
Efficient Manipulation of Object Groups in Virtual Environments

Wolfgang Stuerzlinger, Graham Smith
Dept. of Computer Science, York University, Toronto, Canada

http://www.cs.yorku.ca/~wolfgang

Abstract

In this paper, we describe simple techniques for object
group manipulation, an important operation in user
interaction with a Virtual Environment. All presented
manipulation techniques exploit constraints to simplify
user interaction. The techniques are based on how humans
perceive groups and afford direct manipulation of such
groups. Furthermore, we introduce two new intuitive ways
to create a whole group of objects: drag-add and random
drag-add. Finally, we present an evaluation of the
presented techniques.

1. Introduction

There have been considerable advances in Virtual
Reality (VR) in the last several years. Most application
areas, such as walk-throughs (architectural, industrial,
mechanical, etc.), require the creation and manipulation of
three-dimensional (3D) scenes with a realistic complexity.

Although there are many modeling packages available,
practically all focus on adding increasingly more features.
Consequently, the user interface of such packages is very
complex. Contrary to this trend, recently several ‘home-
designer’ packages have simplified the process by
allowing only limited manipulation of a 2D floor plan. A
static 3D view can be displayed on demand.
Unfortunately, the user can’t usually move the objects in
the 3D view, which would be the most intuitive solution.

Virtual Reality (desktop or immersive) seems to offer a
solution to this dilemma. However, most VR systems offer
only very rudimentary object manipulation possibilities
that do not go beyond the operations afforded by the
underlying primitive geometric operations. One of the few
examples for an advanced VR system is the SmartScene
system [19], which uses object ‘behaviors’ to simplify 3D
scene interaction.

Construction in a 3D scene consists of two essential
steps: First 3D objects must be created, and then these
objects must be placed into the scene. To restrict the
problem, we have chosen to focus on the creation of
complete 3D scenes based on a library of existing objects.
Here the challenge is to enable the user to easily add
objects and to quickly position them in the environment.

In general, positioning an object in a 3D scene is difficult,
as six independent variables must be controlled, three for
positioning and three for orientation.

In our experience quick operations on groups of objects
is one of the essential elements of faster scene
construction. Currently grouping of objects in most 3D
systems is done by explicitly selecting the objects that are
to be in the group, then invoking a grouping command.
Breaking up groups of objects proceeds in a similar
manner. Although this behavior is flexible, our approach is
superior because it uses knowledge about the real world to
simplify and automate grouping operations. In other words
we are trying to emulate how users perceive groups and
base our direct manipulation techniques on this.

1.1. Previous Work

Most user interfaces for 2D and 3D applications are
based on the use of an explicit grouping mechanism. I.e. if
the user wants to manipulate a group of objects he/she
must at some point select all objects within that group and
invoke a group operation.

A few systems try to infer groups from the placement
of objects in 2D. For example, the system presented in
[12] tries to automatically find collections of objects that
can subsequently be moved by the user. The Tivoli system
[13] is an example of a system that introduces a set of
simple group manipulation techniques for whiteboards.
Very few systems have introduced similar ideas into 3D
applications. One exception is the Sketch system [22],
which automatically infers groups based on where objects
are placed. This approach relies on a horizontal
relationship between objects to decide when objects are to
be placed in a group, and hence is restrictive.

The interactive grouping mechanisms presented here
are based on the use of constraints to simplify the
manipulation of objects in a scene. Several researchers
have presented different forms of 2D constraint-based
systems (see e.g. [2,4,6,11,15,21]). For an overview of
constraint solvers see [8]. Several constraint-based
systems have been presented for 3D modeling (see e.g.
[1,3,5,9,10,14]). While these systems use the constraints to
afford direct object manipulation, the manipulation of
groups is not simplified similarly. E.g. while a connected

Copyright 2002 IEEE. Published in the Proceedings of the VR2002, March 24-28, 2002, Orlando, Florida. Personal use of this material is permitted.
However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution
to servers or lists, or to reuse any copyrighted component of this work in other works, must be obtained from the IEEE. Contact: Manager, Copyrights and
Permissions / IEEE Service Center / 445 Hoes Lane / P.O. Box 1331 / Piscataway, NJ 08855-1331, USA. Telephone: + Intl. 908-562-3966.

set of objects can be dragged as a whole, the user must
explicitly break a constraint if he wants to split a group.

For 3D scene construction Bukowski and Sequin [7]
employ a combination of pseudo-physical and goal-
oriented properties called ‘Object Associations’ to position
objects in a 3D scene with 2D devices (mouse and
monitor). Although intuitive, their approach has a few
drawbacks. Associations are not maintained after the
current manipulation. Groups and other forms of cyclical
constraints are not supported.

The MIVE system developed at York University
follows the approach of the Object Associations system.
First developed by T. Salzman [18] and later improved by
G. Smith and others [20] it uses permanent constraints to
simplify object manipulation. A brief overview over how
the constraints are used for interaction in this system is
given in section 2. While this system can deal with some
situations that arise in practice, it is not general enough to
handle a simple row of chairs.

1.2. Motivation

Our observations of humans rearranging furniture and
planning environments indicate that humans do not think
about scene manipulation as a problem with six degrees of
freedom. Real objects are not placed arbitrarily in space,
but are constrained by physics (e.g. gravity) and/or human
conventions (ceiling lamps are almost never placed
permanently onto the floor or onto chairs). Consequently,
almost all objects have a maximum of three degrees of
freedom in practice – e.g., all objects resting on a plane.

If fact, recent research argues that all manipulation
techniques that work well for 3D applications are
essentially 2D techniques [16]. This implies that a two-
dimensional (2D) input device such as a mouse is very
often sufficient to manipulate objects in a virtual
environment. Indeed our previous work shows that a 2D
device can indeed be used to intuitively and quickly
manipulate a 3D environment [18].

Many constraint-based systems expose the details of
the constraint mechanisms (variables, equations) directly
or in graphical form to the end user. Most users cannot
deal with such a level of detail, which may explain why
constraint-based systems are not as ubiquitous as one
might expect. The goal of our system is to shield the user
from the technical details as far as possible. One of the
fundamental design decisions was therefore not to use a
full constraint solver as such systems can easily generate
object configurations, that do not conform to the user’s
expectations. For this reason, most constraint-based
systems cannot automatically support direct manipulation
of object groups – the solver is always free to re-arrange
objects also within the group. This can be fixed only with
an explicit grouping mechanism that ‘freezes’ a group
during manipulation. We are trying to create manipulation

techniques that work without explicit grouping techniques,
and consequently chose to implement a deterministic and
somewhat restricted form of a constraint-based system.

Similarly, groups are usually defined to contain objects
that belong in a sense together, either by proximity or by
similarity or by common properties [17]. In our system,
simply moving ‘group-able’ objects close to each other
will create a group. The breaking of a group is handled
similarly by pulling objects away from the group. For the
rare situations where the offered group mechanism is not
sufficiently powerful, we discuss how an explicit grouping
mechanism can be integrated seamlessly into the system.

1.3. Contributions

The main contributions of this work are:
• A new and simple direct manipulation technique for

groups of 3D objects (the main contribution).
• Two new simple and effective techniques for creation

of object groups: Drag-add and Random drag-add.
• A framework for explicit and implicit grouping in

general scene graphs (directed a-cyclic graphs).
From the user’s point of view, our main contribution can
be roughly described as a powerful extension to 3D snap
dragging [3]. Our novel extension uses the direction of the
mouse movement to afford the direct manipulation of
object groups. However, the technical realization is very
different and we have chosen not to describe our approach
as an extension to 3D snap dragging.

2. Constraints for Manipulation of
Hierarchical Groups

The material presented in this section has been
published previously [18]. However, some of the details in
the work presented in this paper rely heavily on this
previous work. Consequently, we give an overview of the
relevant parts and refer the reader to [18] for details.

The constraint relationships for the 3D scene are stored
in a directed a-cyclic graph (DAG) called the scene graph.
Figure 1 depicts a simple scene, and it’s associated scene
graph. When an object is moved in the scene, all of its
descendants in the scene graph move with it, due to the
implicit group defined by the hierarchical relationship.

The scene graph edges correspond directly to satisfied
constraints in the scene. The user can modify the scene
graph structure by interacting with objects in the scene.
Constraints can be broken and re-constrained with ease by
clicking on the desired object and pulling away from (or
pushing towards) the existing constraint to break (or
attach) it. This allows for fast changes to the scene graph
structure. Figure 2 shows the same scene as Figure 1 after
the chair has been pulled away from the large table
towards the smaller table.

Figure 1: A Scene and its associated scene
graph. Links describe constraint relations.

Figure 2: Scene after chair has been moved.

2.1. Constraint Satisfaction

In our constraint system, each object can have zero or
more binding and offer areas. Binding areas define where
an object can attach to another object. An example is the
base of a cabinet that has an ‘on-floor’ binding area. Offer
area on the other hand define where other objects can
attach to, e.g. the ‘work-surface’ offer area of a table.
Binding and offer areas are both defined by a polygon and
vector that represent their area and orientation. A binding
area can be satisfied by an offer area by aligning their
orientation vectors and by translating the binding polygon

so that it lies within the offer polygon. If after rotation and
translation the binding polygon is not completely enclosed
by the offer polygon, then the object cannot be constrained
there. In addition, a binding area cannot be bound to an
offer area of the same object: an object cannot be
constrained to itself.

Note that in contrast to some other approaches we do
not use constraint points but areas, as only areas can
guarantee that an object stands completely on another.
Furthermore, many other useful forms of constraints, such
as cylindrical or spherical constraints, have been
introduced (see previous work). These can be added to our
system. However, we choose not to do this to limit the
complexity of our research prototype.

To constrain an object, we attempt to satisfy all of its
binding areas. For each binding area of an object, we
search through the scene to find potential satisfying offer
areas. Semantics restrict the offer areas that a binding area
is allowed to constrain to. To prevent objects from
jumping large distances to satisfy constraints, we only
consider constraining an object to offer areas that are close
to the object being constrained. Proximity is relative to
object size. Therefore, we consider only objects that are
within a sphere with a radius that is twice the radius of the
sphere bound of the object.

Using this distance threshold, constraints remain
unsatisfied until an object is moved close to a valid offer
area. It also ensures that objects are always locally
constrained. For each binding area, if there are multiple
satisfying offer areas, the closest satisfying offer area
found is chosen. The object is moved to connect the
binding and offer areas. The bound object then becomes a
child of the offering object in the scene graph, and the
search is repeated for the next binding area.

Once an object is constrained, its motion is restricted
such that the binding areas of the object always remain in
contact with the associated offer areas. This essentially
removes degrees of freedom from object manipulations.
Constraints can be broken with ease by simply pulling an
object away from its associated offer area.

3. Dual Constraints

One of the ways humans perceive groups is by
proximity. Another way humans perceive objects as
belonging together is similarity. Our target is to emulate
these human notions with a computer, hence enabling
similar objects that are close to each other to form a group
automatically.

Since the scene graph is a-cyclic, only one-way
relationships exist between constrained objects, a parent-
child relationship. In order to facilitate the use of cyclical
constraints, and to create a natural grouping mechanism,
we created a new type of constraint, which we call the
‘dual constraint’. The dual constraint is very useful in

situations where a sibling relationship between constraints
makes more sense than a parent-child relationship, and
provides a natural way to group objects together.

While an object is being moved, each of its dual
constraints computes the distance to the dual constraints of
nearby objects. If this distance falls below a threshold, the
moved object will be repositioned next to the nearby
object, and a group will be formed automatically. Dual
groups are translated, rotated, and regrouped in the scene
graph as if the group members were a single object. No
explicit operation is necessary to create a dual group.

A dual constraint for an object is specified as a point,
line, or polygon in 3D space along with an orientation
vector. The constraint sits on or near the surface of the
object, and the normal points away from the object.

A cabinet on the wall, for example, may have two dual
constraints, one on its left side, and one on its right side. If
such a cabinet is pulled toward another cabinet of the same
type, the cabinet being pulled moves so that the sides of
the two cabinets align. The cabinets are now a group, and
stay together until the group is broken. If the dual
constraint lies slightly off the surface of the object, space
will be left between the object and the others in the group.
With this, chairs can be grouped together into rows and/or
columns. Figure 3 shows a dual group of cabinets on a
wall, and a dual group of chairs on the floor.

Figure 3: Two dual groups.

To break a dual group, the user simply selects an object
within the group and moves the cursor in the desired
direction. The motion simulates a pushing action, and all
objects in contact in the direction of motion are grouped
with the selected object and moved with it. Those objects
that are not moved form their own new group(s) and stay
in place. This has the desired effect that groups can be
created and broken with extreme ease. Figure 4 visualizes
the behavior of the manipulation technique.

Figure 4: Building and breaking a group.

3.1. Scene Graph Manipulation

To initially constrain a dual constraint, the object(s)
being moved must be repositioned so that they are aligned
with the object(s) they are constrained to. The
repositioning is simply a rotation of the moved object(s)
such that the normals of the dual constraints are oriented
in opposite directions and a translation such that one of the
two dual constraints falls entirely within the other. Figure
5 illustrates the constraint process. When the chair on the
right is dragged close to the chair on the left, it will snap in
such a way that the dual constraint points (highlighted in
yellow) are coincident and the normals are oriented in
opposite directions.

Figure 5: Satisfying a dual constraint.

When objects are dual constrained together, the scene
graph must be modified to reflect this. A new node type
was introduced, which we call a group node, to facilitate
dual constraints in the scene graph. When two objects are
first dual constrained together, a dual group node is
created, and the nodes representing the two objects are
placed under the dual group node in the scene graph. If
any other objects are dual constrained to objects within
this group, they will also be moved in the scene graph to
be under the group node. Figure 6 shows a simple scene
containing a dual group of four chairs along with the
associated scene graph.

Translating and rotating a dual group of objects can be
done by simply transforming the dual group node, as the
transformation is automatically applied to all descendants
when rendering. Rotations, while still applied to the group
node, are actually performed around the center of the

selected object in the group, not the center of the group.
This rotation behavior is more flexible, and allows the user
more freedom to rotate objects as desired, without
complicating the user interface.

Figure 6: Scene graph for dual group.

3.2. Interaction Techniques with Dual Groups

Creating dual constraint groups is simple. If two objects
or groups are moved close to each other the logic
described in the previous section is used to create a new
dual group node that has all objects involved as children.

Breaking dual constraints is more complicated. We
aimed for an intuitive way to break apart groups, so that
the user could simply predict how a group would be split.
To describe this behavior, we introduce a dual group
graph, which describes how objects are constrained to
each other in 3D.

The dual constraint graph used in MIVE is symmetric
and three-dimensional. For simplicity, examples are
shown here using objects that are constrained to a plane,
making interactions essentially 2D. Although the examples
are 2D, the ideas presented are directly applicable to 3D,
as all the underlying data structures are 3D as well.

Figure 7 illustrates a dual group of chairs being split
into two groups by a mouse move. For clarity, the gesture
is visualized by an arrow in the figures. The user drags the
middle chair towards the upper right in this example.

The nodes that will split from the group are called the
Directional Dual Component (DDC). The black center
node is the object that was selected at the start of the
mouse movement. The circle in the bottom left corner of
Figure 8 illustrates the associated dual group graphs and
the movement direction for reference.

Figure 7: Splitting of a dual group.

Figure 8: Dual group graphs for Figure 7.

We use a recursive algorithm to decide which nodes
make up the DDC. First, the selected node is added to the
DDC, as it will always be split from the group. The graph
is searched in a depth first manner, where only edges that
make (approximately, i.e. using a tolerance) a right angle
with the pull direction are followed, and the nodes reached
are added to the DDC. This process continues until no new
nodes are added to the DDC. In Figure 8, the followed
edges are highlighted in red, and the reached nodes are
shaded gray. Algorithm 1 shows pseudo-code.

findDDC()takes a node, pull direction
and a tolerance (usually 10 degrees)
It returns the vertices that should
break off the dual group.

findDDC(node,pullDir,tolerance,result)
{
 append node to result
 for (each edge E leaving node) {
 if (angle between E and
 pullDir > 90 + tolerance)
 continue # skip this edge
 # otherwise, we recurse here
 neighbor = vertex reached when E
 is followed
 if (neighbor is not in result)
 findDDC(neighbor, pullDir,
 tolerance, result)
 } #end for
 }

Algorithm 1: Dual component algorithm.

The above mentioned tolerance is necessary for vertical
and horizontal mouse drags. Figure 9 shows the dual

group graph and DDC if the user drags the center chair to
the right. The tolerance ensures that the dual group breaks
in a way consistent with user expectations. Without the
tolerance, the user would have to pull exactly in the
horizontal direction (a very difficult task) if they wished to
split all six objects from the whole group with one drag. In
our experience, a tolerance of 10 degrees works very well.

Figure 9: Dual group graphs for a horizontal
mouse drag.

To ensure that the user does not accidentally split off an
object from a group we activate this logic only if the user
has moved for a certain minimum distance.

When a group is split, the user can continue to move
the nodes that were split from the group if the mouse
button is not released. The group itself, however, may
have been split into multiple connected components, as in
the example shown in Figure 10. To ensure consistency
these connected components must form their own groups
in the scene graph. Hence, after the DDC has been split
off, the rest of the dual group graph is searched for
connected components. If there is more than one
remaining connected component, the scene graph is
modified to reflect this.

While dual groups share a common parent in the scene
graph, it is still possible to place objects as children of the
objects in a dual group. Figure 11 illustrates a group of
tables, where each table has objects constrained to it. Since
these other objects are also descendants of the group node,
they will move when the group is moved, but moving
them will not move the group.

3.3. Generalization to Arbitrary Scene Graphs

The techniques presented so far have been based on the
assumption that the scene graph is in fact a tree structure.
If the scene is represented in a directed a-cyclic graph
(DAG) where nodes are instantiated multiple times, all the
presented techniques are applicable but need slight
changes. When a group is being moved and the objects
have different parents in the scene graph, then the dual
group node will have multiple parents. In this case, we
have to use the union of the constraints imposed by all
parents on the members of the group to restrict the degrees

of freedom when the group is being moved. In addition,
we have to make sure to update all transformations
correctly when moving an object.

Figure 10: Multiple components after splitting
a group.

Figure 11: A group of dual constrained tables
with objects constrained to each table.

3.4. Explicit Grouping Operations

Sometimes, the user may wish to create a group that
cannot simply be described with a hierarchical group (see
section 2.2) or with a dual group (see section 3.2). For
example, the user may wish to group a bed, a television,
and a plant together.

To handle such operations, an explicit grouping mode
is provided by the system. A group can be formed by
clicking on a button in the function window, then clicking

on objects in the scene. A dual group node is placed in the
scene graph as described above and all newly selected
members of the group are put under this node.

To remove objects from the group, we can simply use
an explicit ungroup operation. Even simpler is to use the
methods described in section 3.2. In other words to split
objects from a group by dragging them out of the group.

4. Creation of Object Groups

To make the addition of several objects to the scene
easier, we allow the user to add multiple objects with a
single mouse operation. When an object is selected in the
objects window for addition to the scene, the user can
click and drag the mouse button in the scene window. This
will add multiple instances of the selected object to the
scene. We call this technique ‘drag-add’. The collision
detection together with the logic how constrained objects
are added to a scene prevents objects from appearing in
the same location and will place objects side by side.

The concept of drag-add is even more powerful, if the
individual objects have dual constraints associated with
them. Then the collection of objects that was created with
the mouse drag forms automatically a dual group and thus
can be manipulated efficiently with the techniques
described in the previous sections. For example, the scene
in Figure 3 was created using two mouse drags, one for the
chairs on the floor, and one for the cabinets along the wall.

Instead of having the same geometry appear when a
drag-add operation occurs, we could alternately add
different object to the scene during the move. We call this
‘random drag-add’. It allows the user to add a collection of
objects with a single mouse movement. This technique
facilitates quick population of a scene with a minimum of
interactions. For example, filling a closet with clothes, a
shelf with books, or a park with people can be achieved
simply with a mouse drag.

Objects that support random drag-add are selected and
added to the scene exactly the same way as regular
objects. The only difference is that if the left mouse button
is held down during the addition of the model, and if the
mouse moved over a new location, another object will pop
up in that space. For example, to fill a shelf with books,
the user simply clicks and drags across the shelf while the
book that supports random drag-add is selected in the
object selection window (see Figure 12).

In our implementation, the models that make up a
particular random drag-add object are stored in an array
for efficiency. When the user attempts to add the object to
the scene, one of the elements of the array is randomly
selected and an attempt is made to constrain the object. If
this fails or a collision occurs, the object is not added to
the scene. Otherwise, the object is added and another
object is randomly selected for the next addition until the
user releases the mouse button.

Figure 12: Random drag-add example.

5. Evaluation and Discussion

Although the interaction techniques presented above
seem very intuitive, we wanted to confirm this. We chose
to evaluate the techniques with a user study that asks
participants to create, split and merge groups of object
with and without dual constraints.

Space restrictions prohibit us from reporting all details
here and consequently, only the most salient results are
outlined. Eight participants (6 male, 2 female, average age
28) volunteered for a 15-minute session. All were regular
computer users, but had various 3D experience. Each
participant was asked to perform three tasks in the dual
constraint (or group) mode as well as the non-grouping
mode. Trials were counterbalanced to cancel learning
effects. The three tasks were to create a 3x3 block of
chairs, to split it into four separate groups, and to merge
the four groups together into the original group.

The overall result indicates that the dual constraint
mode is 1.6 times faster than the non-grouping mode. In
fact, the result of the repeated measures ANOVA is highly
significant (F1,7 = 42.12, p < 0.0005). For each task, the
difference between the two modes is again highly
significant. For task 1 (creation), the group mode is 1.3
times faster (F1,7 = 17.15, p < 0.005). For task 2 (split),
the group mode is 1.8 times faster (F1,7 = 22.03,
p < 0.005), for task 3 (merge) 2.3 times faster
(F1,7 = 53.36, p < 0.0005). This is a strong indication for
the effectiveness of dual constraints.

For the creation task drag-add was available in both
versions (with or without dual constraints). We choose this
comparison to highlight the effectiveness of dual
constraints. However, based on our observations we are
confident that the performance difference would be even
larger if a system without drag-add is compared against
our system.

All participants commented very positively on the
intuitiveness of the manipulation techniques. Further
evidence for the intuitiveness of the presented techniques
is that most users understood the manipulation technique
for dual constraints immediately during the training
period, which lasted three minutes on average. Participants

did comment about the lack of feedback (e.g. auditory),
when a group was created in our implementation, but were
still able to successfully perform the tasks. Some
participants even wished to see this manipulation
technique in other applications, too!

6. Conclusions and Future Work

Dual constraints provide a new and intuitive way to
automatically group and un-group objects in a 3D scene.
Furthermore, they afford quick and simple manipulation of
object groups. They model the way humans perceive a
group of objects belonging together, and afford for direct
manipulation of groups. We described the technical details
for the implementation of dual constraints. And discussed
how this technique can be used with general scene graphs.
Furthermore, we presented two ways to create whole
groups of objects quickly: drag add and random drag-add.
Our evaluation of dual constraints showed that they are
both effective and intuitive mechanisms for 3D scene
construction and manipulation.

It is important to note that, while the examples in this
paper show an interior design scenario, the presented
techniques are much more widely applicable. For example,
consider the piping and machinery in a power plant. All
objects in such a plant have constraints (e.g. pipes fit
together). Consequently, all techniques presented here can
be applied directly to engineering scenarios and other
areas, such as urban design, as well.

The user interface techniques of most current VR
systems violate some of the assumptions of the user about
how objects can be manipulated, thus creating surprises
and frustration. The system presented here is more
consistent with the way users think about their
environment. This leads to much more intuitive object
manipulation techniques.

Due to the use of a 2D input device, we effectively
support only 2D operations in this desktop prototype. We
are currently porting our system into a full VR setup. Note
that we cannot foresee any problems with porting the
presented techniques to the full 3D case (i.e. with a 3D
tracker as input device), as the techniques rely only on
direction vectors and the angles between them.

We are also currently re-implementing this framework
for a 2D drawing application to see how well these
techniques work for 2D applications.

7. Acknowledgements

The authors want to thank all participants for donating
their time for the user study. Furthermore, we want to

thank A. Vorozcovs and S. MacKenzie, who have aided
this research in several ways. Thanks also to
Alias|Wavefront and NSERC for their generous support.

8. REFERENCES

[1] R. Anantha, G. Kramer, R. Crawford, Assembly Modeling
by Geometric Constraint Satisfaction. CAD, 1996, 707-722.
[2] E. A. Bier, M. C. Stone, Snap-dragging. SIGGRAPH, 1986,
233-240.
[3] E. A. Bier, Snap dragging in three dimensions, SIGGRAPH
1990, 193-204.
[4] A. Borning, B. Freeman, Ultraviolet: A Constraint
Satisfaction Algorithm for Interactive Graphics, Constraints: An
International Journal, 3, 1998, 1-26.
[5] W. Bouma, et al. A Geometric Constraint Solver. Computer
Aided Design, June 1995, 487-501.
[6] A. Bourning, B. Freeman, M. Wilson, Constraint
Hierarchies, Lisp and Symbolic Computation: An International
Journal, 1992, 223-270.
[7] R. Bukowski, C. Sequin, Object associations, ACM
Symposium on Interactive 3D Graphics, 1995, 131-138.
[8] M. Dohmen, A Survey of Constraint Satisfaction
Techniques for Geometric Modeling. Computers & Graphics,
1995, 831-845.
[9] T. Fernando, et al. Software Architecture for a Constraint-
based Virtual Environment. VRST, 1999, 147-153.
[10] M. Gleicher, A Graphics Toolkit Based on Differential
Constraints. UIST, 1993, 109-120.
[11] S. Hudson, I. Smith, Ultra-Lightweight Constraints, UIST,
1996, 147-155.
[12] T. Igarashi, et al. Adaptive Recognition of Human-
Organized Implicit Structures, Visual Languages '95, 258-266.
[13] T. Moran, et al. Implicit Structures for Pen-Based Systems
Within a Freeform Interaction Paradigm, CHI, 1995, 487-494.
[14] E. Lamounier, T. Fernando, P. Dew, Incremental Constraint
Satisfaction for Variational Design Systems. Univ. of Leeds
Research Report Series, Report 95.31.
[15] D. Olson, Inductive Groups, UIST, 1996, 193-199.
[16] I. Poupyrev, et al. Egocentric object manipulation in virtual
environments: empirical evaluation of interaction techniques.
Computer Graphics Forum, 17(3), 1998, 41-52.
[17] I. Roth, J. P. Frisby, Perception and Representation: A
Cognitive Approach. The Open University, 1986.
[18] T. Salzman, S. Stachniak, W. Stuerzlinger, Unconstrained
vs. Constrained 3D Scene Manipulation, EHCI, 2001, 321-333.
[19] SmartScene promotional material Multigen, San Jose, 1999.
[20] G. Smith, T. Salzman, W. Stuerzlinger, 3D Scene
Manipulation with 2D Devices and Constraints, Graphics
Interface, 2001, 135-142.
[21] B. Zanden, B. Myers, Demonstrational and constraint-Based
Techniques for Pictorially Specifying Application Objects and
Behaviors, CHI, 1995, 308-356.
[22] R. Zeleznik, K. Herndon, J. Hughes, SKETCH: An Interface
for Sketching 3D Scenes. SIGGRAPH, 1996, 163-170.

