
MACE: A New Interface for Comparing and Editing of Multiple
Alternative Documents for Generative Design

Loutfouz Zaman
University of Ontario Institute of

Technology
Oshawa, Canada

loutfouz.zaman@uoit.ca

Wolfgang Stuerzlinger
Simon Fraser University

Vancouver, Canada
w.s@sfu.ca

Christian Neugebauer
University of Applied Sciences Bonn-

Rhein-Sieg, Germany
christian@neugemail.de

ABSTRACT1
We present a new interface for interactive comparisons of more
than two alternative documents in the context of a generative
design system that uses generative data-flow networks defined
via directed acyclic graphs. To better show differences between
such networks, we emphasize added, deleted, (un)changed nodes
and edges. We emphasize differences in the output as well as
parameters using highlighting and enable post-hoc merging of
the state of a parameter across a selected set of alternatives. To
minimize visual clutter, we introduce new difference
visualizations for selected nodes and alternatives using additive
and subtractive encodings, which improve readability and keep
visual clutter low. We analyzed similarities in networks from a
set of alternative designs produced by architecture students and
found that the number of similarities outweighs the differences,
which motivates use of subtractive encoding. We ran a user
study to evaluate the two main proposed difference visualization
encodings and found that they are equally effective.

CCS CONCEPTS
• Human-centered computing ➝ Graphical user interfaces.

KEYWORDS
Alternatives; generative design; exploration; parallel editing;
difference visualization.

ACM Reference format:
L. Zaman, W. Stuerzlinger, and C. Neugebauer. 2017. MACE: A New
Interface for Comparing and Editing of Multiple Alternative Documents
for Generative Design. In Proceedings of DocEng ‘17, Valletta, Malta,
September 04-07, 2017, 10 pages.
https://doi.org/10.1145/3103010.3103013

1 INTRODUCTION
Parametric and generative design is a modern design technology
in which a set of rules or an algorithm generates the output,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned
by others than ACM must be honored. Abstracting with credit is permitted. To
copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from
Permissions@acm.org.
DocEng '17, September 04-07, 2017, Valletta, Malta
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-4689-4/17/09…$15.00
http://dx.doi.org/10.1145/3103010.3103013

such as an image, sound, architectural model, or animation. In
parametric design, typically only values are changed. Generative
systems can produce much more varied output and uses either a
set of rules, a data-flow program, or even an algorithm as the
underlying generative model to ensure that the generated output
matches the goals, as specified as part of the model. Current
examples include Max/MSP (cycling74.com), NodeBox
(nodebox.net), Grasshopper 3D (grasshopper3d.com) and Houdini
(sidefx.com). With parametric and generative technologies, it is
possible to explore a much larger number of viable design
options compared to what is possible with manual operations.
However, how users can compare alternatives in such a large
space of design options has not been investigated in detail.

Since designers routinely generate dozens of alternatives
based on a single idea [36], basic techniques for comparing them,
such as juxtaposition, synchronized zooming and panning, and
uniform layouts, are not enough. This is especially true of
environments that employ data-flow languages. Designers may
want to superimpose their newer creations over earlier ones to
see how their newer versions deviate from the previous version.
They may want to become immediately aware how the
parameters of subjunctive nodes differ between alternatives, or
even want to see the differences in the networks’ structures.

In this paper, we present MACE (Multiple Alternatives –
Comparison and Editing), a novel user interface that facilitates
the comparison of multiple alternatives in generative design
which also includes new mechanisms that facilitate interactive
editing in a difference visualization mode. We implemented
these techniques as an extension of GEM-NI [36]. See Figure 1.

Figure 1. The “Flower of Life” worked example in GEM-NI.

GEM-NI [36] enables the user to quickly generate sets of
alternative solutions through a multitude of techniques, edit
them in parallel with undo capabilities, and supports merging of
alternatives. Moreover, GEM-NI also provides GUI mechanisms
to manage the set of alternatives. The work presented here

extends GEM-NI with new difference visualization techniques
and with techniques that enable editing in difference
visualization mode.

To support such comparisons better, we implemented the
following explicit difference visualization techniques:
 a new interactive difference visualization that

simultaneously compares more than one DAG (directed
acyclic graph) against a given reference;

 two types of encoding: subtractive and additive to show/hide
common elements for better difference readability and
scalability;

 two levels of abstraction for subtractive encoding: alternative
and node-focused difference visualization for the selected
alternative or node to give the user the control over visual
clutter;

 visualizing differences in parameters with the ability to
synchronize the parameter state.

2 RELATED WORK
2.1 Generative Design
Generative design enables designers to create endless design
variations based on a model. This model can vary just in
parameters, be expressed as varying networks of computational
nodes and/or constraints, or even full algorithms across
alternatives. By structuring design concepts as models, it is
possible to explore a much larger number of viable design
options compared to what is manually possible. Generative
modeling is a fast method for exploring design possibilities and
is used in various design fields such as art, architecture, and
product design. Then, the central role of the designer involves
continuously modifying the generative model based on the
resultant outcomes. Through this the designer navigates the
solutions space. A very simple approach is to just have the user
repeatedly select attractive solutions to zero in on desirable
options [24]. Better approaches give the user more control.

To compensate for the lack of adequate software features to
support easy and efficient exploration of a design space, current
designers rely on strategies, referred to as idioms of use [32].
Some common idioms for comparing design alternatives are
opening different file “versions” in different windows, or using
layers [31]. Yet, current computational design tools still do not
support the comparison of alternative solutions in an adequate
manner, nor do comparison modes permit interactive editing.
Moreover, such adaptations sometimes create more problems
than they solve, e.g., when the file naming and window
management overhead becomes large.

The user interface of MACE aids generative design through
easy comparison of more than two alternatives through
enhanced difference visualizations and by permitting editing in
the difference visualization mode.

2.2 Difference and History Visualization for
Graphs

History visualization, versioning, differencing and version
merging graphs, trees and node-link diagrams are all related to

the area of dynamic graph drawing, which deals with the
problem of visualizing data that evolves linearly over time. Most
of the work cited below targets generic undirected graphs and
trees. Yet, generative models use directed edges to represent the
data flow. Almost all the approaches below reduce the problem
to showing only pair-wise differences between graphs or trees.

A difference map is a graph that encodes all of the differences
between the node and edge sets between two graphs [3]. Such
maps produce fewer errors when determining the number of
edges inserted or removed from a graph evolving over time and
were also preferred [5]. MACE employs a new variant of a
difference map, which excludes nodes and edges common to the
compared graphs.

Animation can also be used to compare graphs, e.g., [6, 29,
35]. Zaman et al. [35] demonstrated that animation was
beneficial for graphs with non-matching layouts. This is not
applicable for MACE, as GEM-NI synchronizes node positions
across alternatives. Animation is better suited for showing
gradual transitions, i.e., successive graphs that represent an
evolving change of a single data set [13]. In our application
domain, we deal with situations well beyond the evolution of a
single graph. The closest relevant work compares multiple
graphs at the same time. It is important to highlight that in
generative design non-linear creation and editing of alternatives
is the norm. In other words, generative design typically is ill
described by a linear time flow. Thus, time/history-based
difference visualization techniques such as animation and small
multiples are not directly applicable to the comparison of
alternative designs. MACE employs new graph difference
techniques to illustrate the changes between alternatives.

Graham et al. [12] surveyed multi-tree visualization. They
distinguish five methods of comparing nodes in two trees: edge
drawing, coloring, animation, matrix representation, and
agglomeration. Gleicher et al.’s [11] work offered a taxonomy of
visual designs for comparison, which groups designs into three
basic categories. They identify that all visual designs are
assembled from the building blocks of juxtaposition,
superposition and explicit encodings. Alper et al. [1] evaluated
two techniques for weighted graph comparison and found that
matrix representations are more effective than node-link
diagrams. As our work involves directed and unweighted graphs,
such techniques are not applicable. Layering is commonly used
in diagram differencing and merging, e.g., [8, 34, 35] and
superimposes multiple graphs. Yet, it can only handle a very
small number of graphs simultaneously. Thus, it is most useful
for showing pair-wise differences.

Side-by-side views are a special case of graph difference
visualization, which show only two versions. DualNet [27]
visualizes sub-networks of node-link diagrams with side-by-side
views. All work discussed below in this paragraph focuses only
on trees, rather than graphs. Thus, most of these methods are
not directly applicable to our context. TreeJuxtaposer [26] targets
the comparison of large trees with side-by-side views.
TreeVersity [15–17, 19] shows changes in topology and node
values. The system uses glyphs that pre-attentively highlight
changes and also highlights created and removed nodes.

TreeVersity2 [18, 19] enables the exploration of changes in trees
over time. Guerra-Gomez et al. [19] identified and classified five
types of tree comparisons. Except for the comparison of
topological differences between two trees, none of the types of
comparisons identified there apply to the DAGs used in GEM-NI.
Instead of topological differences MACE identifies structural
differences between two or more DAGs. Moreover,
Guerra-Gomez et al.’s node types do not correspond to our
context, as nodes in GEM-NI do not have categorical attributes,
can contain data unsuitable for interpolation.

Another static visualization approach uses agglomeration.
Graham and Kennedy [13] presented a DAG visualization to
interact with a set of multiple classification trees to identify
overlaps and differences between groups of trees and individual
trees with up to six classifications. Zoomology [20] compares two
classification datasets where two trees are merged into a single
overview. Isenberg et al. [21] presented a new system that
facilitates hierarchical data comparison in co-located
collaborative environment using structural comparison through
overlay. Their system dealt with up to six trees. CandidTree [22]
merges two trees into one and visualizes location and sub-tree
structure structural uncertainty. Yet, agglomeration is not
applicable to (generative design) networks, as neither individual
nodes nor sub-networks can be combined meaningfully into a
hierarchy in DAGs.

Difference visualization is also used in software engineering,
usually for UML diagrams. Förtsch et al. [9] presented a survey
on solutions for differencing and merging of software diagrams
and listed requirements for UML diagram versioning tools.
Ohst et al. [28] introduced an approach that highlights common
and specific parts of two diagrams. Zaman et al. [34] later
demonstrated a system where graphs are displayed side-by-side
with differences marked. Girschick [10] introduced a similar
system, where eight colors were used to visualize eight different
types of changes in class diagrams. A user survey for the
Pounamu system [25] found positive feedback for their
difference visualization, the support for incremental changes,
merging, and the overall support for diagram-based design
activities. Most of the approaches for UML diagram differencing
are applicable to other forms of node-link diagrams and graphs.
A single unified diagram for graph comparison was studied by
Dadgari et al. [8]. They evaluated multiple graph differencing
and merging techniques qualitatively and found that a
translucent layer approach was preferred for simple pair-wise
comparisons. A unified graph approach was also proposed by
Andrews et al. [2]. A side-by-side approach for graph
differencing was also investigated by Zaman et al. [35] in the
DARLS system. DARLS displays two versions of a diagram side-
by-side with differences marked, even if a node was moved.

Most directly related to our difference visualizations in MACE
is Shireen et al.’s [30] conceptual prototype of a user interface
for parallel work with design alternatives, which included a
difference visualization. However, they only showed nodes that
are common.

In summary, most previous work addresses the problem of
showing pair-wise differences. Animation and small multiples

were used for visual comparisons of more than two DAGs. Yet,
this is only effective for content that has evolved linearly. None
of these approaches can handle the visual comparison of a dozen
or more different DAGs that have evolved non-linearly or in
parallel.

3 MACE
Here, we present novel extensions of the original GEM-NI
system [36]. to enable comparison of multiple alternatives.

The user can switch between the normal (viewing) mode,
where typical interaction occurs for creating and editing
alternatives, and the “diff mode”, where differences of all
alternatives are displayed against a chosen reference. The user
can use any alternative as the reference. To get into this mode,
one alternative must be designated by the user as the reference
through a GUI button, clicking on a menu button, or a key short
cut. The other alternatives (further referred to as compared
alternatives) are then compared to it. In diff mode, differences are
visualized in all three views (output, parameter and network), as
applicable. The diff mode is fully interactive. For visualizing
differences between the networks, we use two different
approaches: subtractive and additive encoding.

Figure 2. Difference visualizations of the “Flower of Life”
example using additive layering.

3.1 Additive Layering
Additive layering is a direct adaptation of the layering technique
from previous work [35] to multi-network comparisons. The
word “layering” highlights the fact that this is a form of
superposition. The word “additive” refers to additive encoding,
which was identified by Gleicher et al. [11]. Figure 2
demonstrates this technique. The leftmost alternative was
chosen as reference. The nodes SAMPLE1, COORDINATES1 and
CONNECT1 are unchanged between the three alternatives. The
differences start to appear with SHAPE_ON_PATH1, which is the
next node in these networks. In the center and right alternatives,
this node differs from the reference node in two parameters:
Amount and Margin. These parameters are highlighted in red to
indicate the difference in the parameter view. The state of a
parameter can be synchronized between non-idle alternatives by
clicking on the synch button in the parameter field. This is an
extension of selective merging [36] to a lower level form of
merging differences. A “≠” sign is displayed to the top left of the

node to emphasize this further through an inequality metaphor.
The node is also highlighted in red. Nodes COPY1 and COMBINE1
with the corresponding connectors are not present in both the
center and right alternatives. This is shown using transparency.
A “−” sign in the top left of these nodes, which emphasizes this
further through a reduction/subtraction metaphor. New nodes
POLIGON1 (2 and 3), ROTATE1 and new connectors, which don’t
exist in the reference, are highlighted in green. A “+” sign is
displayed in the top left of the node to emphasize this through
an addition metaphor. The word “reference” or “compared”
appears in the top left corner of the network view of each
alternative as an additional aid to distinguish between the
reference and compared alternatives. Deleted connectors relative
to the active compared alternative are also displayed in the
reference using transparency. This works for both additive
layering and subtractive layering described below. See an
example in Figure 8, where four deleted connectors are shown in
the reference network relative to the compared active network.

3.2 Subtractive Layering
Our design for subtractive layering is in part based on the
subjunctive interface proposed (but not implemented) by
Shireen et al. [30]. Unlike in additive layering, common
unchanged nodes are not shown in compared alternatives (with
one exception, discussed below). See the example in Figure 3.
Only nodes with modified states are shown, which are either
changed, deleted or new nodes. Connectors to and from
unmodified nodes are instead shown on the nodes in the
reference as dashed curves, which emphasizes that these
connectors cross network boundaries. In addition, unmodified
common nodes are highlighted in the reference in yellow.
Drawing every single connector would add significant clutter.
Due to that, and after trying different variations, we came up
with a design that minimizes showing redundant connectors
through a simple rule: we draw cross-network connectors only
for nodes which cannot be connected to the other nodes within
the compared alternative because these other nodes are hidden.
E.g., in the center alternative in Figure 3 the COMBINE1 and
SHAPE_ON_PATH1 nodes are both shown. Therefore, a connector
between them is only drawn in the center alternative as a solid
line, and not between COMBINE1 in the center alternative and
SHAPE_ON_PATH1 in the reference.

Figure 3. Difference visualizations of the “Flower of Life”
example using subtractive layering.

3.2.1 Abstraction of Connectors. To reduce clutter further, we
provide two additional mechanisms: alternative and node
focused visualizations. In Figure 4a, the user selects the center
alternative as active, which hides cross-network connectors to
the right alternative. The user then selects SHAPE_ON_PATH1,
which hides all the connectors which do not involve this node
(Figure 4a).

(a)

(b)

Figure 4. (a) alternative-focused visualization, (b) node-
focused visualization.

Figure 5. Showing differences in connectors between
unchanged nodes.

3.2.2 Showing Differences in Connectors between Unchanged
Nodes. We also implemented a technique to illustrate differences
in node connections that involve one or more unchanged nodes.
In this visualization, we reveal unchanged, common nodes that
have one or more changed connections. Figure 5 shows an
example, where nodes ROWS, GAPSIZE and HSB_COLOR1 are shown
in the compared alternative (contrary to the rule of hiding
common unchanged nodes in subtractive layering). This is done
to highlight that in ROWS one outgoing connector was deleted
and two new connectors were added, in GAPSIZE one outgoing
connector was added, and in HSB_COLOR1 one incoming
connector was deleted and three were added.

3.2.3 Design Motivation and the Research Hypothesis. We
employ subtractive encoding—a complementary approach to the
additive encoding identified by Gleicher et al. [11]. Subtractive
encoding removes common nodes from the compared graphs.
This technique reveals and/or highlights changed, unchanged,
added and removed nodes in the compared network relative to
the reference and could reduce visual clutter in the compared
network. Thus, if there are no differences between a reference
and compared network and there is nothing to show in the
compared network, visual clutter is non-existent or minimal. On
the other hand, if the overall number of changes is substantial,

then the difference visualization might visually “overwhelm” the
content. To characterize this, we propose using the relative
percentage of nodes and edges shown in each difference
visualization between two alternatives as an approximation to
quantify relative difference, ܦ௥௘௟: ܦ௥௘௟ ൌ ݊ஷ ൅ ݊ା ൅ ݊ି ൅ ݁ା ൅ ݁ି݊௥௘௙ ൅ ݁௥௘௙

Here, nஷ is the number of changed, nା—the new and nି—the
deleted nodes in the compared network, n୰ୣ୤ is the total number
of nodes in the reference, e୰ୣ୤ is the total number of connectors
in the reference, eା—the new and eି—the deleted connectors in
the compared network. If there are no changes, ܦ௥௘௟ ൌ 0. If the
number of displayed nodes and edges in the compared view is
equal to or exceeds the number of nodes in the reference, ܦ௥௘௟ ൒ 1.

For subtractive layering to be effective, the average ܦ௥௘௟ of
typical designs must be low. We believe that alternatives for a
design problem will likely show substantial similarities due to
the shared goal. Thus, we expect fewer differences among data-
flow networks for alternatives compared to the number of
similarities. To test this hypothesis we computed these numbers
for the dataset of the second user study conducted on GEM-NI
[33]. For the outcomes, we performed all pairwise comparisons
of all alternatives to the first design. Averaging across all
participants yields a low difference of ߤ஽ೝ೐೗ = 20. Given that the average is substantially closer to zero than	= .22, ܰ	஽ೝ೐೗ߪ ,29. =
one, this suggests that showing differences instead of
commonalities is an appropriate design choice for difference
visualization across multiple alternatives.

3.2.4 Interactive Editing. We believe it would be trivial to
describe how interactive editing works with additive layering.
So, we will focus on the subtractive encoding instead. To enable
interactive editing with subtractive layering we employ our
“reveal-to-edit” feature. The interface mechanics we discuss here
are in part based on the subjunctive interface proposed by
Shireen et al. [30].

3.2.5 Worked Example. Consider the same design scenario as
in the worked example of GEM-NI [36]. This time imagine Ann
wants to recreate the three designs with subtractive layering
enabled. She first creates the design on the left (Figure 1). She
then creates a clone of the design (Figure 6a) and enables the diff
mode by setting the left design as the reference (Figure 6b).
Subtractive encoding hides all visualizations that are common
between the original (left) and the clone (right). Therefore, the
network view of the clone becomes empty. She then selects
SHAPE_ON_PATH1, COPY1 and COMBINE1. By clicking anywhere in
the network view of the clone and holding down a modifier, she
then reveals these three nodes (Figure 6c). She then sandboxes
the clone, changes two parameters of SHAPE_ON_PATH1
(“Amount” and “Margin”) and deletes COPY1 and COMBINE1. This
is how she arrives at the “Tube Torus” (Figure 6d). She then
creates a clone of “Tube Torus” (Figure 7), sandboxes it and
completes the final design as described in original worked
example [36].

(a)

(b)

(c)

(d)

Figure 6. Editing alternatives using interactive difference
visualization with subtractive encoding. (a) The original
and a clone; (b) subtractive encoding; (c) SHAPE_ON_PATH1,
COPY1 and COMBINE1 revealed in the clone for further
editing; (d) “Amount” and “Margin” changed in
SHAPE_ON_PATH1; COPY1 and cOMBINE1 are deleted.

Figure 7. Editing alternatives using interactive difference
visualization with subtractive encoding: cloning of a
design.

3.3 Showing Differences in the Output View
To illustrate the differences in the output of the generative
design, the geometry produced by the rendered node of the
reference is displayed transparently in the output view in a
bottom layer for all compared alternatives. This directly
superimposes the geometry of compared alternatives over the
reference to enable simple visual comparisons. Figure 8
demonstrates an example where the design in the compared
view superimposes over the reference view. To deal with cases
where this is visually too intrusive, we provide an option to
disable this functionality by unchecking the corresponding “diff”
checkbox. Figure 8 shows an example with subtractive layering,
however, the technique works in combination with both
subtractive and additive layering.

Figure 8. Demonstration of difference visualization in the
output view and in connectors in the reference networks
view.

4 USER STUDY
In our previous user studies we evaluated how GEM-NI supports
creativity. In those studies participants engaged in creative tasks
and ranked GEM-NI against an unenhanced version of NodeBox
[33, 36] through a psychometric survey. Experts also ranked
participants’ designs in terms of quality [33]. In the work
presented here, we ran an empirical user study to compare
subtractive against additive layering for difference visualization

in MACE. The goal of the user study was to investigate the
hypothesis that subtractive encoding is more effective for
visualizing differences of data-flow networks of designs for a
common design goal.

4.1 Participants
Twelve participants (one female) were recruited for the study.
Participants were between 18 and 48 years old with an average
(μ = 28.42) and had on average 17.75 years of experience using a
desktop/laptop computer. Three were left handed, but all chose
to use the mouse with their right hand for the experiment. Six
participants indicated that they were regular users of data
comparison and differencing tools such as the Track Changes
feature in Microsoft Word and the Unix diff tool, three were
familiar with these tools, but were not using them, two had used
them in the past, and one never heard of the concept before.
Three participants had experience using either data-flow
programming or generative design tools. Ten participants used
diagrams in their current line of work, two used them in the
past.

4.2 Apparatus
The user study was conducted on a MacBook Pro laptop with a
USB wheel mouse and a 27” external 2560×1440 display.

4.3 Experimental Design
Half of the participants evaluated the additive layering first,
while the other half evaluated the subtractive layering first. We
used a repeated measures design with one between factor
(techniques order: subtractive layering first vs. additive layering
first) and one within factor (differencing technique: subtractive
layering vs. additive layering).

The dependent variables were trial completion time and the
error rate (measured as the number of attempts).

4.4 Procedure
Participants were presented with 15 sets (tasks) of alternatives
one after another in the fixed order. Previous work [35] had
identified that the presentation order does not seem to affect the
outcome of this type of experiment substantially. In each of
these sets, the alternative highlighted in white was compared to
the reference alternative, which for simplicity was always
chosen to be the leftmost alternative in every set. All the
alternatives starting from the second one were compared to the
reference. The participants had to identify the changes for each
of these comparisons.

Our procedure employed a hybrid approach based on the idea
of using a dialog [4] for gathering responses. But unlike
Archambault et al.’s work, in our user study the participants had
to identify all changes in the networks until success or a timeout
occurred, similar to other previous work [35]. Unlike that work
[35], participants had to specify only the number of occurrences
for each type of change, rather than explicitly selecting all
changes. See Figure 9. After the participant successfully
identified all the changes of each category (new nodes, new
connectors, deleted nodes, deleted connectors and changed
nodes), had entered their numbers in the dialog and clicked

“Validate”, or after a timeout occurred, the next task was
presented using the next alternative to the right. When the
participant completed all the comparisons, the next set was then
pre-loaded. Participants could use the mouse to select the
numbers from the list menus, or to use the number and the
<tab> key (for switching to the next field), whichever they felt
more comfortable with. The combinations of the two input
methods were also allowed. We also demonstrated how to zoom
in and out, pan and reset the network view. This was necessary
in tasks with many (5+) alternatives as they appeared too small
for easy identification.

This procedure was repeated for both difference visualization
techniques. For the subtractive technique, the dialog did not
display the dashed connector image to avoid confusion. All the
comparisons were made in the alternative-focused connector
abstraction mode.

Figure 9. Task dialog state after an unsuccessful attempt.

4.5 Tasks
We picked 15 sets of generative designs with varying number of
alternatives as tasks for this user study. The first set was the
“Flower of Life” example with three alternatives (Figure 1),
which was used as a practice set where each participant tested
the two techniques during the initial exposure. The results
obtained from this set were discarded. Sets 2-8 were picked from
the dataset of second user study that we conducted on GEM-NI
[33]. Sets 9-10 were created by a graduate student at Simon
Fraser University. Sets 11-15 were picked from a generative
design book [7].

Excluding the first two trials from the “Flower of Life”
example that were discarded, a total of 38 comparisons with each
technique remained. On average, each set contained 3.73
alternatives, with a maximum of 8 and minimum of 2. On
average the number of nodes in the reference was 9.53, with 10.4
connectors. In the compared alternative, the average number of
nodes was 10.49, with 11.12 connectors. On average the number
of new nodes was 1.05, new connectors – 2.12, deleted nodes –
0.97, deleted connectors – 1.54, and changed nodes – 2.05.

4.6 Pilot Study
We recruited four participants for a pilot. This allowed us to fix
the user interface issues and to improve the reliability of the
collected data. Notably, we made changes to the dialog to
prevent participants from re-submitting their response without
making changes in all the fields where they made mistakes. We
learned that it was essential to prevent participants from
modifying responses which were entered correctly in previous
attempts. Moreover, we identified that the task took a bit too
long and was too challenging – networks where participants had
to identify more than 20 new/changed/deleted nodes were

particularly frustrating regardless of the technique. Thus, we
modified one of the networks by grouping nodes to reduce the
number of visible changes. In two tasks, we could not sensibly
cluster the nodes, and so we removed them. In the pilot we
confirmed that a timeout of 2 minutes was appropriate, which
also agrees with previous work [35]. One participant stated that
grid lines were making the task too confusing because it was
difficult to tell them apart from deleted connectors, and so we
disabled them. With these changes, we then performed the main
user study.

4.7 Results
4.7.1 Trial Completion Time. The main effect of technique was
not significant, F1,10 = 3.45, p > .05. On average, additive layering
took 28.5s and subtractive 26.2s. We did not observe a main
ordering effect on time, F1,10 = 1.03, p > .05. However, the
interaction between order and technique was significant,
F1,10 = 51.96, p < .0001 (power = 0.99 at α = 0.05). A Tukey-
Kramer analysis on the interaction between order and technique
revealed among others that when additive layering was
evaluated first, additive layering was much slower (35.4 s) than
subtractive layering when subtractive layering was evaluated
first (28.5 s). See Figure 10.

Figure 10. Interaction between order and technique.

4.7.2 Error Rate. The main effect of technique was not
significant, F1,10 = 2.25, p > .05. On average, 0.143 errors were
found with additive layering, 0.12 – with subtractive layering.
The main ordering effect on time was not observed,
F1,10 = 0.65, ns. The interaction between order and technique was
significant, F1,10 = 5.37, p < .05 (power = 0.55 at α = 0.05).
However, a Tukey-Kramer analysis on the interaction between
order and technique failed to reveal this difference.

4.7.3 Correlations with Difference. Using the proposed
measure for the pairwise difference (Section 3.2.3) we found that
the average difference of the set used in this study was ߤ஽ೝ೐೗	=. 59, ߪ஽ೝ೐೗	= 1.06, ܰ	= 44. A correlation analysis revealed a

very weak correlation between difference and trial completion

time (0.2) and even lower value between difference and error
rate (0.1). We then looked at the absolute difference, ܦ௔௕௦: ܦ௔௕௦ ൌ ݊ஷ ൅ ݊ା ൅ ݊ି ൅ ݁ା ൅ ݁ି

We found that the correlation between ܦ௔௕௦ and trial
completion time was 0.69, and correlation between ܦ௔௕௦ and
error was rate 0.52.

4.8 Feedback from Participants
Participants were asked to rank each of the two differencing
techniques on a Likert scale from 1 to 10 (10 being the best). The
results are summarized in Figure 11. The rankings are consistent
with our findings. 7 of 12 participants ranked the technique they
did last higher than the technique they did first and three ranked
them equally. Out of the two participants who ranked the first
technique higher, one wrote in the freeform feedback that the
subtractive layering technique was easier because he did it
second, although he believes the additive technique is better.
Two participants who ranked subtractive layering higher stated
that they believe there is less clutter with this technique. One
participant believed that additive layering is better because it
appeared to him that there were fewer connectors to count.
Another participant wished that one could toggle between the
number of compared alternatives presented at a time and wished
connectors also had labels like nodes. Yet another participant
expressed that the only thing that appeared different to him was
the presence of connectors across the networks in the
subtractive layering. One participant left more informative
feedback. He said that grey connectors are hard to see and that
he would add a squiggle when they overlapped to tell them
apart. He also stated that hovering on a node and animating its
connectors would help and that having a legend telling how
many there are for each node would be better.

Figure 11. Participants’ ranking of the differencing
techniques. Error Bars: ±1 SD.

5 DISCUSSION
The problem of showing differences is important for generative
design because designers typically create several alternatives
based on a single idea, which they use as a reference. Designers
also tend to work on multiple design alternatives concurrently

[23]. Then management of these alternatives becomes an issue,
which requires also the ability to visualize differences between
alternatives. We presented a solution to difference visualization
for alternative graphs: added, deleted, (un)changed nodes in both
the reference and all compared graphs as well as added and
deleted connections.

Pairwise difference visualization for directed graphs with
nodes identifiable by name is not new, e.g., [35]. Comparing
more than two such graphs of the evolution of a single data set
can be done with animation and/or time slices, e.g., [29]. Yet, in
generative design, where parallel and non-linear creation and
editing of alternatives is the norm, we deal with situations well
beyond the evolution of a single graph. Animation is therefore
not applicable. Agglomeration is also not applicable because we
are dealing with DAGs, not trees. Thus, we proposed using
subtractive and additive encoding. Subtractive encoding is a new
form of explicit encoding where members of the intersection are
removed from the compared graph. This extends Gleicher et al.’s
taxonomy work [11]. Subtractive layering extends a) the layering
approach used in several instances of previous work, such as [2,
8, 35], by hiding unchanged nodes to reduce clutter and drawing
connectors to the reference to enhance juxtaposition; b) side-by-
side views [14, 26, 27] by going beyond pair-wise comparisons;
c) existing work on subjunctive interfaces [30], TreeVersity [15–
17, 19] and TreeVersity2 [18, 19] to show a larger variety of
difference visualizations. Both of our approaches also show
difference visualizations of multiple group nodes. This supports
scalability to generative networks with many nodes, where node
grouping becomes a necessity as otherwise the graph becomes
much too large for a single screen.

Subtractive encoding is as an extension to Shireen et al.’s [30]
concept for parallel creation and editing of alternatives. In their
prototype Shireen et al. included an option to create an empty
design model. The user then selects a node in the original design
and inserts it in the subjunctive graph at which point a new
instance of the design is created for editing. In contrast, our
interface requires that a user creates a clone (a branch from an
earlier state) to start editing a new alternative. Subjunctive nodes
are revealed as common nodes with the original. We did this to
make the interface for editing in difference visualization mode
transparent and minimally intrusive within GEM-NI. In contrast
to Shireen et al.’s work [30], GEM-NI pushes changes always to
all the non-idle alternatives. GEM-NI does not distinguish
between the original or an alternative when pushing changes.
Any design can change the role from the original to an
alternative by pressing a GUI button. In Shireen et al.’s
conceptual prototype [30] users can substitute or replace certain
features of a design by creating new structures in the relevant
subjunctive graphs, connecting them to the prototype, and
removing the substituted nodes from the alternative. Our
interface enhances this further by also displaying nodes and
connectors that were removed from the original as we designed
the interface to serve as a difference visualization interface as
well. This way all the differences between the original and the
alternatives can be visualized at once. To reduce visual clutter,
Shireen et al.’s conceptual prototype [30] emphasizes nodes and

connectors related to the currently selected alternative and de-
emphasizes everything else. We implemented a variant of this in
MACE. If the user sets the active document to any document
other than the original, all the links connecting other
alternatives to the original are removed, but when the user sets
the original alternative as active then everything is shown.
Furthermore, selecting the active node hides other connectors in
that alternative. If needed, the user can disable difference
visualizations in GEM-NI by disabling MACE. This effectively
enables the user to focus on a single alternative, similar to the
design of Shireen et al. subjunctive dependency graphs [30].

MACE also introduces “reveal-to-edit”, a new way to interact
with hidden, common nodes. The “dragging” solution proposed
by Shireen et al. [30] is less user friendly and does not match
standard GUI conventions.

Given that alternatives for a design problem will likely be
similar due to the shared goal, we expect fewer differences
among the data-flow networks of alternatives compared to the
number of similarities. This assumption underlies the design of
subtractive layering. We performed an analysis on the
alternatives obtained through a user study to test this
assumption. Using the introduced difference measure, based on
measuring the visual similarity of the alternative networks, we
computed a low degree of difference, which confirmed the
appropriateness of the design choice of the technique. The
correlation analysis between relative difference, trial completion
time and error rate did not reveal a strong correlation. This is
not too surprising. The following example clarifies this. The
largest value for ܦ௥௘௟	in the study set was 6. The corresponding
pair is shown in Figure 12. Arguably, despite the large ܦ௥௘௟ ,
identifying these differences should not be difficult since there
are not that many nodes and edges in total. While this measure
helped us to motivate our work, it’s ܦ௔௕௦ that relates to the
actual task measures.

Figure 12. An example where ࢒ࢋ࢘ࡰ ൌ ૟.

Our hypothesis was that subtractive layering improves the
readability of our difference encoding by keeping visual clutter
low because the designs share a common goal. Contrary to our
intuition, the findings and participants’ feedback reject this
hypothesis. We showed that this is true for networks with an
average number of 10 nodes and connectors. Still, these findings
are not that surprising. Previous work [35] demonstrated that

there is no significant difference between difference
visualization techniques for static diagrams and our results
complement those findings. Although not significantly so, the
layering technique in this previous work was found most
efficient. Thus, in our current user study, we were essentially
comparing subtractive layering to the best-known technique.

Nevertheless, the interaction between order and technique is
an interesting finding. Additive layering seems initially far more
challenging to learn than subtractive layering – when additive
layering was presented first it took 24% time longer to complete
the task. One possible explanation could be that the larger
amount of node clutter with additive layering forced participants
to check for changes in connections between unchanged nodes.
We observed this issue during the user study on multiple
occasions, yet did not have a mechanism in place to log this.
Given this finding, subtractive encoding could be a better choice
for difference visualizations for novice users.

Our evaluation has limitations. We do not account for
situations when a participant falsely identifies a change of one
type and fails to identify another change of the same type. Then,
the total number of changes will add up to the correct number
but the identified changes will be incorrect. Also, participants
cannot be prevented from guessing the number of changes.
Another issue is that the task also involves dealing with
inputting the responses through the interface of the dialog,
rather than purely identifying changes, which means that there
is also a learning curve for the dialog, which may not relate to
the rate at which participants identify the changes. We were not
able to directly adopt the approach used in DARLS [35], due to
the fact that in NodeBox connectors cannot be selected directly.

Finally, we believe that the ideas behind our difference
visualizations generalize to other visual programming
environments, including 3D modeling (e.g., Grasshopper 3D,
Houdini). For other types of media, such as video or audio (e.g.,
Max/MSP), a different approach to illustrating differences may be
necessary.

6 CONCLUSION AND FUTURE WORK
We presented a new interface for interactive difference
visualizations for generative design alternatives. The new
techniques enable comparison of more than two alternatives at a
time and enable differencing for the output, parameter and
network views. The techniques are interactive and enable
creating and editing alternatives through cloning of the original
design and using the “reveal-to-edit” feature. The interface also
allows post-hoc merging of the state of a parameter across a set
of alternatives. For the network view, we investigated two
difference visualization approaches: subtractive and additive
layering. We introduced new ways to emphasize added, deleted,
(un)changed nodes, and connectors. Subtractive layering is based
on the idea of subtractive encoding, which we hypothesized as
being useful in data that has more similarities than the
differences, such as the alternatives we are dealing with. We
used a difference measure to confirm the appropriateness of the
approach for at least one alternatives dataset produced by
designers. We evaluated subtractive against additive layering in

a repeated measures experiment to investigate the hypothesis.
The results were not confirmatory, but our findings suggest that
subtractive layering may be better suited for novice users.

In the future, we will investigate the scalability of our
techniques for even larger numbers of alternatives and
investigate other approaches to difference visualizations. In our
work we only focused on the difference visualizations and not
editing. Our future user studies will evaluate the editing
technique in MACE. We are also considering a direct comparison
with DARLS. Additionally, we will explore difference
visualizations for visual programming environments in other
domains.

ACKNOWLEDGMENTS
We gratefully acknowledge financial support from the NSERC
Discovery program and the GRAND NCE. We would also like to
thank Robert Woodbury, Maher Elkhaldi and Naghmi Shireen
for their feedback on an early version of the difference
visualizations in MACE.

REFERENCES
[1] Alper, B., Bach, B., Henry Riche, N., Isenberg, T. and Fekete, J.-D. 2013.

Weighted Graph Comparison Techniques for Brain Connectivity Analysis.
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems
(New York, NY, USA, 2013), 483–492.

[2] Andrews, K., Wohlfahrt, M. and Wurzinger, G. 2009. Visual Graph
Comparison. Information Visualisation, 2009 13th International Conference (Jul.
2009), 62–67.

[3] Archambault, D. 2009. Structural differences between two graphs through
hierarchies. Graphics Interface 2009 (Kelowna, British Columbia, Canada, 2009),
87–94.

[4] Archambault, D., Purchase, H. and Pinaud, B. 2011. Animation, Small
Multiples, and the Effect of Mental Map Preservation in Dynamic Graphs. IEEE
Transactions on Visualization and Computer Graphics. 17, 4 (Apr. 2011), 539–
552.

[5] Archambault, D., Purchase, H.C. and Pinaud, B. 2011. Difference Map
Readability for Dynamic Graphs. Graph Drawing. U. Brandes and S. Cornelsen,
eds. Springer Berlin Heidelberg. 50–61.

[6] Bach, B., Pietriga, E. and Fekete, J.-D. 2014. GraphDiaries: Animated
Transitions and Temporal Navigation for Dynamic Networks. IEEE
Transactions on Visualization and Computer Graphics. 20, 5 (May 2014), 740–
754.

[7] Bohnacker, H. 2012. Generative Design: Visualize, Program, and Create with
Processing. Princeton Architectural Press.

[8] Dadgari, D. and Stuerzlinger, W. 2010. Novel User Interfaces for Diagram
Versioning and Differencing. British HCI (2010).

[9] Förtsch, S. and Westfechtel, B. 2007. Differencing and Merging of Software
Diagrams - State of the Art and Challenges. ICSOFT (SE) (2007), 90–99.

[10] Girschick, M. 2006. Difference Detection and Visualization in UML Class
Diagrams. TU Darmstadt.

[11] Gleicher, M., Albers, D., Walker, R., Jusufi, I., Hansen, C.D. and Roberts, J.C.
2011. Visual comparison for information visualization. Information
Visualization. 10, 4 (Oct. 2011), 289–309.

[12] Graham, M. and Kennedy, J. 2010. A survey of multiple tree visualisation.
Information Visualization. 9, 4 (Dec. 2010), 235–252.

[13] Graham, M. and Kennedy, J. 2007. Exploring multiple trees through DAG
representations. IEEE transactions on visualization and computer graphics. 13, 6
(Dec. 2007), 1294–1301.

[14] Guerra Gómez, J.A. Exploring Differences in Multivariate Datasets Using
Hierarchies: An Interactive Information Visualization Approach. University of
Maryland.

[15] Guerra-Gómez, J.A., Buck-coleman, A., Pack, M.L., Plaisant, C. and
Shneiderman, B. 2013. TreeVersity: Interactive Visualizations for Comparing
Hierarchical Datasets. Transportation Research Record (TRR), Journal of the
Transportation Research Board (2013). (2013), 21.

[16] Guerra-Gómez, J.A., Buck-Coleman, A., Plaisant, C. and Shneiderman, B. 2011.
TreeVersity: Comparing tree structures by topology and node’s attributes
differences. 2011 IEEE Conference on Visual Analytics Science and Technology
(VAST) (Oct. 2011), 275–276.

[17] Guerra-Gómez, J.A., Buck-coleman, A., Plaisant, C. and Shneiderman, B. 2012.
TreeVersity: Visualizing Hierarchal Data for Value with Topology Changes.
Proceedings of the Digital Research Society 2012. 2, (Jul. 2012), 640–653.

[18] Guerra-Gómez, J.A., Pack, M.L., Plaisant, C. and Shneiderman, B. 2013.
Discovering temporal changes in hierarchical transportation data: Visual
analytic & text reporting tools. Transportation Research Part C: Emerging
Technologies. 51, (2013), 167–179.

[19] Guerra-Gómez, J.A., Pack, M.L., Plaisant, C. and Shneiderman, B. 2013.
Visualizing Change over Time Using Dynamic Hierarchies: TreeVersity2 and
the StemView. IEEE Transactions on Visualization and Computer Graphics. 19,
12 (2013), 2566–2575.

[20] Hong, J.Y., D’Andries, J., Richman, M. and Westfall, M. 2003. Zoomology:
ComparingTwo Large Hierarchical Trees. Poster at Compendium of InfoVis
2003. (2003), 120–121.

[21] Isenberg, P. and Carpendale, S. 2007. Interactive Tree Comparison for Co-
located Collaborative Information Visualization. IEEE Transactions on
Visualization and Computer Graphics. 13, 6 (Nov. 2007), 1232–1239.

[22] Lee, B., Robertson, G.G., Czerwinski, M. and Parr, C.S. 2007. CandidTree:
Visualizing Structural Uncertainty in Similar Hierarchies. Human-Computer
Interaction – INTERACT 2007. C. Baranauskas, P. Palanque, J. Abascal, and
S.D.J. Barbosa, eds. Springer Berlin Heidelberg. 250–263.

[23] Lunzer, A. and Hornbæk, K. 2008. Subjunctive Interfaces: Extending
Applications to Support Parallel Setup, Viewing and Control of Alternative
Scenarios. ACM TOCHI. 14, 4 (Jan. 2008), 17:1–17:44.

[24] Marks, J., Andalman, B., Beardsley, P.A., Freeman, W., Gibson, S., Hodgins, J.,
Kang, T., Mirtich, B., Pfister, H., Ruml, W., Ryall, K., Seims, J. and Shieber, S.
1997. Design galleries: a general approach to setting parameters for computer
graphics and animation. SIGGRAPH ’97 (New York, NY, USA, 1997), 389–400.

[25] Mehra, A., Grundy, J. and Hosking, J. 2005. A generic approach to supporting
diagram differencing and merging for collaborative design. ASE 2005 (Long
Beach, CA, USA, 2005), 204–213.

[26] Munzner, T., Guimbretière, F., Tasiran, S., Zhang, L. and Zhou, Y. 2003.
TreeJuxtaposer: scalable tree comparison using Focus+Context with
guaranteed visibility. SIGGRAPH 2003. 22, 3 (2003), 453–462.

[27] Namata, G.M., Staats, B., Getoor, L. and Shneiderman, B. 2007. A dual-view
approach to interactive network visualization. CIKM 2007 (Lisbon, Portugal,
2007), 939–942.

[28] Ohst, D., Welle, M. and Kelter, U. 2003. Differences between versions of UML
diagrams. ACM SIGSOFT Software Engineering Notes. 28, 5 (Sep. 2003), 227–236.

[29] Rufiange, S. and McGuffin, M.J. 2013. DiffAni: Visualizing Dynamic Graphs
with a Hybrid of Difference Maps and Animation. IEEE Transactions on
Visualization and Computer Graphics. 19, 12 (Dec. 2013), 2556–2565.

[30] Shireen, N., Erhan, H., Botta, D. and Woodbury, R. 2012. Parallel development
of parametric design models using subjunctive dependency graphs. ACADIA
2012 (San Francisco, CA, USA, Oct. 2012), 57–66.

[31] Terry, M., Mynatt, E.D., Nakakoji, K. and Yamamoto, Y. 2004. Variation in
element and action: supporting simultaneous development of alternative
solutions. CHI 2004 (New York, NY, USA, 2004), 711–718.

[32] Woodbury, R. 2010. Elements of Parametric Design. Routledge.
[33] Zaman, L. 2015. User Interfaces and Difference Visualizations for Alternatives.

York University.
[34] Zaman, L., Kalra, A. and Stuerzlinger, W. 2011. DARLS: differencing and

merging diagrams using dual view, animation, re-layout, layers and a
storyboard. CHI 2011 Extended Abstracts (Vancouver, BC, Canada, 2011), 1657–
1662.

[35] Zaman, L., Kalra, A. and Stuerzlinger, W. 2011. The effect of animation, dual
view, difference layers, and relative re-layout in hierarchical diagram
differencing. Graphics Interface 2011 (St. John’s, Newfoundland, Canada, 2011),
183–190.

[36] Zaman, L., Stuerzlinger, W., Neugebauer, C., Woodbury, R., Maher, E., Shireen,
N. and Terry, M. 2015. GEM-NI: A System For Creating and Managing
Alternatives In Generative Design. CHI 2015 (Seoul, Korea, 2015).

