz and Stuerzlinger [14] identified contradictory
results. The performance growth observed in our longitudinal study
also showed that effective throughput increases regardless of whether
participants focus on speed or accuracy. Still, the highest through-
put performance was observed with speed-focus participants. In a
motor learning study, one can expect such an increase in the motor
performance of the participants; however, the pre-experiment results
on time, accuracy, and effective throughput still exhibit substantial
throughput variance. These outcomes still contradict MacKenzie and
Isokoski’s work [42]. Yet, we did not use an ISO9241-411 setup in
this study, which is a standard method for evaluating the usability of
software user interfaces [32]. Thus, we invite researchers to conduct
longitudinal motor learning studies to further investigate effective
throughput invariance with ISO9241-411 setups.

The results of the longitudinal study showed that different head-
sets might require different task instructions to increase the rate of
learning (detailed results are shown in supplementary material). For
instance, we observed a higher improvement in time for no-focus
participants in 2D and VR HMDs potentially because of the usability
challenges they might have faced with AR, where virtual elements
are shown overlaid over the real world. On the other hand, the most
improvement in time for AR-based training was observed for the
error-focus participants. This issue might require a detailed analysis
of the used hardware system to reveal its advantages and disadvan-
tages. Still, our outcomes might also be used to create better training
programs for the participants using different headsets.

In general, participants were observed to be better in terms of time,
error rate, accuracy, precision, and throughput with a 2D display
compared to VR and AR HMDs. These outcomes match most of
the participants’ expressed preferences during the experiment. This
result also coincides with previous results of studies comparing
real and virtual worlds [6, 7, 13]. The impact of various depth cues
or stereo deficiencies, such as the vergence and accommodation
conflict, are reasonable justifications for the difference. However,
this result contradicts previous work on VR-based EHCTS, where
the authors did not find a significant difference between 2D display
and VR-based EHCTSs [13]. We believe that this is due to the
length of our study, where participants had to experience stereo
deficiencies for a long time, increasing their detrimental effects on
motor performance [8]. Further, participants performed better in
terms of time, error, and throughput with VR HMD compared to AR
HMD. This result also aligns with user motor performance results
getting lower using AR-based EHCTSs [13]. We believe that current
AR HMDs can be used as a training system, but the user motor skills
might not reach the level of 2D and VR-based EHCTS. Thus, these
results answer our research question RQ3 as VR HMDs can be
used as an effective display technology also during longitudinal
training studies for virtual EHCTSs.

6.3 Usability of VR-based EHCTS

Participants did not exhibit or report significant mental or physical
fatigue after the experiments. We speculate that manually adjusting
the height of the virtual targets decreased the potential fatigue of
the task. In addition, since users did not move their heads much
in virtual and physical space, they did not experience and report
simulator or motion sickness.

Overall, the results of this work can be applied to various fields
to create better training systems where motor learning plays an im-
portant role. VR and AR-based training systems can be adjusted

for specific needs, creating scenarios and virtual environments that
closely mimic training settings, ensuring relevance and effective-
ness. The data collection capabilities that exist with modern VR
and AR HMDs allow trainers to gain valuable insights into trainee
performance, enabling them to assess the effectiveness of the train-
ing program, identify areas for improvement, and make data-driven
decisions to optimize training outcomes. Our findings here can be
applied to create efficient training programs to increase the motor
performance of the trainees.

6.4 Limitations and Future Work

Previous studies on Fitts’ Law and human motor performance have
already investigated the effects of movement direction on user per-
formance, including [4, 7, 12, 23, 26, 37, 38, 57]. As visible in the
supplementary materials, the results of our study match the out-
comes of this previous literature; subjects are slower when they
move their hand upwards. Also, their movement time increases
and their accuracy decreases when they reach for further away tar-
gets [24, 53, 60, 63, 64]. Therefore, we did not analyze movement
direction further in our study.

In our detailed precision-focus analysis, we conducted an RM-
ANOVA with six participants, where three participants were native
English speakers, and three were not. Although we found significant
results with a large effect size (η2 > 0.14), the number of partici-
pants was limited. For future work, we recommend conducting the
same experiment with a large pool of participants since personal
differences might have an impact on the results.

Future research will involve gathering information from profes-
sional athletes who have participated in real-world training and
examining the associated learning effects in VR and AR HMDs.
Investigating skill transfer from VR/AR systems to real-world per-
formance is another goal of ours. In addition, EHCTSs may be
employed in rehabilitation and medical research [3]; we thus intend
to broaden the scope of our study to investigate this prospective appli-
cation area for VR and AR-based EHCT. To understand the cognitive
aspects of the interaction better, we will also study error-related neg-
ativity, providing insights into users’ psychological responses to
error-related visual and auditory feedback.

7 CONCLUSION

This research embarked on a comprehensive exploration of the im-
pact of various task instructions on eye-hand coordination training
using different display technologies. The study included 20 partic-
ipants, each 4 participants focusing on speed, accuracy, precision,
error rate, or no specific task instruction over a 10-day training pe-
riod. The outcomes shed light on the intricate relationship between
task instruction assignment, participant adherence, and task perfor-
mance. The results emphasized the various effects of different task
instructions on participants’ psychomotor measures, which can be
used to create more effective training systems. We also identified
that effective throughput is potentially the best option for tracking
the overall motor performance in eye-hand coordination training
systems. Still, the unexpected outcome of the precision-focus group
emphasizes the complexity of the relationship between task instruc-
tion, participant behavior, and task performance. To understand the
underlying causes of this discrepancy, more investigation is required.
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