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Abstract. Content creation for computer graphics applications is a very time-
consuming process that requires skilled personnel. Many people find the
manipulation of 3D object with 2D input devices non-intuitive and difficult. We
present a system, which restricts the motion of objects in a 3D scene with
constraints. In this publication we discuss an experiment that compares two
different 3D manipulation interfaces via 2D input devices. The results show
clearly that the new constraint-based interface performs significantly better than
previous work.

1. Introduction

Computer Graphics applications, such as physical simulations, architectural walk-
throughs, and animations, require realistic three-dimensional (3D) scenes. A scene
usually consists of many different objects. Objects and scenes are usually created with
a 3D modeling system. Many different commercial systems are available for this
purpose. But in general these products are difficult to use and require significant
amounts of training before than can be used productively. Realistic 3D scenes often
contain thousands of objects, and complex interfaces can leave the user feeling lost.
For example, products such as Maya and 3D Studio Max have dozens of menus,
modes and widgets for scene creation and manipulation, which can be very
intimidating for an untrained user. Our efforts address these difficulties.

The focus of this work is on the creation of complete 3D scenes, not on the
generation of 3D geometric models. We rely on a library of predefined objects from
which the user can choose while constructing a scene. The challenge is to provide the
user with a technique to easily add objects to the scene and then position them relative
to each other.

Interacting with objects in a 3D environment is difficult because six independent
variables must be controlled, three for positioning and three for orientation. Even
when the task of object manipulation is decomposed into the two separate tasks of
positioning and orientation, the user interface is still not intuitive. This is due to the
problem of mapping a device with 3 modes (buttons) with 2 degrees of freedom each
to 2 different manipulation techniques with 3 degrees of freedom each.

3D input devices, such as a space-ball or tracking devices, make direct interaction
with objects in a 3D scene possible, but such devices are uncommon and often
expensive, or require training and experience to use. Similarly, 3D output devices



such as head mounted displays or shutter glasses are a possible solution, but again are
uncomfortable, uncommon, or expensive.

Our observations of humans rearranging furniture and planning environments
indicate that humans do not think about scene manipulation as a problem with 6
degrees of freedom. The rationale is that most real objects cannot be placed arbitrarily
in space and are constrained in their placement by physics (e.g. gravity) and/or human
conventions (ceiling lamps are almost never placed permanently onto the floor or onto
chairs). This lets us to believe that an interface that exposes the full 6 degrees of
freedom to the user makes it harder for average persons to interact with virtual
environments. Many real objects have a maximum of 3 degrees of freedom in practice
– e.g. all objects resting on a plane. Furthermore, many objects are often placed
against walls or other objects, thus further reducing the available degrees of freedom.
This in turn leads us to believe that a two-dimensional (2D) input device such as a
mouse may be sufficient to manipulate objects in a virtual environment. Furthermore,
in previous work Poupyrev et al. [13] suggested that all ray-casting techniques can be
approximated as 2D techniques as long as objects are relatively close to the viewer.
This further supports our argument that a 2D input device is sufficient to manipulate
most real objects in a 3D environment.

In our system, information about how objects interact in the physical world is used
to assist the user in placing and manipulate objects in virtual environments. Each
object in a scene is given a set of rules, called constraints, which must be followed
when the object is being manipulated. For example, a photocopier must stand on the
floor at all times. When a user interacts with the photocopier by translating or rotating
it in the scene, it never leaves the floor. This concept of constraints makes
manipulating objects in 3D with 2D devices much simpler.

1.1. Previous Work

Previous work can be classified into two categories: those that use 2D input devices
and those that use 3D input devices.

For 2D applications Bier introduced Snap-Dragging [1] to simplify the creation of
line drawings in a 2D interactive graphics program. The cursor snaps to points and
curves using a gravity function. Bier emphasized the importance of predictability in
the system; i.e. that the interface should behave as the user expects it to. Hudson
extended this idea further to take non-geometric constraints into account and called
his technique semantic snapping [9]. Bier subsequently generalized Snap-Dragging to
3D environments [2]. Relationships between scene components were exploited to
reduce the size of the interface and the time required to use it Interactive
transformations are mapped from the motion of the cursor, which snaps to alignment
objects for precision. The main features of this system are a general purpose gravity
function, 3D alignment objects, and smooth motion affine transformations of objects.
Houde introduced another approach that uses different handles on a box surrounding
each object to indicate how it can be manipulated [8].

Bukowski and Sequin [6] employ a combination of pseudo-physical and goal-
oriented properties called Object Associations to position objects in a 3D scene using
2D devices (mouse and monitor). They use a two-phase approach. First, a relocation



procedure is used to map the 2D mouse motion into vertical or horizontal
transformations of an object's position in the scene. Then association procedures align
and position the object.

Although fairly intuitive, their approach has a few drawbacks. Firstly, associations
apply only to the object that is currently being moved and are not maintained after the
current manipulation. Also, when an object is selected for relocation, a local search
for associated objects is performed. This can result in lag between the motion of the
selected object and the motion of its associated objects. Furthermore, cyclical
constraints are not supported.

The fundamental ideas of the Object Associations approach were incorporated into
the work of Goesele and Stuerzlinger [10]. Each scene object is given predefined
offer and binding areas. These areas are convex polygons, which are used to define
constraining surfaces between objects. For example, a lamp might have a binding area
at its base and a table might have an offer area defined on its top surface. In this way a
lamp can be constrained to a tabletop. To better simulate the way real world objects
behave, a constraint hierarchy is used to add semantics to the constraint process. This
is a generalization of the Object Association approach. Each offer and binding area is
given a label from the hierarchy. A binding area can constrain to an offer area whose
label is equal to or is a descendant in the constraint hierarchy to the label of the
binding area. In this way a monitor may be defined to constrain to a tabletop, but
never to the wall or floor. Also, collision detection is used to add realism to the
interface.

Drawbacks are: Once a constraint has been satisfied, there are no means to un-
constrain or re-constrain the object to another surface. Further, the constraint
satisfaction search is global, in that an object will be moved across the entire scene to
satisfy a constraint, an often-undesirable effect for the user, especially because
constraints cannot be undone.

A number of authors have investigated the performance of object manipulation
with 3D input devices. One of the first was Bolt in 1980 [3]. Most recently Bowman
[4], Mine [11], and Pierce [12] proposed different methods that can be applied in a
variety of settings. Poupyrev recently also addressed the problem of 3D rotations [14].
For a more complete overview over previous work in this area we refer the reader to
[5]. Most relevant to the research presented here is the work by Poupyrev et al [13].
There, different interaction methods for 3D input devices are compared. The item that
is of most interest in this context is that the authors suggest that all ray-casting
techniques can effectively be approximated as 2D techniques (see also: [5]). This
nicely supports our observation that for most situations a user interface that utilizes
only a 2D input device may be sufficient to effectively manipulate objects in 3D.

The SmartScene system [16] by Multigen is a Virtual Reality system that employs
a 3D user interface based on Pinch-gloves. Object behaviors that define semantic
properties can be defined to simplify object manipulation.

To our knowledge, there is no previous work that compares 3D unconstrained and
constrained manipulation,



2. The MIVE System

The MIVE (Multi-user Intuitive Virtual Environment) system extends the work done
in [10] by improving the way existing constraints behave, and adding new useful
constraints. This work concerns only the interaction of a single user, therefore we
disregard the multi-user aspects of the system here.

The constraint relationships are stored in a directed a-cyclic graph called the scene
graph. Figure 1 depicts a simple scene, and it’s associated scene graph. When an
object is moved in the scene, all of its descendants in the scene graph move with it.

Notice that edges in the scene graph of Figure 1 correspond directly to satisfied
constraints in the scene. The user can modify the scene graph structure by interacting
with objects in the scene. Constraints can be broken and re-constrained in with ease
by simply clicking on the desired object, and pulling away from the existing
constraint to break it. This allows us to dynamically change the structure of the scene
graph. Figure 2 shows the same scene as Figure 1 after the chair has been pulled away
from the large table, and dragged under the smaller table.

 
 

Fig. 1. A Scene and its associated Scene Graph. Links describe constraint relations. Both the
initial state (left) as well the state after the chair has been moved (right) are shown.

2.1. MIVE Constraint Environments

Each object in the MIVE system has a set of constraints associated with it. For
example, a table would have a constraint on its base that causes it to stand on the
floor, and a constraint on its top that allows other objects (i.e. a phone) to lie on its
surface. When the table is added to the scene, it will always lie on the floor. When



being moved or rotated the table remains on the floor, and any objects lying on its top
surface will move/rotate with it. This is the default constraint mode in MIVE. We call
this the Fully Constrained (FC) mode.

Other scene modelers, such as many 3D computer aided design (CAD) programs,
use no constraints whatsoever. They provide only an interface to manipulate all six
degrees of freedom of an object. We believe that interaction with objects in an
unconstrained environment such as this, is much more difficult for the user. To enable
an effective comparison we implemented a mode in MIVE, which does not exploit
constraints. We call this the Unconstrained (UC) mode.

3. User Testing

The main objective of the work presented here is to evaluate if a constraint-based
system provides a more effective 3D manipulation interface. We asked participants in
our study to design scenes in both the FC as well as the UC mode.

3.1. Method

Two representative tasks were chosen to evaluate our objective.
T1) Creation of a scene: See Figure 4 for the target scene image.
T2) Modification of a scene: See Figure 5 and 6 for initial respective final scene.
We choose these two tasks because together they exploit a majority of the

operations needed to create and manipulate 3D scenes.
Both scenes consist of 30 objects. For the creation task (T1) the participant can

select the objects from a window that displays all 30 objects.
We chose not to attempt a comparison with a user interface that utilizes 3D input

devices as these are usually used in a very different setting (standing user and large
screen stereo projection or HMD). Although very interesting, this introduces several
additional factors into the user tests that may not be easy to account for. Furthermore,
even if good 3D output equipment was readily available, in our tests stereo output
should not constitute an important factor as most objects are placed clearly in relation
to other objects such as a phone on a desk. Also, the test scenes in our environment
are limited in range, therefore we believe that stereo viewing will not provide
important visual cues.

For task T1 no navigation was necessary to complete the task. For task T2 users
had to navigate to move one of the objects that was hidden behind another.

3.2. Participants

Fifteen volunteers (3 female, 12 male) participated in this experiment. Half of the
participants were computer science students, half had other backgrounds (including 4
persons with artistic talents). Most participants had at least average computer skills,
but only 5 had any exposure to 3D scene construction. The ages of the participants
ranged from between 20 to 43 years, the average age being 23.



3.3. Apparatus

The MIVE interface was designed to be very simple. Figure 2 shows the full user
interface of the MIVE program running with its default object list.

Fig. 2. User Interface of the MIVE system.

The MIVE interface consists of three windows: the scene window, the object
selection window, and the button window. The scene window sits on the right hand
side of the screen. The participant directly interacts with objects in the scene window
by clicking and dragging them.

The lower left-hand corner shows the object selection window. Objects are
positioned on an invisible cylinder, which is rotated by clicking any mouse button
within the window and dragging left and right. Objects are added to the scene window
by simply clicking on the desired object in the object selection window, and clicking
on the desired location to add it in the scene window.

The upper left-hand corner of the window contains buttons for performing tasks
such as loading or saving the scene, deleting an object, undoing the previous
operation, or quitting the program. There is also a radio button which can be used to
switch between interaction and navigation mode. This functionality was disabled for
the tests in this publication.

The MIVE system is implemented in C++ and runs on an SGI Onyx2 running
IRIX 6.5. It is based on the Cosmo3D [7] scene graph API.

3.3.1. Interaction
The interface for MIVE was designed to be as simple and uncluttered as possible. All
interactions between the participant and the program are done using a 3-button mouse.

The FC mode uses only two of the three buttons. The left mouse button is used to
move objects by clicking and dragging them to the desired new location. The middle
mouse button is used to rotate the objects. The third mouse button is currently unused
in this mode.

The UC mode uses the right and left mouse buttons to move objects in 3D space,
and the middle mouse button to perform an Arcball rotation [15] on the object. Using



these three buttons it is possible to place any object in any orientation in 3D space.
Although constraints are disabled in this mode, collision detection remains active so
that objects do not interpenetrate.

3.4. Procedure

A five-minute tutorial was given prior to the testing, at which time the experimenter
gave the participant instructions on how to use the system and how the mouse worked
in each of the two modes. Participants were allowed to familiarize themselves with
the interface for 5 minutes.

Each test began with the participant sitting in front of a computer monitor with a
scene displayed. A target scene was displayed on an adjacent monitor, and the
participant was instructed to make the scene on their screen look like that in the target
scene. When the participant deemed that the scene resembled the target closely
enough, the participant quitted the program after checking back with the
experimenter.

Each participant was asked to perform each the two tasks in each of the two
constraint systems for a total of 4 trials for each participant. The starting task for each
participant was randomly selected. To counterbalance the design, subsequent tasks
were ordered so that a UC task followed a FC task and vice versa. All tests were done
in a single session, which took slightly more than one hour on average.

For each of the tests, we recorded the time taken by the participant, the number of
actions and the accuracy of the final scene. Accuracy was measured by summing the
distances in centimeters between each of the object centers in the user’s final result
and the target scene.

When the participants had completed all of their tests, they were given a
questionnaire that posed questions relating to their preference among the interaction
modes in the system.

4. Analysis

At the end of each experiment task completion time and the modified scene was
stored. The Euclidean distance between the participant’s solution and the reference
solution was computed later on. Finally, basic statistics and a 2 by 2 repeated
measures ANOVA was performed with statistical software.

4.1. Adjustments to Data

The data for two participants was excluded from the analysis. One participant tried to
visually match the results to the target scene at the level of pixel accuracy by
repeatedly navigating back and forth. The experiment was aborted after 1½ hours
with 2 tasks completed. Another participant could not understand how Arcball
rotations in the 3D unconstrained (UC) mode worked and got too frustrated.

No other adjustments were made to the collected data.



4.2. Computed Formulas

Errors are specified as the sum of Euclidean distances for all objects, as 3D distances
are themselves quadratic measures. We ignore rotation because no ideal measure for
rotation differences exists to our knowledge. Moreover it is hard to find a meaningful
combination of translation and rotation errors into one number.

5. Results

Figure 3 summarizes the result of our user test. The center line of the boxes shows the
mean, the box itself indicates the 25th respective 75th percentile, and the ‘tails’ of the
boxes specify the 10th respective 90th percentile. All statistical values in this
publication are reported at alpha = 0.05.
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Fig. 3. Box-plots of times, actions and accuracy for UC and FC modes.

The analysis of variance showed clear main effects for task completion time (F1,12

= 26.36, p < 0.0005), number of actions (F1,12 = 16.0, p < 0.005) and accuracy (F2,12 =
7.31, p < 0.05) with respect to the two different interaction modes. The statistical
power of the first two tests is larger than 0.95, the last test has only a power of 0.699.

The mean completion time (variances are shown in brackets) for FC was 719.7
seconds (543.9) and 1621.4 seconds (1233.1) for UC. This shows that FC is faster by
a factor of almost 2.3.

The mean number of actions for FC was 157.96 (110.9) and 395.92 (318.2) for
UC. In terms of user actions UC requires more than 2.5 times the number of actions.

The mean sum of error distances for FC was 381.3 cm (242.7) and 762.1 cm for
UC (880). This seems to indicate that objects are positioned more accurately in the FC
system, although the statistical significance is not as strong as for the other two
criteria.

Task T1 is significantly different from T2 in terms of time. (T1 took 30% more
time). T1 is not significantly different from T2 in terms of the number of actions (289
vs. 264). Accuracy shows also no significant difference, although we observe that T1
has a slightly larger error on average.



5.1. Questionnaire

Questions evaluated participant preferences between each combination of two modes
on a 5 point Likert scale. The results show a clear preference for the FC mode. Users
found it much easier to manipulate objects when they felt that those objects acted as
would their counterparts in the real world. Imposing constraints on objects abstracted
difficult transformations that, to the untrained person, were hard to visualize. In
particular, most people found rotations hard to grasp in unconstrained mode, since it
was much more difficult to orient objects in full 3-space than it was in the more
limited yet more intuitive FC mode. Users were noted to find the spinning object
selection menu to their liking for it gave quick access to all the objects without
cluttering precious desktop space. The only complaint voiced about the menu was the
selection of small objects, as users found them hard to select at times.

To aid in the positioning of objects in UC mode, users were quick to point out the
benefits of shadows. A visual cue such as a shadow would be necessary to aid in
object placement of a fully UC system, but imposes many new problems, i.e.
positioning a light source. A FC system eliminates the need to judge height distances
from one object to another, and therefore eliminates this problem. The absence of
additional (potentially confusing) visual cues makes onscreen manipulation.

6. Discussion

The above analysis of the user test data supports the following observations:
First, unconstrained manipulation (UC) is definitely slower than the FC. For scene

creation we observe a factor of roughly 2.3. Moreover, we can say that UC
manipulation is at least 50% less accurate than the FC mode.

This current test involved complex tasks. In effect this prohibited us from
determining precisely the relative performance of the two modes. Another
complicating influence is that T2 necessitates navigation.

General observations of users during the tests led to a determination that the
majority of inaccuracies and time delay in UC is due to problems in rotation. When
constraints are imposed, rotations become much more intuitive, as the user interface
restricts rotations to the free axis, which in turn increases speed and accuracy.

Participants seemed to have taken the most time in T1, constructing the scene. We
believe that this may be because of the time it takes to ‘retrieve’ an object. When
adding an object the user has to first locate it within the object selection window. For
this test we tried to keep the number of objects in the window to a minimum (around
30), but judging from our observations during the test identifying and selecting an
object still takes roughly 3 seconds.

A constrained system, unlike an unconstrained system is much more intuitive for
users who have little to no experience in 3-dimensional manipulation. Users were able
to construct scenes with ease only several minutes after having been introduced to the
FC system, yet in UC mode issues relating to 3-dimensional manipulations would
often arise.



The main objective of the user test presented here was to determine if constrained
scene manipulation is helpful to the user and if it makes a difference. The results
indicate that this is true in practice. The work presented here did not look into a
comparison with a system that is equivalent to the Object Associations [6] system.
This system uses only horizontal and vertical constraints. It is unclear at the moment
how powerful these two constraints are compared to the ‘semantic’ constraints in the
MIVE system. An small experiment by the authors with an initial implementation
showed that the difference in performance between the two systems is small. Future
work will look further into this issue.

7. Conclusion

In this publication we presented a system that allows users to easily manipulate a 3D
scene with traditional 2D devices. The MIVE system is based on constraints, which
enable an intuitive mapping from 2D interactions to 3D manipulations. Phrased
differently, the constraints and associated manipulation techniques encapsulate the
user’s expectations of how objects move in an environment. The user tests showed
that the interaction techniques presented here provide clear benefits for 3D object
manipulation in a 2D user interface. The unconstrained system was significantly
slower and less accurate than the system that uses constraints. Users unanimously
preferred the constrained system to the unconstrained one.

Interestingly enough, most systems that use 3D input devices support only
unconstrained manipulation. Based on the observation of Poupyrev that many 3D
manipulation techniques can be approximated with 2D techniques we are fairly
confident that we can speculate that the techniques presented here are directly
beneficial to scene manipulation with 3D input devices. To our knowledge, this work
is the first to compare 3D unconstrained and constrained manipulation.

The benefits of our interaction techniques become very apparent when one
compares the simple MIVE user interface with the complex 3D user interface in
commercial packages such as AutoCAD, Maya or 3DStudio Max that are also based
on 2D input devices. We can only hypothesize at the outcome of a test comparing our
system with e.g. Maya, but are confident that it is clearly easier to learn our user
interface due to the reduced complexity. In fairness, we need to point out that these
packages are also capable of object creation and the specification of animations,
which our system does not currently address.

7.1. Future Work

Our vision is to create a system that makes adding objects to a scene as quick and
easy as possible. The user test involved complex tasks that had to be accomplished by
the user. In effect this prohibited us from determining the relative performance of
individual elements of the user interface precisely. Therefore, future work will focus
on determining the relative performance of the individual techniques. As mentioned
in the discussion, we will test the developed techniques against an implementation
that mimics the interaction methods in the Object Association system [6].



The current set of user tests was designed in such a way that users themselves
determine when they have completed the desired tasks. This method was chosen when
we realized that it is hard to automatically implement an adequate measure of scene
similarity. Factors would need to be taken into account are differences in position,
rotation, location in the scene graph and the fact if an object is correctly constrained
or not. A viable alternative that we will pursue in the future is that the test supervisor
determines when the user has accomplished the task.

Also we noticed that a considerable amount of time was spent selecting new
objects in the object menu. This issue warrants further investigation. Furthermore,
small objects in the rotating menu are hard to select, which needs to be addressed, too.

Also, we will study how constraint based scene construction performs in
immersive virtual environments such as a CAVE.
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Appendix

As more of a joke than anything else we kept a profanity count during the test. The
number of unprintable words uttered can be seen as a simple measure of user
frustration. In FC mode users uttered 0.33 profanities on average during the test. UC
mode featured an average of 3.53 profanities!



Fig. 4. Target Scene for T1) Scene Creation Task. Initial state is an empty room.

Fig. 5. Initial Scene for T2) Scene Modification Task

Fig. 6. Target Scene for T2) Scene Modification Task


