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Abstract: Interactive Virtual Reality applications are in general complex and non-intuitive. One fundamental
problem is that manipulation of 3D objects is very difficult for non-experienced users. We describe a constraint
based 3D scene construction system that exploits human intuitions to restrict object placement and interactions.
In particular, we focus on the constraints themselves by describing how they are defined, and how they are used
within a scene. Several different types of constraints are discussed, including virtual constraints, which decouple
the constraint areas from the geometry of an object, and negative constraints, which restrict object placements
within certain volumes of space. Furthermore, we discuss techniques that can be used to automatically generate
constraints for most geometric objects, which makes incorporating new objects into the system much easier.
Finally, we argue that the presented constraint techniques can be incorporated into existing Virtual Reality
systems to make interactions easier.

1. Introduction
The field of computer graphics has advanced
considerably in the last several years. Computer
images and animations are achieving realism which
was previously impossible. Applications such as
physical simulations, architectural walk-through,
and other Virtual Reality (VR) systems require
semi-realistic three-dimensional (3D) scenes
composed of many objects. The objects in these
scenes are generally detailed geometric models, and
many techniques exist for creating them.
Many applications are readily available in the areas
of 3D modeling and scene
construction/manipulation, but in general, these
products are difficult to use and require many hours
of training. For example, products such as Maya
(Alias|wavefront) and 3D Studio Max (Discreet)
have dozens of menus, modes and widgets for
scene creation and manipulation, which can be very
intimidating for an untrained user. Our efforts
address these difficulties.
Creating a 3D scene from scratch, or modifying an
existing 3D scene is in general a very complex task.
To simplify the problem, we choose to focus on the
creation and modification of 3D scenes based on a
library of existing objects. Here the challenge is to
enable the user to easily add objects and to quickly
position them in the environment. In general,
positioning an object in a 3D scene is difficult as
six independent variables must be controlled, three
for positioning and three for orientation.

Our observations of humans rearranging furniture
and planning environments indicate that humans do
not think about scene manipulation as a problem
with six degrees of freedom. The rationale is that
most real objects are not placed arbitrarily in space,
but are constrained by physics (e.g. gravity) and/or
human conventions (ceiling lamps are almost never
placed permanently onto the floor or onto chairs).
This leads us to believe that an interface that
exposes the full six degrees of freedom to the user
makes it harder for the average person to interact
with virtual environments. Many real objects have a
maximum of three degrees of freedom in practice –
e.g. all objects resting on a plane. In addition, many
objects are often placed against walls or other
objects, thus further reducing the available degrees
of freedom. This implies that a two-dimensional
(2D) input device such as a mouse is sufficient to
manipulate objects in a virtual environment.
In our system, information about how an object
interacts with the physical world assists the user in
placing and manipulating objects in virtual
environments. Each object in a scene is given a set
of rules, called constraints, which must be followed
when the object is being manipulated. For example,
a photocopier must stand on the floor at all times.
When a user interacts with the photocopier by
translating or rotating it in the scene, it never leaves
the floor. This concept of constraints makes
manipulating objects in 3D much simpler.
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1.1 Previous Work
For 2D object manipulation various forms of
constraint systems have been introduced. For recent
work on interactive constraint satisfaction and
references to previous work see [4][19].
Previous work on 3D object manipulation can be
classified into two categories: those that use 2D and
those that use 3D input devices.
The simplest solution for a 2D input device is to
decompose the manipulation task into positioning
and orientation. Unfortunately, there is no intuitive
mapping of these tasks with three degrees of
freedom each to a mouse with three buttons.
Bier introduced ‘Snap-Dragging’ [1] to simplify the
creation of line drawings in a 2D interactive
graphics program. The mouse cursor snaps to
points and curves using a gravity function. Bier
subsequently applied these ideas to placing and
orienting objects in a 3D environment [2]. The
main features of this system are a general-purpose
gravity function, 3D alignment objects, and smooth
motion affine transformations of objects. Gleicher
[9] built on this work and introduced a method that
can deal even with non-linear constraints.
For 3D scene construction Bukowski and Sequin
[7] employ a combination of pseudo-physical and
goal-oriented properties called ‘Object
Associations’ to position objects in a 3D scene with
2D devices (mouse and monitor). Although
intuitive, their approach has a few drawbacks. First,
associations apply only to the object currently
being moved and are not maintained after the
current manipulation. In addition, when an object is
selected for relocation, a local search for associated
objects is performed, which can result in lag
between the motion of the selected object and the
motion of its associated objects.
Goesele and Stuerzlinger [8] built upon the ideas of
Object Associations. Each scene object is given
predefined offer and binding areas. These areas are
used to define constraining surfaces between
objects. Collision detection is used to prevent
objects from passing though each other.
Drawbacks of this approach include the following:
Once a constraint has been satisfied, there are no
means to re-constrain an object to another surface
or to un-constrain it. Furthermore, the constraint
satisfaction search is global, in that an object will
be moved across the entire scene to satisfy a
constraint, This has often-undesirable effects for
the user, especially because constraints cannot be
undone.
A number of authors have investigated the
performance of object manipulation with 3D input
devices, such as a space-ball or a six degree-of-
freedom tracker. Such devices enable direct
interaction with a 3D scene. In combination with

devices that generate a 3D view, such systems can
simulate Virtual Reality (VR).
One of the first researchers to use 3D devices to
manipulate a 3D scene was Bolt in 1980 [3].
Subsequently many other researchers studied the
creation and manipulation of 3D environments in
VR (see e.g. [12][16]). Most of these systems
provide collision detection. Very few utilize
constraints for object manipulation and even these
support only the simplest geometric constraints
(e.g. on-plane). Closest to the work discussed here
is the ‘SmartScene’ system by Multigen [18]. This
VR system uses tracked pinch-gloves as interaction
devices. For some tasks, object manipulation is
facilitated with pre-defined object behaviors. These
behaviors can express semantic properties of
objects.
More recently Bowman et al. [5], Mine et al. [12],
and Pierce et al. [13] proposed different 3D
manipulation methods that can be applied in a
variety of settings. Poupyrev et al. recently also
addressed the problem of 3D rotation [15]. For a
more complete overview over previous work in this
area, we refer the reader to [6].

1.2 Motivation
We wanted to provide a simple way for objects to
constrain to each other without using a full
constraint solver. Our initial hypothesis was that
our virtual constraints would provide the basic
functionality of a full constraint solver, but at a
fraction of the computing cost, and without some of
the problems inherent to constraint solving systems.

2. The MIVE System
The MIVE (Multi-user Intuitive Virtual
Environment) system extends the work done in [8]
by improving the way existing constraints behave,
and adding new useful constraints. This paper
discusses only the interaction of a single user.
Three of the main constraint ideas used in MIVE
are virtual constraints, constraint semantics, and
negative constraints.

2.1 Virtual Constraints

2.1.1 Design Decisions
Our first thought when designing the MIVE
constraint system was to use the geometry of
objects to define constraints. Some object
relationships are clearly based on geometry, such as
the relationship between a tabletop and a book. One
face of the book will rest on the top face of the
table. However, there are some relationships that
are more functional than physical.
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For example, a chair is most commonly positioned
in front of a desk or table, or beside other chairs in
a row. These relationships are not based on the
physical geometry of the chair. Instead they are
based on our understanding of how chairs interact
with other objects.
Furthermore, basing the constraints on object
geometry has many technical problems. Polygons
making up the surface of an object may be slightly
non-planar, which would cause difficulty when
trying to constrain objects together. Also, since the
polygons of an object are usually segmented, there
may be slight gaps between them, or overlapping
may occur.
Rather than trying to fix the geometry of objects in
our system, we chose to separate the constraints
from the object geometry entirely. This manner is
less restricted, and affords much more flexibility
under a wide variety of situations.
Another decision we had to make concerns where
to store the constraints for an object. We wanted to
support multiple file formats for object geometry,
so that finding objects to import into our system
would be easier. We decided to define constraints
for an object in a file separate from that that defines
the object geometry (same filename, different
extension).

2.1.2 Implementation
Each object in a scene is given predefined
constraint areas. A constraint area is defined as a
convex polygon, and an orientation vector. Each
constraint area of an object can be one of two types,
an offer area, or a binding area.
Offer areas are used to define locations on an object
where other objects are allowed to reside. For
example, a table would have an offer area over its
top surface so that the user can place objects on top
of the table.
Binding areas define locations on an object where
this object can constrain to an offer area. For
example, a chair would have a binding area below
its base, so that it could be positioned on the offer
area of the floor of a room. When a binding area
constrains itself to an offer area, we say that
binding area has been “satisfied”.
Binding areas are allowed to be one of two types,
hard or soft. Hard binding areas define constraints
that must always be satisfied in the scene. For
example, in figure 1, the bottoms of both the table
and chair have a hard binding area on their base,
which forces them to always lie on the floor. These
constraints can never be broken. Alternately, a soft
constraint can be defined for an object that is
allowed to remain unsatisfied by an offer area.
Such an area exists on the front of the chair in
figure 1.

We call these two constraint types (offer and
binding) Virtual Constraints because the areas are
not limited by the geometry of the object. We can,
for example, place an offer area that floats
underneath a table, which can be used for
constraining the front of a chair. Figure 1 illustrates
a simple scene containing a table and chair. The
virtual constraints under each side of the table have
been highlighted. The front of the chair can be
constrained to either of these areas.

Figure 1: Virtual Constraint under a table

2.2 Constraint Semantics

2.2.1 Design Decisions
In practice, human placement of objects displays
natural characteristics. For example, when placing a
chair in a room, a person will never try to place it
so that the base of the chair is on the wall. Most
real objects are not placed arbitrarily in space,
human conventions are usually followed. This leads
us to believe that restricting object placement
makes interactions more intuitive.
So, in addition to using constraints, we introduce
semantics to the constraint process to further
restrict object placement/movement.

2.2.2 Implementation
The current constraint relationships between
objects are stored in a directed a-cyclic graph called
the scene graph. Figure 2 depicts a simple scene,
and it’s associated scene graph. When an object is
moved in the scene, all of its descendants in the
scene graph move with it.



VRIC, Virtual Reality International Conference, Lava Virtual 2001, May 16-18

 

Figure 2: A Scene and its associated Scene Graph.
Links describe constraint relations

Notice that edges in the scene graph of Figure 2
correspond directly to satisfied constraints in the
scene. The user can modify the scene graph
structure by interacting with objects in the scene.
Constraints can be broken and re-constrained in
with ease by simply clicking on the desired object,
and pulling away from the existing constraint to
break it. This allows us to dynamically change the
structure of the scene graph. Figure 3 shows the
same scene as Figure 2 after the chair has been
pulled away from the large table, and dragged
under the smaller table.

 

Figure 3: Scene from Fig.2 after moving chair

A labeled constraint hierarchy is used to add
semantics to the constraint process. The hierarchy
is a tree structure, and defines the behavior of the
constraint and offer areas. Every constraint area is
associated with a label from the hierarchy. The
label of a binding area defines what offer areas this
binding area is allowed to attach to. A binding area
constrains only to offer areas whose label is equal
to or is an ancestor in the constraint hierarchy tree.
This method is used to make object manipulations
more intuitive.

Figure 4: Semantic Constraint tree

A simplified version of the semantic constraint tree
used in MIVE is shown in Figure 4. This tree is
used to restrict object placements. For example, the
phone in fig 2 has a binding area on it base, which
has the OnWorkspace label associated with it,
hence it can be constrained to any offer area with
an OnWorkspace label, OnHorizontal label, or
OnPlane label. The top of the table has an
OnWorkspace label associated with its offer area,
so the phone can constrain there. The phone cannot
be placed on the floor, which has an OnFloor label
associated with its offer area, because the label of
the floor’s offer area is not an ancestor of
OnWorkspace in the tree. Semantics are added in a
similar manner to every binding and offer area.

2.3 Negative Constraints

2.3.1 Design Decisions
In 3D modeling and scene construction, it is
possible to imagine volumes of space where we
may wish to prevent certain objects from residing.
For example, in practice when designing a room, a
person would not place “large” objects directly in
front of a doorway. To deal with such volumes in
space, MIVE introduces a new constraint type,
which we call negative constraints.

2.3.2 Implementation
Negative constraints are defined on a per object
basis. The constraint volume itself is defined as the
sweep of a convex polygon. A desk, for example,
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could have negative constraint volumes defined for
each of its drawers by using the front of the drawer
as the convex polygon, the direction the drawer
opens as the sweep direction, and the depth of the
drawer as the sweep length.
Every object has a flag that is set to be “movable”
or “unmovable”. Movable objects are generally
small objects, and are allowed to move through
negative constraint volumes unhindered.
Unmovable objects are not allowed into any
negative constraint volumes. Intuitively, we can
think of an easily movable chair blocking a filing
cabinet being less of a problem than if a desk was
blocking the same cabinet from opening.
Also, in many situations negative constraint
volumes may intersect in the scene. For example, in
a kitchen, the cabinets on the wall that meet at a
corner will have doors that may collide if opened
simultaneously. To deal with such cases, negative
constraint volumes are allowed to intersect in
MIVE.
Initial experience with negative constraints proved
confusing. It was difficult to tell the exact
dimensions of the constraint volumes, and
interacting with them was difficult. So, to provide
cognitive visual feedback to the user, negative
constraint volumes light up red when violated. This
turns out to be very helpful when performing
interactions, and makes placing objects around
negative constraint areas very intuitive.

Figure 5: Scenes with and without negative
constraints enabled

3. Constraint Satisfaction

3.1.1 Design Decisions
When interacting with objects in the scene, we need
to decide how and when they should become
constrained to each other. One possibility is to
provide a full constraint solver to attempt to find
constraints between objects. This solution is
computationally expensive when there are a large
number of objects. Also, this method has the
undesirable effect of causing objects to move by
themselves, which, we believe, makes interaction
with the environment non-intuitive.
Another possibility, as done in [8], is to perform a
global search for objects to constrain to when an
object is being moved. However, this has the
undesirable effect of causing objects to jump large
distances across a scene to satisfy a constraint.
We chose instead to perform a local search for
constraints only for an object that is being moved
by the user in the scene.
Collision detection is used in our system to prevent
interpenetration of objects in a scene. When objects
become constrained to each other, due to
mathematical inaccuracies and imprecise polygonal
objects collisions may occur. For example, when a
lamp is constrained to a desk, the base of the lamp
sits against the top of the desk. If the lamp is
translated along the surface of the desk, collisions
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may occur between the base of the lamp, and the
top of the desk.
Simply disabling collision detection between
objects that are constrained to each other may not
be enough, because we may want certain parts of
the objects to continue to collide. Figure 6 shows a
lamp that has been constrained to a desk with the
constraints disabled.

Figure 6: Collision of constrained objects

One solution is to only disable collisions between
polygons that fall completely within a bounding
box of the constraint areas of the two objects. This
allows us to disregard collisions along the
constraint surfaces, while still checking collisions
between other parts of the objects. This solution
works well in practice.

3.1.2 Implementation
For our constraint system, binding and offer areas
both have a polygon and vector, which represent
their effective areas and orientation. A binding area
is satisfied by an offer area by aligning their
orientation vectors and by translating the binding
polygon so that it lies within the offer polygon
(excluding the offer polygon edges). If after
rotation and translation the binding polygon is not
completely enclosed by the offer polygon, then the
binding area is not constrained to the offer area.
If the binding polygon does lie completely within
the offer polygon, then the objects are checked for
any geometric collisions. Since only one object is
moving in the scene, collisions need only be
checked between that moving object, and the rest of
the objects in the scene. If no collisions are found,
then the constraint was successful.
In addition, a binding area cannot be bound to an
offer area of the same object: an object cannot be
constrained to itself. In Borning’s [4] terms, our

system implements locally-predicate-better
constraints.
To constrain an object, we attempt to satisfy all of
its binding areas. For each binding area of an
object, we search through the scene to find
potential satisfying offer areas. Semantics restrict
the offer areas that a binding area is allowed to
constrain to. To prevent objects from jumping large
distances to satisfy constraints, we only consider
constraining an object to offer areas that are close
to the object being constrained. Closeness is
relative to object size, therefore we consider only
objects that are within a sphere with a radius that is
twice the radius of the sphere bound of the object.
Using this heuristic, constraints remain unsatisfied
until an object is moved close to a valid offer area.
It also ensures that objects are always locally
constrained. For each binding area, if there are
multiple satisfying offer areas, the closest satisfying
offer area found is chosen. The object is moved to
connect the binding and offer areas. The bound
object then becomes a child of the offering object
in the scene graph, and the search is repeated for
the next binding area.
Once an object is constrained, its motion is
restricted such that the binding areas of the object
always remain in contact with the associated offer
areas. This essentially removes degrees of freedom
from object manipulations.
When one object becomes constrained to another, it
is placed as a child of the other object in the scene
graph. When an object is moved, all descendants of
that object in the scene graph move with it. So,
constraining objects has the effect of uni-directional
grouping.
Constraints can be broken with ease by simply
pulling an object away from its associated offer
area. A constraint can only be broken if it is a soft
constraint, and it has at least one other constraint
that will remain satisfied. Objects are not allowed
to have no satisfied constraints.

4. Constraint Generation
We wished to be able to easily import a large
number of objects into our system while avoiding
the tedious task of defining constraints for these
objects manually. Observations of object libraries
showed that the orientation and size of objects are
usually consistent across a library.
Object constraints are stored in a text file that
resides next to the file specifying the object
geometry. This allows us to support multiple
geometry file formats easily.
In many cases, the offer and binding areas of an
object fall precisely on faces of the bounding box
of the object. For example, the tables in figure 2
have a binding area underneath (bottom of the
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bounding box) that constrains to the floor, and an
offer area on the workspace (top of the bounding
box) so that objects may be placed on their
surfaces.
In fact, many other cases arise where the
constraints of an object are just faces of the
bounding box, which makes automatic generation
of constraints possible for some objects.
In other objects, we can exploit object geometry to
further define constraints automatically. For
example, in a bookcase, we can look for any
polygons that have a normal pointing upward (i.e.
the shelves), and place an offer area so that books
may be constrained there.
Automatic generation may not be possible in some
cases, so a program was developed which allows a
user to open a file specifying an objects geometry,
and visually click points to make up an offer or
binding polygon. This visual method of defining
constraints is very simple and intuitive in practice,
but may be tedious if many objects must have their
constraints defined manually.
Finally, since the constraints for an object are
stored in a text file, we can manually open this file
and specify any constraints we like. This method of
defining constraints is rarely needed.

5. The MIVE Interface

Figure 7: The MIVE interface

The MIVE interface consists of three windows: the
scene window, the object selection window, and the
button window. The scene window sits on the right
hand side of the screen. The participant directly
interacts with objects in the scene window by
clicking and dragging them.
The lower left-hand corner shows the object
selection window. Objects are positioned on an
invisible cylinder, which is rotated by clicking any
mouse button within the window and dragging left
and right. Objects are added to the scene window
by simply clicking on the desired object in the

object selection window, and clicking on the
desired location to add it in the scene window. Drag
& Drop is supported as well. To facilitate selection
of small objects all objects are scaled
logarithmically.
The upper left-hand corner of the window contains
buttons for performing tasks such as loading or
saving the scene, deleting an object, undoing the
previous operation, or quitting the program. There
is also a radio button, which can be used to switch
between interaction and navigation mode. This
functionality was disabled for the tests in this
publication.
The MIVE system is implemented in C++ and runs
on an SGI Onyx2 running IRIX 6.5. It is based on
the Cosmo3D [10] scene graph API.

5.1 Interaction
The interface for MIVE was designed to be as
simple and uncluttered as possible. All interactions
between the participant and the program are done
using a 3-button mouse.
When constraints are enabled in MIVE, only two of
the three buttons are needed. The left mouse button
is used to translate objects by clicking and dragging
them to the desired new location. The middle
mouse button is used to rotate the objects. The third
mouse button is currently unused.

6. Conclusion
In this publication we presented a system that
allows users to easily manipulate a 3D scene with
traditional 2D devices. The MIVE system is based
on semantic constraints, which enable an intuitive
mapping from 2D interactions to 3D manipulations.
Phrased differently, the semantic constraints and
associated manipulation techniques encapsulate the
user’s expectations of how objects move in an
environment. These techniques are very general,
and could be easily incorporated into existing
interactive VR systems.
The benefits of our interaction techniques become
very apparent when one compares the simple
MIVE user interface with the complex 3D user
interface in commercial packages such as
AutoCAD, Maya or 3DStudio Max that are also
based on 2D input devices. We can only
hypothesize at the outcome of a test comparing our
system with e.g. Maya, but are confident that it is
clearly easier to learn our user interface due to the
reduced complexity. In fairness, we need to point
out that these packages are also capable of object
creation and the specification of animations, which
our system does not currently address.
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