
3D Scene Manipulation with 2D Devices and Constraints

Graham Smith, Tim Salzman, Wolfgang Stuerzlinger

Department of Computer Science, York University
http://www.cs.yorku.ca/~wolfgang

Abstract
Content creation for computer graphics applications is a
laborious process that requires skilled personnel. One
fundamental problem is that manipulation of 3D objects
with 2D user interfaces is very difficult for non-
experienced users.
In this paper, we introduce a new system that uses con-
straints to restrict object motion in a 3D scene, making
interaction much simpler and more intuitive. We com-
pare three different 3D scene manipulation techniques
based on a 2D user interface. We show that the pre-
sented techniques are significantly more efficient than
commonly used solutions. To our knowledge, this is the
first evaluation of 3D manipulation techniques with 2D
devices and constraints.

Key words: Interactive 3D environments, 3D scene
construction, 3D manipulation, Constraints.

1 Introduction

Many applications are readily available in the areas of
3D modeling and scene construction, but in general,
these products are difficult to use and require many
hours of training. For example, products such as Maya
by Alias|wavefront and 3D Studio Max by Discreet,
have dozens of menus, modes and widgets for scene
creation and manipulation, which can be very intimi-
dating for an untrained user. Our efforts address these
difficulties.
The task of creating a 3D scene from scratch is very
complex. To simplify the problem, we choose to focus
on the creation of complete 3D scenes based on a li-
brary of existing objects. Here the challenge is to enable
the user to easily add objects and to quickly position
them in the environment. In general, positioning an
object in a 3D scene is difficult as six independent vari-
ables must be controlled, three for positioning and three
for orientation.
Our observations of humans rearranging furniture and
planning environments indicate that humans do not
think about scene manipulation as a problem with six
degrees of freedom. The rationale is that most real ob-
jects are not placed arbitrarily in space, but are con-

strained by physics (e.g. gravity) and/or human con-
ventions (ceiling lamps are almost never placed perma-
nently onto the floor or onto chairs). This leads us to
believe that an interface that exposes the full six de-
grees of freedom to the user makes it harder for average
persons to interact with virtual environments. Many real
objects have a maximum of three degrees of freedom in
practice – e.g. all objects resting on a plane. In addition,
many objects are often placed against walls or other
objects, thus further reducing the available degrees of
freedom. This implies that a two-dimensional (2D) in-
put device such as a mouse is sufficient to manipulate
objects in a virtual environment.
In our system, information about how an object inter-
acts with the physical world assists the user in placing
and manipulating objects in virtual environments. Each
object in a scene is given a set of rules, called con-
straints, which must be followed when the object is
being manipulated. This concept of constraints makes
manipulating objects in 3D with 2D devices much sim-
pler.

1.1 Previous Work

For 2D object manipulation various forms of constraint
systems have been introduced. For recent work on in-
teractive constraint satisfaction and references to previ-
ous work see [4][21].
Previous work on 3D object manipulation can be classi-
fied into two categories: those that use 2D and those
that use 3D input devices.
The simplest solution for a 2D input device is to de-
compose the manipulation task into positioning and
orientation. Unfortunately, there is no intuitive mapping
of these tasks with three degrees of freedom each to a
mouse with three buttons.
Bier introduced ‘Snap-Dragging’ [1] to simplify the
creation of line drawings in a 2D interactive graphics
program. The mouse cursor snaps to points and curves
using a gravity function. Bier subsequently applied
these ideas to placing and orienting objects in a 3D en-
vironment [2]. The main features of this system are a
general-purpose gravity function, 3D alignment objects,
and smooth motion affine transformations of objects.

Gleicher [10] built on this work and introduced a
method that can deal even with non-linear constraints.
For 3D scene construction Bukowski and Sequin [7]
employ a combination of pseudo-physical and goal-
oriented properties called ‘Object Associations’ to po-
sition objects in a 3D scene with 2D devices (mouse
and monitor). A two-phase approach is used. First, a
relocation procedure maps the 2D mouse motion into
vertical or horizontal transformations of an object's
position. Then association procedures align and posi-
tion the object. Although intuitive, their approach has a
few drawbacks. First, associations apply only to the
object currently being moved and are not maintained
after the current manipulation. In addition, when an
object is selected for relocation, a local search for asso-
ciated objects is performed. This can result in lag be-
tween the motion of the selected object and the motion
of its associated objects. Cyclical constraints are not
supported.
Goesele and Stuerzlinger [8] built upon the ideas of
Object Associations. Each scene object is given prede-
fined offer and binding areas. These areas are used to
define constraining surfaces between objects. For ex-
ample, a lamp has a binding area at its base and a table
has an offer area on its top. Consequently, a lamp can
be constrained to a tabletop. To better simulate the way
real world objects behave, a labeled constraint hierar-
chy adds semantics to the constraint process. Each con-
straint area is associated with a label from the hierar-
chy. A binding area constrains then only to offer areas
whose label is equal to or is a descendant in the con-
straint hierarchy. In this way, the legs of a chair can be
constrained to the floor, or in front of a desk, but never
to the wall. Collision detection is used to prevent ob-
jects from passing though each other.
Drawbacks of this approach include the following:
Once a constraint has been satisfied, there are no means
to re-constrain an object to another surface or to un-
constrain it. Furthermore, the constraint satisfaction
search is global, in that an object will be moved across
the entire scene to satisfy a constraint, This has often-
undesirable effects for the user, especially because con-
straints cannot be undone.
A number of authors have investigated the performance
of object manipulation with 3D input devices, such as a
space-ball or a six degree-of-freedom tracker. Such
devices enable direct interaction with a 3D scene. In
combination with devices that generate a 3D view, such
systems can simulate Virtual Reality (VR).
One of the first researchers to use 3D devices to ma-
nipulate a 3D scene was Bolt in 1980 [3]. Subsequently
many other researchers studied the creation and ma-
nipulation of 3D environments in VR (see e.g.
[13][18]). Most of these systems provide collision de-

tection. Very few utilize constraints for object manipu-
lation and even these support only the simplest geomet-
ric constraints (e.g. on-plane). Closest to the work dis-
cussed here is the ‘SmartScene’ system by Multigen
[20]. This system uses tracked pinch-gloves as interac-
tion devices. For some tasks, object manipulation is
facilitated with pre-defined object behaviors. These
behaviors can express semantic properties of objects.
More recently Bowman et al. [5], Mine et al. [13], and
Pierce et al. [15] proposed different 3D manipulation
methods that can be applied in a variety of settings.
Poupyrev et al. recently also addressed the problem of
3D rotation [17]. For a more complete overview over
previous work in this area, we refer the reader to
[6][11][12].
While it may seem obvious that the introduction of con-
straints makes interaction in 3D easier, it is unclear how
strong this effect is. An extensive search for literature
was performed in this area, and no study that addresses
this problem was found.

1.2 Motivation

Most relevant to the research presented here is the work
by Poupyrev et al. [16]. There, different interaction
methods for 3D input devices are compared. All tech-
niques that perform well in practice are based on the
notion of ray casting. Ray casting identifies the first
object that is visible along an infinite ray from the ma-
nipulation device into the scene (much like a laser
pointer). As a 2D image describes all visible objects,
the authors hypothesize in [16] that all ray casting tech-
niques can be approximated as 2D techniques. This
supports our observation that for most situations a user
interface that utilizes only a 2D input device is suffi-
cient to effectively manipulate objects in 3D. The fact
that most successful commercial products (e.g., Maya,
3D Studio MAX) use almost exclusively 2D input can
also be seen as further support.
Based on the mentioned observations we decided to
investigate the performance of different object ma-
nipulation techniques for 3D environments with 2D
devices. Most people assume correctly that constraints
will provide benefits, but it is unclear how much faster
constraints systems are for this task as no formal
evaluation of constraint systems for 3D object manipu-
lation has been published to our knowledge.

2 The MIVE System

The MIVE (Multi-user Intuitive Virtual Environment)
system extends the work done in [9] by improving the
way existing constraints behave, and adding new types
of constraints. This work concerns only the interaction
of a single user with the system. Therefore, we disre-
gard the multi-user aspects of the system here.

2.1 Constraints

Each object can have any number of user-defined con-
straints. Constraint definition is done on a per model
basis, and is done in a separate program. A constraint
can be one of three types: offer, binding, or dual. The
binding areas of one object constrain to offer areas of
another. Dual constraints are explained in detail below.
When a user is interacting with a scene, feedback is
given by highlighting in green any offer area where the
manipulated object can be placed.
The constraint relationships are stored in a directed a-
cyclic graph called the scene graph. Figure 1 depicts a
simple scene, and it’s associated scene graph. When an
object is moved in the scene, all descendants in the
scene graph move with it.

Figure 1: Scene and associated scene

Notice that edges in the scene graph of Figure 1 corre-
spond directly to satisfied constraints in the scene. The
user can modify the scene graph structure by interacting
with objects in the scene. Constraints can be broken and
objects can be re-constrained by simply clicking on the
desired object, and pulling away.

2.2 Virtual Constraints

In MIVE, geometry of objects and the geometric defi-
nition of the constraints of objects are not the same. In
fact, constraints for an object can float in mid air. We
call these ‘virtual constraints’. For example, the table
has a floating offer area underneath it for the front of a
chair to constrain to.
Notice that an advantage of virtual constraints is that
the geometry and constraints are effectively de-coupled.
Consequently, this works even with geometry that fea-
tures slight inaccuracies such as small cracks in the

bottom of a table leg, a flat surface that is composed of
many triangles, or intersecting polygons.

2.3 Dual Constraints

Since the scene graph is a-cyclic, only parent child re-
lationships are allowed between constrained objects. In
order to facilitate the use of cyclical constraints, we
created a new type of constraint, which we call ‘dual
constraint’. The dual constraint is very useful in situa-
tions where a sibling relationship between constraints
makes more sense than a parent child relationship. For
example, we can use a dual constraint to constrain two
cabinets side by side on a wall.

Figure 2: Two dual groups

By dual constraining objects together, we create ‘dual
groups’. Figure 2 shows two dual groups: one group of
cabinets on a wall, and one group of chairs on the floor.
Objects in the dual group are translated, rotated, and
regrouped together. To break a dual group, the user
simply selects an element and moves the cursor in the
desired direction. The motion simulates a pushing ac-
tion, and all objects in contact in the direction of motion
are grouped with the selected object and moved with it.
The remaining objects stay in place, and form their own
new group(s). This has the desired effect that groups are
made and broken with extreme ease. Figure 3 shows the
behavior of the manipulation techniques.

“push against” =
build group

“push away” =
break group

Figure 3: Dual group manipulation techniques (before
& after mouse drag)

3 Constraint Satisfaction

For virtual constraints, binding and offer areas both
have a polygon and vector, which represent their effec-

tive areas and orientation. A binding area is satisfied by
an offer area by aligning their orientation vectors and
by translating the binding polygon so that it lies within
the offer polygon (excluding the offer polygon edges).
If after rotation and translation the binding polygon is
not completely enclosed by the offer polygon, then the
binding area is not bound to the offer area. In addition,
a binding area cannot be bound to an offer area of the
same object: an object cannot be constrained to itself. In
Borning’s [4] terms our system implements locally-
predicate-better constraints.
Dual constraints are defined as points instead of areas
(like binding and offer areas). To satisfy a dual con-
straint between two objects D1 and D2, we match up
their dual points and rotate their orientation vectors in
opposing directions. Since the dual constraint is defined
as a point, we permit any translation of D1 that will
bring the two constraint points together. There is no
special technique required to deal with dual-constraint
cycles. All dual group members are treated as siblings
in the scene DAG, with a special dual-group parent
node.
To constrain an object, we attempt to satisfy all of its
binding areas and dual constraints. For each binding
area and dual constraint of an object, we search through
the scene to find potential satisfying offer areas and
dual constraints. To prevent objects from jumping large
distances to satisfy constraints, we only consider con-
straining an object to offer areas and dual constraints
that are close to the object being constrained. Closeness
is relative to object size, therefore we consider only
objects that are within a sphere with a radius that is
twice the radius of the sphere bound of the object.
Using this heuristic, constraints remain unsatisfied until
an object is moved close to a valid offer area. It also
ensures that objects are always locally constrained. For
each binding area, if there are multiple satisfying offer
areas, the closest satisfying offer area found is chosen.
The object is moved to connect the binding and offer
areas. The bound object then becomes a child of the
offering object in the scene graph, and the search is
repeated for the next binding area.
Once an object is constrained, its motion is restricted
such that the binding areas of the object always remain
in contact with the associated offer areas. This essen-
tially removes degrees of freedom from object ma-
nipulations. Constraints can be broken with ease by
simply pulling an object away from its associated offer
area.

4 MIVE Constraint Environments

MIVE offers three different levels of constrained
working environments: unconstrained, partially con-

strained, and fully constrained. Each of the environ-
ments is described in more detail below.
Many scene modelers, such as standard 3D computer
aided design (CAD) programs, use no constraints. They
provide only an interface to manipulate all six degrees
of freedom of an object. We believe that interaction
with objects in an unconstrained environment is more
difficult for the user. To enable an effective comparison
with this class of systems we implemented a mode in
our system, which does not exploit constrained interac-
tions. We call this the Unconstrained (UC) mode. In
this mode, the user can place an object anywhere in 3D
space, with any orientation. No constraint information
is maintained in this mode. When working in UC mode,
we keep collision detection enabled to facilitate placing
an object against another, and to prevent interpenetra-
tion.
Previous systems have used a more general constraint
environment, where objects only know that they must
lie on a horizontal and/or vertical surface, such as the
Object Association system [7]. We hypothesize that this
makes interaction less intuitive because it gives the user
less control over how objects behave in the scene. As-
sume that a chair has a horizontal constraint on its base.
Then it can be placed on a table, bed, refrigerator, or
any other horizontal surface. We have implemented
such a constraint system in MIVE and call it the Par-
tially Constrained (PC) mode. This mode realizes a
slightly improved version of Object Associations as it
performs collision detection and has some support for
virtual constraints (e.g. for chair constraint under a ta-
ble). Also, unlike in Object Associations, satisfied con-
straints are explicitly remembered in PC mode, and no
searching is necessary to maintain them.
Each object in the MIVE system has a set of constraints
associated with it. For example, a table has a constraint
on its base that causes it to stand on the floor, and a
constraint on its top that allows other objects (i.e., a
telephone) to lie on its surface. When the table is added
to the scene, it will always be positioned on the floor –
even if the user clicks on a wall! When moved or ro-
tated, the table remains on the floor and objects lying
on its top surface move/rotate with it. This is the default
constraint mode in MIVE. We call this the Fully Con-
strained (FC) mode. Dual constraints are also enabled
in this mode.

4.1 Interaction

The interface for MIVE was designed to be as simple
and uncluttered as possible. All interactions between
the participant and the program are done using a 3-
button mouse.
The FC and PC modes use only two of the three but-
tons. The left mouse button is used to move objects by

clicking and dragging to the desired new location. The
middle mouse button is used to rotate the objects. The
third mouse button is currently unused in these modes.
The UC mode uses the right and left mouse buttons to
move objects in 3D space, and the middle mouse button
to perform an Arcball rotation [19] on the object. With
this button assignment, it is possible to place any object
in any orientation in 3D space.

5 User Testing

We designed experiments to evaluate the differences
between the three different constraint environments
with a standard 2D user interface (mouse & screen).
Five simple tasks were chosen to test performance in
different contexts (see figures T1-T5):
T1) Moving a telephone from a table to a desk of a

different height.
T2) Pulling a chair out from under one table, and

placing it under a different table on the other side
of the room.

T3) Creating a simple scene consisting of a table,
lamp, computer, chair and plant.

Task 3: Create a scene. (left is original, right is target)

T4) Moving three cabinets from one wall to a second
wall.

T5) Splitting a group of cabinets and a group of chairs
into two, and adding a door between the cabinets.

Task 5: Modify a scene.

We choose these tasks because together they represent a
majority of the operations to create and manipulate 3D
scenes. Both T1 and T2 test the manipulation of a sin-
gle object. T1 necessitates both a 3D translation and
rotation. T2 requires only a 2D translation and a rota-
tion with the additional difficulty of obstacles. T3 in-
vestigates the performance of scene construction. Dual
Constraints were tested in T4 and T5. T4 involves a

simple re-constrain of a group of cabinets, while T5
analyzes how groups are split.
Tasks were set up so that no navigation was required
for any of the tests. This avoids interference with prob-
lems of participants understanding navigation in 3D.

5.1 Participants

Fifteen volunteers (thirteen males, two females) partici-
pated in this experiment. Participants were computer
science students with different experience and back-
grounds, different computer skills and different degrees
of exposure to 3D computer graphics. The average age
was twenty-three.

5.2 Apparatus

The MIVE interface was designed to very simple. Fig-
ure 4 shows the full user interface of the MIVE pro-
gram running with its default object list.

Figure 4: The user interface for MIVE

The MIVE interface consists of three windows: the
scene window, the object selection window, and the
button window. The scene window sits on the right
hand side of the screen. The participant directly inter-
acts with objects in the scene window by clicking and
dragging.
The lower left-hand corner shows the object selection
window. Objects are positioned on an invisible cylin-
der, which is rotated by clicking any mouse button
within the window and dragging left and right. Objects
are added to the scene window by simply clicking on
the desired object in the object selection window, and
clicking on the desired location to add it in the scene
window. Drag & Drop is supported as well. To facili-
tate selection of small objects, all objects are scaled
logarithmically.
The upper left-hand corner of the window contains
buttons for various tasks, such as loading or saving the
scene, deleting an object, undoing the previous opera-
tion, or quitting the program. There is also a radio but-

ton to switch between interaction and navigation mode.
This functionality was disabled for the tests presented
here.
The MIVE system is implemented in C++ and is based
on the Cosmo3D [8] scene graph API.

5.3 Procedure

A five-minute tutorial was given prior to the testing, at
which time the experimenter gave the participant in-
structions on how to use the system and how the mouse
works in each of the three constraint modes. Each par-
ticipant was then allowed to experiment about ten min-
utes with the system before testing started.
Each test began with the participant sitting in front of a
computer monitor with a scene displayed. A target
scene was displayed on an adjacent monitor, and the
participant was instructed to make the scene on their
screen look like that in the target scene. The experi-
menter supervised the participant, and when the task
was complete, the supervisor instructed the participant
to continue to the next task.
Each participant performed each of the five tasks in
each of the three constraint systems. The order that the
participant performed the tasks, and the used constraint
system, was chosen using a Latin square method. Each
participant completed five tasks in one constraint sys-
tem, and then completed the same tasks (in the same
order) in a second constraint system, then a final time in
a last constraint system. All tests were done in a single
session, which took thirty-five minutes on average.
For each of the tests, we recorded the time taken by the
participant, and the accuracy of object placement com-
pared to the target scene.
When the participants completed all of their tasks, they
were given a questionnaire on their preference among
the different interaction modes in the system.

6 Analysis

At the end of each experiment task, completion time
and the modified scene were stored. Basic statistics and
a three by five repeated measures ANOVA was per-
formed with statistical software.

6.1 Adjustments to Data

No adjustments were made to the collected data and no
trials were excluded.

6.2 Computed Formulas

Accuracy was measured by summing the Euclidean
distances in centimeters between each of the object
centers in the participant’s result and the target scene.
We ignore rotation because no ideal measure for rota-
tion differences exists to our knowledge. Moreover, it is

hard to find a meaningful combination of translation
and rotation errors into one number.

7 Results

Figure 5 summarizes the results of our user test. The
(thick) center line of a box shows the median, the (thin)
dotted line is the mean, the box itself indicates the 25th

and 75th percentile and the ‘tails’ specify the 10th and
90th percentile. All statistical values in this publication
are reported at alpha = 0.05.

Time for Mode

Mode

FC PC UC

S
ec

on
ds

0

100

200

Error for Mode

Mode

FC PC UC

C
e
n
tim

e
te

rs

0

100

200

300

Figure 5: Box-plots for different modes

The analysis of variance showed clear main effects for
task completion time (F2,112 = 42.2, p < .0001) and ac-
curacy (F2,112 = 20.55, p < .0001). The statistical power
of both tests is larger than 0.9999. Post-hoc compari-
sons show a clear difference between UC mode and the
other two modes in both time and accuracy. The results
are detailed in the following subsections.

7.1 Performance

The mean completion time (variances are shown in
brackets) for FC was 32.15 seconds (27.75) and 32.65
seconds (29.13) for PC. The mean time for the UC
mode is 101.62 seconds (77.47). There is no significant
difference between the FC and PC mode, while the dif-
ference for the UC mode is significant with p < .0001.

7.2 Accuracy

The mean sum of distances for FC was 84.13 cm
(88.02) and 83.09 cm for PC (88.58). The mean dis-
tance sum for the UC mode is 131.79 cm (126.2). There
is no significant difference between the FC and PC
mode, while the difference for the UC mode is signifi-
cant (p < .0005).

7.3 Task

Time for Task

Task

1 2 3 4 5

S
ec

on
ds

0

100

200

Time for Task-Mode

Task-Mode

1F 1P 1U 2F 2P 2U 3F 3P 3U 4F 4P 4U 5F 5P 5U

S
ec

on
ds

0

40

80

120

Figure 6: Box-plots for different tasks

Figure 6 shows that T3 (scene creation) took the most
time. The difference between the UC mode and the
other modes is quite noticeable for the first four tasks.
For T5 the difference between UC and FC is significant
with p < .002, while there is no significant difference
between the two other pairs. The ratio between the FC
and UC modes is as follows: Test T1 ranks the highest
with 8.7, followed by T4, which has a ratio of 6.65.
Test T2 and T3 have slightly lower ratios (2.7 and 2.3
respectively), and finally T5 has a ratio of 1.5.

7.4 Questionnaire

Questions evaluated participant preferences between
each combination of two modes on a five point Likert
scale. The results show a clear preference for the FC
mode. The mean value of a UC (1) vs. FC (5) compari-
son is 4.8, between UC (1) and PC (5) 4.6 and between
PC (1) and FC (5) 3.93.

8 Discussion

The above analysis of the user test data supports the
following observations:
First, unconstrained manipulation (UC) is definitely
slower than the other two modes. For scene creation,
we observe a factor of roughly 2.3 and for most ma-
nipulation techniques, the factor is higher still. Moreo-
ver, UC manipulation is at least 50% less accurate than
the other two modes. We believe that the difficulty in
UC manipulation lies in the fact that it is hard for the
user to visualize the exact positioning of objects in 3D
with a 2D output device, hence positioning takes much
more time.
Most users took the most time in T3, constructing the
scene. We believe that this is due to the time it takes to
‘retrieve’ an object. When adding an object the user
must first locate it within the object selection window.
Accuracy was inversely proportional to the number of
objects that the user interacted with in the scene. This
was to be expected because accuracy was measured as
the total distance of all objects from their correct loca-
tions, so more objects contribute to a larger error.
Many users did not use dual constraint grouping, and
preferred to move objects individually instead of as

groups. This occurred despite the fact that the users
were introduced to dual constraints during the tutorial.
We believe either the users did not feel comfortable
using the dual constraints, or they simply forgot about
them. The mean times for T5 in each of the three modes
are relatively close to each other compared to the other
tasks. The reason is that in T5 all of the objects only
need to be moved in a horizontal plane, and no rotations
are needed. In the UC mode, translations along a hori-
zontal plane are simple, so the steps needed to complete
the task in the unconstrained system were the same as
those in the other two systems. The significant differ-
ence between PC and FC is explained by the fact that
all participants, who actually used the dual constraints,
performed much better in FC mode. From these results
we conclude that more investigation was needed.
An informal study, where the introduction to the test
placed more emphasis on dual constraints, was per-
formed at a later time. The preliminary results indicate
that dual constraints are at least a factor of two faster
for manipulating groups of objects.
The partially constrained system was statistically iden-
tical to the fully constrained system in time and accu-
racy. Initially, we found this surprising, as the partici-
pants clearly preferred the fully constrained system in
the questionnaire. Further analysis revealed that in the
tested context PC and FC are not different, because the
semantic information in FC mode does not affect per-
formance. The visual feedback is different – in one
case, the telephone moves over the floor, in the other it
appears to jump over the intervening gap. However, the
manipulation time is the same in both cases. Neverthe-
less, users felt the objects in the scene behaved more
intuitively when using the fully constrained system.

9 Conclusion

In this publication, we presented the first evaluation of
3D constraint interaction techniques with a 2D user
interface. We showed that in most cases constraints
provide more than a factor of two speed-up combined
with a significant increase in accuracy. The uncon-
strained system was significantly slower and less accu-
rate than the other two systems, and was the least pre-
ferred of the three systems.
Furthermore, we presented a system that allows users to
easily manipulate a 3D scene with traditional 2D de-
vices. The constraints encapsulate the user’s expecta-
tions of how objects move in an environment. Users
generally preferred the enhanced constraints in this
system to previous work such as Object Association
[7].
We introduced and extended version of Object Asso-
ciations, which utilized constraint maintenance, virtual
constraints, and collision detection.

Finally, we introduced the new concept of dual con-
straints. While the results of the user study presented
here are not conclusive, preliminary data points at the
effectiveness of dual constraints.
The benefits of our interaction techniques become very
apparent when one compares the simple MIVE user
interface with the complex 3D user interface in com-
mercial packages. We can only hypothesize of compari-
son of our system with e.g., Maya, but are confident
that it is clearly easier to learn our user interface due to
the reduced complexity. We speculate that if these
techniques were to be integrated into a modern 3D
modeling package, scene construction would become
significantly easier.
Most systems that use 3D input devices support only
unconstrained manipulation. Based on the observation
of Poupyrev that many 3D manipulation techniques can
be approximated with 2D techniques we hypothesize
that the techniques presented here are directly benefi-
cial to scene manipulation with 3D input devices.

9.1 Future Work

Our vision is to create a system that makes adding ob-
jects to a scene as quick and easy as possible.
In the future, we will perform a user study that com-
pares the relative performance of 2D vs. 3D devices in
a constraint based 3D manipulation system. As this
study establishes a benchmark for 2D devices we can
use the results presented here as a basis for a fair com-
parison between 2D and 3D devices.
As a significant amount of time is spent selecting ob-
jects, we are currently investigating different methods
to speed up object selection. Possibilities include
speech recognition, the use of hierarchies, and different
presentation techniques.
Easy constraint creation is another topic for future re-
search. Many published constraint systems suffer from
the fact that the definition of constraints is a complex
task and often requires intimate knowledge of the asso-
ciated algorithms. We are currently investigating ways
to automatically define constraints for new objects.
Finally, a more detailed evaluation of the usefulness of
dual constraints is planned.

References

[1] Bier, E.A., and Stone, M.C. Snap-dragging. SIG-
GRAPH 1986, ACM Press, pp. 233-240.
[2] Bier, E.A. Snap dragging in three dimensions,
SIGGRAPH 1990, ACM Press, pp. 193-204.
[3] Bolt, R., Put-that-there, SIGGRAPH 1980, ACM
Press, pp. 262-270.
[4] Borning, A., Freeman, B., Ultraviolet: A Constraint
Satisfaction Algorithm for Interactive Graphics, Con-
straints: An International Journal, 1998, pp. 1-26.

[5] Bowman, D., Hodges, L. An evaluation of tech-
niques for grabbing and manipulating remote objects in
immersive virtual environments. Proceedings of ACM
Symp. on Interactive 3D Graphics, 1997, pp. 35-38.
[6] Bowman, D., Kruijff, E., LaViola, J., Mine, M.,
Poupyrev, I., 3D user interface design, SIGGRAPH
2000, Course notes # 36.
[7] Bukowski, R., and Sequin, C. Object associations.
ACM Symp. Interactive 3D Graphics 1995, 131-138.
[8] Eckel, G., Cosmo 3D programmers guide. Silicon
Graphics Inc. 1998.
[9] Goesele, M, Stuerzlinger, W. Semantic constraints
for scene manipulation. Proc. Spring Conference in
Computer Graphics 1999, pp. 140-146.
[10] Gleicher, M, A Graphics Toolkit Based on Differ-
ential Constraints. Proc. UIST 93, pp. 109-120.
[11] Hinckley, K., et.al. Usability analysis of 3D rota-
tion techniques. ACM UIST'97. 1997. pp. 1-10.
[12] Houde, S., Iterative Design of an Interface for Easy
3-D Direct Manipulation. SIGCHI 1992. ACM press.
pp. 135-142.
[13] Kitamura, Y., et. al, "A sophisticated manipula-
tion` aid in a virtual environment using dynamic con-
straints among object faces". PRESENCE, Vol.7, No.5,
MIT Press, 1998
[14] Mine, M., Brooks, F., Sequin, C. Moving Objects
in Space: Exploiting proprioception in virtual-
environment interaction. SIGRAPH 1997, ACM Press,
pp. 19-26.
[15] Pierce, J., Forsberg, A., Conway, M., Hong, S.,
Zeleznik, R. et al., Image plane interaction techniques
in 3D immersive environments. Proceedings of ACM
Symp. on Interactive 3D Graphics. 1997. pp. 39-43.
[16] Poupyrev, I., Weghorst, S., Billinghurst, M., Ichi-
kawa, T., Egocentric object manipulation in virtual en-
vironments: empirical evaluation of interaction tech-
niques. Computer Graphics Forum, 17(3), 1998, pp.
41-52.
[17] Poupyrev, I., Weghorst, S., Fels, S. Non-
isomorphic 3D rotational techniques. ACM CHI'2000,
pp. 546-547.
[18] Shaw, C., Green, M., THRED: A Two-Handed
Design System, Multimedia Systems Journal,5(2),1997.
[19] Shoemake, K., ARCBALL: A user interface for
specifying three-dimensional orientation using a mouse,
Graphics Interface, 1992, pp. 151-156.
[20] SmartScene promotional material, Multigen (San
Jose, CA), 1999.
[21] Zanden, B., Myers, B., Giuse, D., Szekely, Inte-
grating Pointer Variables into One-Way Constraint
Models, ACM Transactions on Computer-Human In-
teraction, 1994, pp. 161-213.

