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ABSTRACT1 
We present a new interface for interactive comparisons of more 
than two alternative documents in the context of a generative 
design system that uses generative data-flow networks defined 
via directed acyclic graphs. To better show differences between 
such networks, we emphasize added, deleted, (un)changed nodes 
and edges. We emphasize differences in the output as well as 
parameters using highlighting and enable post-hoc merging of 
the state of a parameter across a selected set of alternatives. To 
minimize visual clutter, we introduce new difference 
visualizations for selected nodes and alternatives using additive 
and subtractive encodings, which improve readability and keep 
visual clutter low. We analyzed similarities in networks from a 
set of alternative designs produced by architecture students and 
found that the number of similarities outweighs the differences, 
which motivates use of subtractive encoding. We ran a user 
study to evaluate the two main proposed difference visualization 
encodings and found that they are equally effective. 
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1 INTRODUCTION 
Parametric and generative design is a modern design technology 
in which a set of rules or an algorithm generates the output, 
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such as an image, sound, architectural model, or animation. In 
parametric design, typically only values are changed. Generative 
systems can produce much more varied output and uses either a 
set of rules, a data-flow program, or even an algorithm as the 
underlying generative model to ensure that the generated output 
matches the goals, as specified as part of the model. Current 
examples include Max/MSP (cycling74.com), NodeBox 
(nodebox.net), Grasshopper 3D (grasshopper3d.com) and Houdini 
(sidefx.com). With parametric and generative technologies, it is 
possible to explore a much larger number of viable design 
options compared to what is possible with manual operations. 
However, how users can compare alternatives in such a large 
space of design options has not been investigated in detail. 

Since designers routinely generate dozens of alternatives 
based on a single idea [36], basic techniques for comparing them, 
such as juxtaposition, synchronized zooming and panning, and 
uniform layouts, are not enough. This is especially true of 
environments that employ data-flow languages. Designers may 
want to superimpose their newer creations over earlier ones to 
see how their newer versions deviate from the previous version. 
They may want to become immediately aware how the 
parameters of subjunctive nodes differ between alternatives, or 
even want to see the differences in the networks’ structures.  

In this paper, we present MACE (Multiple Alternatives – 
Comparison and Editing), a novel user interface that facilitates 
the comparison of multiple alternatives in generative design 
which also includes new mechanisms that facilitate interactive 
editing in a difference visualization mode. We implemented 
these techniques as an extension of GEM-NI [36]. See Figure 1. 

 
Figure 1. The “Flower of Life” worked example in GEM-NI. 

GEM-NI [36] enables the user to quickly generate sets of 
alternative solutions through a multitude of techniques, edit 
them in parallel with undo capabilities, and supports merging of 
alternatives. Moreover, GEM-NI also provides GUI mechanisms 
to manage the set of alternatives. The work presented here 



  
 

 

extends GEM-NI with new difference visualization techniques 
and with techniques that enable editing in difference 
visualization mode. 

To support such comparisons better, we implemented the 
following explicit difference visualization techniques: 
 a new interactive difference visualization that 

simultaneously compares more than one DAG (directed 
acyclic graph) against a given reference; 

 two types of encoding: subtractive and additive to show/hide 
common elements for better difference readability and 
scalability; 

 two levels of abstraction for subtractive encoding: alternative 
and node-focused difference visualization for the selected 
alternative or node to give the user the control over visual 
clutter; 

 visualizing differences in parameters with the ability to 
synchronize the parameter state. 

2 RELATED WORK 
2.1 Generative Design 
Generative design enables designers to create endless design 
variations based on a model. This model can vary just in 
parameters, be expressed as varying networks of computational 
nodes and/or constraints, or even full algorithms across 
alternatives. By structuring design concepts as models, it is 
possible to explore a much larger number of viable design 
options compared to what is manually possible. Generative 
modeling is a fast method for exploring design possibilities and 
is used in various design fields such as art, architecture, and 
product design. Then, the central role of the designer involves 
continuously modifying the generative model based on the 
resultant outcomes. Through this the designer navigates the 
solutions space. A very simple approach is to just have the user 
repeatedly select attractive solutions to zero in on desirable 
options [24]. Better approaches give the user more control. 

To compensate for the lack of adequate software features to 
support easy and efficient exploration of a design space, current 
designers rely on strategies, referred to as idioms of use [32]. 
Some common idioms for comparing design alternatives are 
opening different file “versions” in different windows, or using 
layers [31]. Yet, current computational design tools still do not 
support the comparison of alternative solutions in an adequate 
manner, nor do comparison modes permit interactive editing. 
Moreover, such adaptations sometimes create more problems 
than they solve, e.g., when the file naming and window 
management overhead becomes large. 

The user interface of MACE aids generative design through 
easy comparison of more than two alternatives through 
enhanced difference visualizations and by permitting editing in 
the difference visualization mode. 

2.2 Difference and History Visualization for 
Graphs 

History visualization, versioning, differencing and version 
merging graphs, trees and node-link diagrams are all related to 

the area of dynamic graph drawing, which deals with the 
problem of visualizing data that evolves linearly over time. Most 
of the work cited below targets generic undirected graphs and 
trees. Yet, generative models use directed edges to represent the 
data flow. Almost all the approaches below reduce the problem 
to showing only pair-wise differences between graphs or trees. 

A difference map is a graph that encodes all of the differences 
between the node and edge sets between two graphs [3]. Such 
maps produce fewer errors when determining the number of 
edges inserted or removed from a graph evolving over time and 
were also preferred [5]. MACE employs a new variant of a 
difference map, which excludes nodes and edges common to the 
compared graphs.  

Animation can also be used to compare graphs, e.g., [6, 29, 
35]. Zaman et al. [35] demonstrated that animation was 
beneficial for graphs with non-matching layouts. This is not 
applicable for MACE, as GEM-NI synchronizes node positions 
across alternatives. Animation is better suited for showing 
gradual transitions, i.e., successive graphs that represent an 
evolving change of a single data set [13]. In our application 
domain, we deal with situations well beyond the evolution of a 
single graph. The closest relevant work compares multiple 
graphs at the same time. It is important to highlight that in 
generative design non-linear creation and editing of alternatives 
is the norm. In other words, generative design typically is ill 
described by a linear time flow. Thus, time/history-based 
difference visualization techniques such as animation and small 
multiples are not directly applicable to the comparison of 
alternative designs. MACE employs new graph difference 
techniques to illustrate the changes between alternatives. 

Graham et al. [12] surveyed multi-tree visualization. They 
distinguish five methods of comparing nodes in two trees: edge 
drawing, coloring, animation, matrix representation, and 
agglomeration. Gleicher et al.’s [11] work offered a taxonomy of 
visual designs for comparison, which groups designs into three 
basic categories. They identify that all visual designs are 
assembled from the building blocks of juxtaposition, 
superposition and explicit encodings. Alper et al. [1] evaluated 
two techniques for weighted graph comparison and found that 
matrix representations are more effective than node-link 
diagrams. As our work involves directed and unweighted graphs, 
such techniques are not applicable. Layering is commonly used 
in diagram differencing and merging, e.g., [8, 34, 35] and 
superimposes multiple graphs. Yet, it can only handle a very 
small number of graphs simultaneously. Thus, it is most useful 
for showing pair-wise differences.  

Side-by-side views are a special case of graph difference 
visualization, which show only two versions. DualNet [27] 
visualizes sub-networks of node-link diagrams with side-by-side 
views. All work discussed below in this paragraph focuses only 
on trees, rather than graphs. Thus, most of these methods are 
not directly applicable to our context. TreeJuxtaposer [26] targets 
the comparison of large trees with side-by-side views. 
TreeVersity [15–17, 19] shows changes in topology and node 
values. The system uses glyphs that pre-attentively highlight 
changes and also highlights created and removed nodes. 



  
 

 

TreeVersity2 [18, 19] enables the exploration of changes in trees 
over time. Guerra-Gomez et al. [19] identified and classified five 
types of tree comparisons. Except for the comparison of 
topological differences between two trees, none of the types of 
comparisons identified there apply to the DAGs used in GEM-NI. 
Instead of topological differences MACE identifies structural 
differences between two or more DAGs. Moreover, 
Guerra-Gomez et al.’s node types do not correspond to our 
context, as nodes in GEM-NI do not have categorical attributes, 
can contain data unsuitable for interpolation.  

Another static visualization approach uses agglomeration. 
Graham and Kennedy [13] presented a DAG visualization to 
interact with a set of multiple classification trees to identify 
overlaps and differences between groups of trees and individual 
trees with up to six classifications. Zoomology [20] compares two 
classification datasets where two trees are merged into a single 
overview. Isenberg et al. [21] presented a new system that 
facilitates hierarchical data comparison in co-located 
collaborative environment using structural comparison through 
overlay. Their system dealt with up to six trees. CandidTree [22] 
merges two trees into one and visualizes location and sub-tree 
structure structural uncertainty. Yet, agglomeration is not 
applicable to (generative design) networks, as neither individual 
nodes nor sub-networks can be combined meaningfully into a 
hierarchy in DAGs.  

Difference visualization is also used in software engineering, 
usually for UML diagrams. Förtsch et al. [9] presented a survey 
on solutions for differencing and merging of software diagrams 
and listed requirements for UML diagram versioning tools. 
Ohst et al. [28] introduced an approach that highlights common 
and specific parts of two diagrams. Zaman et al. [34] later 
demonstrated a system where graphs are displayed side-by-side 
with differences marked. Girschick [10] introduced a similar 
system, where eight colors were used to visualize eight different 
types of changes in class diagrams. A user survey for the 
Pounamu system [25] found positive feedback for their 
difference visualization, the support for incremental changes, 
merging, and the overall support for diagram-based design 
activities. Most of the approaches for UML diagram differencing 
are applicable to other forms of node-link diagrams and graphs. 
A single unified diagram for graph comparison was studied by 
Dadgari et al. [8]. They evaluated multiple graph differencing 
and merging techniques qualitatively and found that a 
translucent layer approach was preferred for simple pair-wise 
comparisons. A unified graph approach was also proposed by 
Andrews et al. [2]. A side-by-side approach for graph 
differencing was also investigated by Zaman et al. [35] in the 
DARLS system. DARLS displays two versions of a diagram side-
by-side with differences marked, even if a node was moved.  

Most directly related to our difference visualizations in MACE 
is Shireen et al.’s [30] conceptual prototype of a user interface 
for parallel work with design alternatives, which included a 
difference visualization. However, they only showed nodes that 
are common.  

In summary, most previous work addresses the problem of 
showing pair-wise differences. Animation and small multiples 

were used for visual comparisons of more than two DAGs. Yet, 
this is only effective for content that has evolved linearly. None 
of these approaches can handle the visual comparison of a dozen 
or more different DAGs that have evolved non-linearly or in 
parallel.  

3 MACE 
Here, we present novel extensions of the original GEM-NI 
system [36]. to enable comparison of multiple alternatives. 

The user can switch between the normal (viewing) mode, 
where typical interaction occurs for creating and editing 
alternatives, and the “diff mode”, where differences of all 
alternatives are displayed against a chosen reference. The user 
can use any alternative as the reference. To get into this mode, 
one alternative must be designated by the user as the reference 
through a GUI button, clicking on a menu button, or a key short 
cut. The other alternatives (further referred to as compared 
alternatives) are then compared to it. In diff mode, differences are 
visualized in all three views (output, parameter and network), as 
applicable. The diff mode is fully interactive. For visualizing 
differences between the networks, we use two different 
approaches: subtractive and additive encoding. 

 
Figure 2. Difference visualizations of the “Flower of Life” 
example using additive layering. 

3.1 Additive Layering 
Additive layering is a direct adaptation of the layering technique 
from previous work [35] to multi-network comparisons. The 
word “layering” highlights the fact that this is a form of 
superposition. The word “additive” refers to additive encoding, 
which was identified by Gleicher et al. [11]. Figure 2 
demonstrates this technique. The leftmost alternative was 
chosen as reference. The nodes SAMPLE1, COORDINATES1 and 
CONNECT1 are unchanged between the three alternatives. The 
differences start to appear with SHAPE_ON_PATH1, which is the 
next node in these networks. In the center and right alternatives, 
this node differs from the reference node in two parameters: 
Amount and Margin. These parameters are highlighted in red to 
indicate the difference in the parameter view. The state of a 
parameter can be synchronized between non-idle alternatives by 
clicking on the synch button in the parameter field. This is an 
extension of selective merging [36] to a lower level form of 
merging differences. A “≠” sign is displayed to the top left of the 



  
 

 

node to emphasize this further through an inequality metaphor. 
The node is also highlighted in red. Nodes COPY1 and COMBINE1 
with the corresponding connectors are not present in both the 
center and right alternatives. This is shown using transparency. 
A “−” sign in the top left of these nodes, which emphasizes this 
further through a reduction/subtraction metaphor. New nodes 
POLIGON1 (2 and 3), ROTATE1 and new connectors, which don’t 
exist in the reference, are highlighted in green. A “+” sign is 
displayed in the top left of the node to emphasize this through 
an addition metaphor. The word “reference” or “compared” 
appears in the top left corner of the network view of each 
alternative as an additional aid to distinguish between the 
reference and compared alternatives. Deleted connectors relative 
to the active compared alternative are also displayed in the 
reference using transparency. This works for both additive 
layering and subtractive layering described below. See an 
example in Figure 8, where four deleted connectors are shown in 
the reference network relative to the compared active network. 

3.2 Subtractive Layering 
Our design for subtractive layering is in part based on the 
subjunctive interface proposed (but not implemented) by 
Shireen et al. [30]. Unlike in additive layering, common 
unchanged nodes are not shown in compared alternatives (with 
one exception, discussed below). See the example in Figure 3. 
Only nodes with modified states are shown, which are either 
changed, deleted or new nodes. Connectors to and from 
unmodified nodes are instead shown on the nodes in the 
reference as dashed curves, which emphasizes that these 
connectors cross network boundaries. In addition, unmodified 
common nodes are highlighted in the reference in yellow. 
Drawing every single connector would add significant clutter. 
Due to that, and after trying different variations, we came up 
with a design that minimizes showing redundant connectors 
through a simple rule: we draw cross-network connectors only 
for nodes which cannot be connected to the other nodes within 
the compared alternative because these other nodes are hidden. 
E.g., in the center alternative in Figure 3 the COMBINE1 and 
SHAPE_ON_PATH1 nodes are both shown. Therefore, a connector 
between them is only drawn in the center alternative as a solid 
line, and not between COMBINE1 in the center alternative and 
SHAPE_ON_PATH1 in the reference. 

 
Figure 3. Difference visualizations of the “Flower of Life” 
example using subtractive layering. 

3.2.1 Abstraction of Connectors. To reduce clutter further, we 
provide two additional mechanisms: alternative and node 
focused visualizations. In Figure 4a, the user selects the center 
alternative as active, which hides cross-network connectors to 
the right alternative. The user then selects SHAPE_ON_PATH1, 
which hides all the connectors which do not involve this node 
(Figure 4a). 

(a)   

(b)  

Figure 4. (a) alternative-focused visualization, (b) node-
focused visualization. 

 
Figure 5. Showing differences in connectors between 
unchanged nodes. 

3.2.2 Showing Differences in Connectors between Unchanged 
Nodes. We also implemented a technique to illustrate differences 
in node connections that involve one or more unchanged nodes. 
In this visualization, we reveal unchanged, common nodes that 
have one or more changed connections. Figure 5 shows an 
example, where nodes ROWS, GAPSIZE and HSB_COLOR1 are shown 
in the compared alternative (contrary to the rule of hiding 
common unchanged nodes in subtractive layering). This is done 
to highlight that in ROWS one outgoing connector was deleted 
and two new connectors were added, in GAPSIZE one outgoing 
connector was added, and in HSB_COLOR1 one incoming 
connector was deleted and three were added. 

3.2.3 Design Motivation and the Research Hypothesis. We 
employ subtractive encoding—a complementary approach to the 
additive encoding identified by Gleicher et al. [11]. Subtractive 
encoding removes common nodes from the compared graphs. 
This technique reveals and/or highlights changed, unchanged, 
added and removed nodes in the compared network relative to 
the reference and could reduce visual clutter in the compared 
network. Thus, if there are no differences between a reference 
and compared network and there is nothing to show in the 
compared network, visual clutter is non-existent or minimal. On 
the other hand, if the overall number of changes is substantial, 



  
 

 

then the difference visualization might visually “overwhelm” the 
content. To characterize this, we propose using the relative 
percentage of nodes and edges shown in each difference 
visualization between two alternatives as an approximation to 
quantify relative difference, ܦ௥௘௟: ܦ௥௘௟ ൌ ݊ஷ ൅ ݊ା ൅ ݊ି ൅ ݁ା ൅ ݁ି݊௥௘௙ ൅ ݁௥௘௙  

Here, nஷ is the number of changed, nା—the new and nି—the 
deleted nodes in the compared network, n୰ୣ୤ is the total number 
of nodes in the reference, e୰ୣ୤ is the total number of connectors 
in the reference, eା—the new and eି—the deleted connectors in 
the compared network. If there are no changes, ܦ௥௘௟ ൌ 0. If the 
number of displayed nodes and edges in the compared view is 
equal to or exceeds the number of nodes in the reference, ܦ௥௘௟ ൒ 1. 

For subtractive layering to be effective, the average ܦ௥௘௟ of 
typical designs must be low. We believe that alternatives for a 
design problem will likely show substantial similarities due to 
the shared goal. Thus, we expect fewer differences among data-
flow networks for alternatives compared to the number of 
similarities. To test this hypothesis we computed these numbers 
for the dataset of the second user study conducted on GEM-NI 
[33]. For the outcomes, we performed all pairwise comparisons 
of all alternatives to the first design. Averaging across all 
participants yields a low difference of ߤ஽ೝ೐೗  = 20. Given that the average is substantially closer to zero than	= .22, ܰ	஽ೝ೐೗ߪ ,29. = 
one, this suggests that showing differences instead of 
commonalities is an appropriate design choice for difference 
visualization across multiple alternatives.  

3.2.4 Interactive Editing. We believe it would be trivial to 
describe how interactive editing works with additive layering. 
So, we will focus on the subtractive encoding instead. To enable 
interactive editing with subtractive layering we employ our 
“reveal-to-edit” feature. The interface mechanics we discuss here 
are in part based on the subjunctive interface proposed by 
Shireen et al. [30].  

3.2.5 Worked Example. Consider the same design scenario as 
in the worked example of GEM-NI [36]. This time imagine Ann 
wants to recreate the three designs with subtractive layering 
enabled. She first creates the design on the left (Figure 1). She 
then creates a clone of the design (Figure 6a) and enables the diff 
mode by setting the left design as the reference (Figure 6b). 
Subtractive encoding hides all visualizations that are common 
between the original (left) and the clone (right). Therefore, the 
network view of the clone becomes empty. She then selects 
SHAPE_ON_PATH1, COPY1 and COMBINE1. By clicking anywhere in 
the network view of the clone and holding down a modifier, she 
then reveals these three nodes (Figure 6c). She then sandboxes 
the clone, changes two parameters of SHAPE_ON_PATH1 
(“Amount” and “Margin”) and deletes COPY1 and COMBINE1. This 
is how she arrives at the “Tube Torus” (Figure 6d). She then 
creates a clone of “Tube Torus” (Figure 7), sandboxes it and 
completes the final design as described in original worked 
example [36]. 

(a)  

(b)  

(c)  

(d)  

Figure 6. Editing alternatives using interactive difference 
visualization with subtractive encoding. (a) The original 
and a clone; (b) subtractive encoding; (c) SHAPE_ON_PATH1, 
COPY1 and COMBINE1 revealed in the clone for further 
editing; (d) “Amount” and “Margin” changed in 
SHAPE_ON_PATH1; COPY1 and cOMBINE1 are deleted. 



  
 

 

 
Figure 7. Editing alternatives using interactive difference 
visualization with subtractive encoding: cloning of a 
design. 

3.3 Showing Differences in the Output View 
To illustrate the differences in the output of the generative 
design, the geometry produced by the rendered node of the 
reference is displayed transparently in the output view in a 
bottom layer for all compared alternatives. This directly 
superimposes the geometry of compared alternatives over the 
reference to enable simple visual comparisons. Figure 8 
demonstrates an example where the design in the compared 
view superimposes over the reference view. To deal with cases 
where this is visually too intrusive, we provide an option to 
disable this functionality by unchecking the corresponding “diff” 
checkbox. Figure 8 shows an example with subtractive layering, 
however, the technique works in combination with both 
subtractive and additive layering. 

 
Figure 8. Demonstration of difference visualization in the 
output view and in connectors in the reference networks 
view. 

4 USER STUDY 
In our previous user studies we evaluated how GEM-NI supports 
creativity. In those studies participants engaged in creative tasks 
and ranked GEM-NI against an unenhanced version of NodeBox 
[33, 36] through a psychometric survey. Experts also ranked 
participants’ designs in terms of quality [33]. In the work 
presented here, we ran an empirical user study to compare 
subtractive against additive layering for difference visualization 

in MACE. The goal of the user study was to investigate the 
hypothesis that subtractive encoding is more effective for 
visualizing differences of data-flow networks of designs for a 
common design goal. 

4.1 Participants 
Twelve participants (one female) were recruited for the study. 
Participants were between 18 and 48 years old with an average 
(μ = 28.42) and had on average 17.75 years of experience using a 
desktop/laptop computer. Three were left handed, but all chose 
to use the mouse with their right hand for the experiment. Six 
participants indicated that they were regular users of data 
comparison and differencing tools such as the Track Changes 
feature in Microsoft Word and the Unix diff tool, three were 
familiar with these tools, but were not using them, two had used 
them in the past, and one never heard of the concept before. 
Three participants had experience using either data-flow 
programming or generative design tools. Ten participants used 
diagrams in their current line of work, two used them in the 
past. 

4.2 Apparatus 
The user study was conducted on a MacBook Pro laptop with a 
USB wheel mouse and a 27” external 2560×1440 display. 

4.3 Experimental Design 
Half of the participants evaluated the additive layering first, 
while the other half evaluated the subtractive layering first. We 
used a repeated measures design with one between factor 
(techniques order: subtractive layering first vs. additive layering 
first) and one within factor (differencing technique: subtractive 
layering vs. additive layering).  

The dependent variables were trial completion time and the 
error rate (measured as the number of attempts).  

4.4 Procedure 
Participants were presented with 15 sets (tasks) of alternatives 
one after another in the fixed order. Previous work [35] had 
identified that the presentation order does not seem to affect the 
outcome of this type of experiment substantially. In each of 
these sets, the alternative highlighted in white was compared to 
the reference alternative, which for simplicity was always 
chosen to be the leftmost alternative in every set. All the 
alternatives starting from the second one were compared to the 
reference. The participants had to identify the changes for each 
of these comparisons. 

Our procedure employed a hybrid approach based on the idea 
of using a dialog [4] for gathering responses. But unlike 
Archambault et al.’s work, in our user study the participants had 
to identify all changes in the networks until success or a timeout 
occurred, similar to other previous work [35]. Unlike that work 
[35], participants had to specify only the number of occurrences 
for each type of change, rather than explicitly selecting all 
changes. See Figure 9. After the participant successfully 
identified all the changes of each category (new nodes, new 
connectors, deleted nodes, deleted connectors and changed 
nodes), had entered their numbers in the dialog and clicked 



  
 

 

“Validate”, or after a timeout occurred, the next task was 
presented using the next alternative to the right. When the 
participant completed all the comparisons, the next set was then 
pre-loaded. Participants could use the mouse to select the 
numbers from the list menus, or to use the number and the 
<tab> key (for switching to the next field), whichever they felt 
more comfortable with. The combinations of the two input 
methods were also allowed. We also demonstrated how to zoom 
in and out, pan and reset the network view. This was necessary 
in tasks with many (5+) alternatives as they appeared too small 
for easy identification. 

This procedure was repeated for both difference visualization 
techniques. For the subtractive technique, the dialog did not 
display the dashed connector image to avoid confusion. All the 
comparisons were made in the alternative-focused connector 
abstraction mode. 

 
Figure 9. Task dialog state after an unsuccessful attempt. 

4.5 Tasks 
We picked 15 sets of generative designs with varying number of 
alternatives as tasks for this user study. The first set was the 
“Flower of Life” example with three alternatives (Figure 1), 
which was used as a practice set where each participant tested 
the two techniques during the initial exposure. The results 
obtained from this set were discarded. Sets 2-8 were picked from 
the dataset of second user study that we conducted on GEM-NI 
[33]. Sets 9-10 were created by a graduate student at Simon 
Fraser University. Sets 11-15 were picked from a generative 
design book [7]. 

Excluding the first two trials from the “Flower of Life” 
example that were discarded, a total of 38 comparisons with each 
technique remained. On average, each set contained 3.73 
alternatives, with a maximum of 8 and minimum of 2. On 
average the number of nodes in the reference was 9.53, with 10.4 
connectors. In the compared alternative, the average number of 
nodes was 10.49, with 11.12 connectors. On average the number 
of new nodes was 1.05, new connectors – 2.12, deleted nodes – 
0.97, deleted connectors – 1.54, and changed nodes – 2.05. 

4.6 Pilot Study 
We recruited four participants for a pilot. This allowed us to fix 
the user interface issues and to improve the reliability of the 
collected data. Notably, we made changes to the dialog to 
prevent participants from re-submitting their response without 
making changes in all the fields where they made mistakes. We 
learned that it was essential to prevent participants from 
modifying responses which were entered correctly in previous 
attempts. Moreover, we identified that the task took a bit too 
long and was too challenging – networks where participants had 
to identify more than 20 new/changed/deleted nodes were 

particularly frustrating regardless of the technique. Thus, we 
modified one of the networks by grouping nodes to reduce the 
number of visible changes. In two tasks, we could not sensibly 
cluster the nodes, and so we removed them. In the pilot we 
confirmed that a timeout of 2 minutes was appropriate, which 
also agrees with previous work [35]. One participant stated that 
grid lines were making the task too confusing because it was 
difficult to tell them apart from deleted connectors, and so we 
disabled them. With these changes, we then performed the main 
user study. 

4.7 Results 
4.7.1 Trial Completion Time. The main effect of technique was 
not significant, F1,10 = 3.45, p > .05. On average, additive layering 
took 28.5s and subtractive 26.2s. We did not observe a main 
ordering effect on time, F1,10 = 1.03, p > .05. However, the 
interaction between order and technique was significant, 
F1,10 = 51.96, p < .0001 (power = 0.99 at α = 0.05). A Tukey-
Kramer analysis on the interaction between order and technique 
revealed among others that when additive layering was 
evaluated first, additive layering was much slower (35.4 s) than 
subtractive layering when subtractive layering was evaluated 
first (28.5 s). See Figure 10. 

 
Figure 10. Interaction between order and technique. 

4.7.2 Error Rate. The main effect of technique was not 
significant, F1,10 = 2.25, p > .05. On average, 0.143 errors were 
found with additive layering, 0.12 – with subtractive layering. 
The main ordering effect on time was not observed, 
F1,10 = 0.65, ns. The interaction between order and technique was 
significant, F1,10 = 5.37, p < .05 (power = 0.55 at α = 0.05). 
However, a Tukey-Kramer analysis on the interaction between 
order and technique failed to reveal this difference. 

4.7.3 Correlations with Difference. Using the proposed 
measure for the pairwise difference (Section 3.2.3) we found that 
the average difference of the set used in this study was ߤ஽ೝ೐೗	=. 59, ߪ஽ೝ೐೗	= 1.06, ܰ	= 44. A correlation analysis revealed a 

very weak correlation between difference and trial completion 



  
 

 

time (0.2) and even lower value between difference and error 
rate (0.1). We then looked at the absolute difference, ܦ௔௕௦: ܦ௔௕௦ ൌ ݊ஷ ൅ ݊ା ൅ ݊ି ൅ ݁ା ൅ ݁ି 

We found that the correlation between ܦ௔௕௦  and trial 
completion time was 0.69, and correlation between ܦ௔௕௦ and 
error was rate 0.52. 

4.8 Feedback from Participants 
Participants were asked to rank each of the two differencing 
techniques on a Likert scale from 1 to 10 (10 being the best). The 
results are summarized in Figure 11. The rankings are consistent 
with our findings. 7 of 12 participants ranked the technique they 
did last higher than the technique they did first and three ranked 
them equally. Out of the two participants who ranked the first 
technique higher, one wrote in the freeform feedback that the 
subtractive layering technique was easier because he did it 
second, although he believes the additive technique is better. 
Two participants who ranked subtractive layering higher stated 
that they believe there is less clutter with this technique. One 
participant believed that additive layering is better because it 
appeared to him that there were fewer connectors to count. 
Another participant wished that one could toggle between the 
number of compared alternatives presented at a time and wished 
connectors also had labels like nodes. Yet another participant 
expressed that the only thing that appeared different to him was 
the presence of connectors across the networks in the 
subtractive layering. One participant left more informative 
feedback. He said that grey connectors are hard to see and that 
he would add a squiggle when they overlapped to tell them 
apart. He also stated that hovering on a node and animating its 
connectors would help and that having a legend telling how 
many there are for each node would be better. 

 
Figure 11. Participants’ ranking of the differencing 
techniques. Error Bars: ±1 SD. 

5 DISCUSSION 
The problem of showing differences is important for generative 
design because designers typically create several alternatives 
based on a single idea, which they use as a reference. Designers 
also tend to work on multiple design alternatives concurrently 

[23]. Then management of these alternatives becomes an issue, 
which requires also the ability to visualize differences between 
alternatives. We presented a solution to difference visualization 
for alternative graphs: added, deleted, (un)changed nodes in both 
the reference and all compared graphs as well as added and 
deleted connections. 

Pairwise difference visualization for directed graphs with 
nodes identifiable by name is not new, e.g., [35]. Comparing 
more than two such graphs of the evolution of a single data set 
can be done with animation and/or time slices, e.g., [29]. Yet, in 
generative design, where parallel and non-linear creation and 
editing of alternatives is the norm, we deal with situations well 
beyond the evolution of a single graph. Animation is therefore 
not applicable. Agglomeration is also not applicable because we 
are dealing with DAGs, not trees. Thus, we proposed using 
subtractive and additive encoding. Subtractive encoding is a new 
form of explicit encoding where members of the intersection are 
removed from the compared graph. This extends Gleicher et al.’s 
taxonomy work [11]. Subtractive layering extends a) the layering 
approach used in several instances of previous work, such as [2, 
8, 35], by hiding unchanged nodes to reduce clutter and drawing 
connectors to the reference to enhance juxtaposition; b) side-by-
side views [14, 26, 27] by going beyond pair-wise comparisons; 
c) existing work on subjunctive interfaces [30], TreeVersity [15–
17, 19] and TreeVersity2 [18, 19] to show a larger variety of 
difference visualizations. Both of our approaches also show 
difference visualizations of multiple group nodes. This supports 
scalability to generative networks with many nodes, where node 
grouping becomes a necessity as otherwise the graph becomes 
much too large for a single screen. 

Subtractive encoding is as an extension to Shireen et al.’s [30] 
concept for parallel creation and editing of alternatives. In their 
prototype Shireen et al. included an option to create an empty 
design model. The user then selects a node in the original design 
and inserts it in the subjunctive graph at which point a new 
instance of the design is created for editing. In contrast, our 
interface requires that a user creates a clone (a branch from an 
earlier state) to start editing a new alternative. Subjunctive nodes 
are revealed as common nodes with the original. We did this to 
make the interface for editing in difference visualization mode 
transparent and minimally intrusive within GEM-NI. In contrast 
to Shireen et al.’s work [30], GEM-NI pushes changes always to 
all the non-idle alternatives. GEM-NI does not distinguish 
between the original or an alternative when pushing changes. 
Any design can change the role from the original to an 
alternative by pressing a GUI button. In Shireen et al.’s 
conceptual prototype [30] users can substitute or replace certain 
features of a design by creating new structures in the relevant 
subjunctive graphs, connecting them to the prototype, and 
removing the substituted nodes from the alternative. Our 
interface enhances this further by also displaying nodes and 
connectors that were removed from the original as we designed 
the interface to serve as a difference visualization interface as 
well. This way all the differences between the original and the 
alternatives can be visualized at once. To reduce visual clutter, 
Shireen et al.’s conceptual prototype [30] emphasizes nodes and 



  
 

 

connectors related to the currently selected alternative and de-
emphasizes everything else. We implemented a variant of this in 
MACE. If the user sets the active document to any document 
other than the original, all the links connecting other 
alternatives to the original are removed, but when the user sets 
the original alternative as active then everything is shown. 
Furthermore, selecting the active node hides other connectors in 
that alternative. If needed, the user can disable difference 
visualizations in GEM-NI by disabling MACE. This effectively 
enables the user to focus on a single alternative, similar to the 
design of Shireen et al. subjunctive dependency graphs [30].  

MACE also introduces “reveal-to-edit”, a new way to interact 
with hidden, common nodes. The “dragging” solution proposed 
by Shireen et al. [30] is less user friendly and does not match 
standard GUI conventions. 

Given that alternatives for a design problem will likely be 
similar due to the shared goal, we expect fewer differences 
among the data-flow networks of alternatives compared to the 
number of similarities. This assumption underlies the design of 
subtractive layering. We performed an analysis on the 
alternatives obtained through a user study to test this 
assumption. Using the introduced difference measure, based on 
measuring the visual similarity of the alternative networks, we 
computed a low degree of difference, which confirmed the 
appropriateness of the design choice of the technique. The 
correlation analysis between relative difference, trial completion 
time and error rate did not reveal a strong correlation. This is 
not too surprising. The following example clarifies this. The 
largest value for ܦ௥௘௟	in the study set was 6. The corresponding 
pair is shown in Figure 12. Arguably, despite the large ܦ௥௘௟ , 
identifying these differences should not be difficult since there 
are not that many nodes and edges in total. While this measure 
helped us to motivate our work, it’s ܦ௔௕௦ that relates to the 
actual task measures. 

 
Figure 12. An example where ࢒ࢋ࢘ࡰ ൌ ૟. 

Our hypothesis was that subtractive layering improves the 
readability of our difference encoding by keeping visual clutter 
low because the designs share a common goal. Contrary to our 
intuition, the findings and participants’ feedback reject this 
hypothesis. We showed that this is true for networks with an 
average number of 10 nodes and connectors. Still, these findings 
are not that surprising. Previous work [35] demonstrated that 

there is no significant difference between difference 
visualization techniques for static diagrams and our results 
complement those findings. Although not significantly so, the 
layering technique in this previous work was found most 
efficient. Thus, in our current user study, we were essentially 
comparing subtractive layering to the best-known technique.  

Nevertheless, the interaction between order and technique is 
an interesting finding. Additive layering seems initially far more 
challenging to learn than subtractive layering – when additive 
layering was presented first it took 24% time longer to complete 
the task. One possible explanation could be that the larger 
amount of node clutter with additive layering forced participants 
to check for changes in connections between unchanged nodes. 
We observed this issue during the user study on multiple 
occasions, yet did not have a mechanism in place to log this. 
Given this finding, subtractive encoding could be a better choice 
for difference visualizations for novice users. 

Our evaluation has limitations. We do not account for 
situations when a participant falsely identifies a change of one 
type and fails to identify another change of the same type. Then, 
the total number of changes will add up to the correct number 
but the identified changes will be incorrect. Also, participants 
cannot be prevented from guessing the number of changes. 
Another issue is that the task also involves dealing with 
inputting the responses through the interface of the dialog, 
rather than purely identifying changes, which means that there 
is also a learning curve for the dialog, which may not relate to 
the rate at which participants identify the changes. We were not 
able to directly adopt the approach used in DARLS [35], due to 
the fact that in NodeBox connectors cannot be selected directly. 

Finally, we believe that the ideas behind our difference 
visualizations generalize to other visual programming 
environments, including 3D modeling (e.g., Grasshopper 3D, 
Houdini). For other types of media, such as video or audio (e.g., 
Max/MSP), a different approach to illustrating differences may be 
necessary. 

6 CONCLUSION AND FUTURE WORK 
We presented a new interface for interactive difference 
visualizations for generative design alternatives. The new 
techniques enable comparison of more than two alternatives at a 
time and enable differencing for the output, parameter and 
network views. The techniques are interactive and enable 
creating and editing alternatives through cloning of the original 
design and using the “reveal-to-edit” feature. The interface also 
allows post-hoc merging of the state of a parameter across a set 
of alternatives. For the network view, we investigated two 
difference visualization approaches: subtractive and additive 
layering. We introduced new ways to emphasize added, deleted, 
(un)changed nodes, and connectors. Subtractive layering is based 
on the idea of subtractive encoding, which we hypothesized as 
being useful in data that has more similarities than the 
differences, such as the alternatives we are dealing with. We 
used a difference measure to confirm the appropriateness of the 
approach for at least one alternatives dataset produced by 
designers. We evaluated subtractive against additive layering in 



  
 

 

a repeated measures experiment to investigate the hypothesis. 
The results were not confirmatory, but our findings suggest that 
subtractive layering may be better suited for novice users. 

In the future, we will investigate the scalability of our 
techniques for even larger numbers of alternatives and 
investigate other approaches to difference visualizations. In our 
work we only focused on the difference visualizations and not 
editing. Our future user studies will evaluate the editing 
technique in MACE. We are also considering a direct comparison 
with DARLS. Additionally, we will explore difference 
visualizations for visual programming environments in other 
domains. 
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