
Accepted at the Hawaii International Conference on System Sciences (HICSS-49).

Mixed-Initiative for Big Data: The Intersection of
Human + Visual Analytics + Prediction

Stephen Makonin∗, Daniel McVeigh†, Wolfgang Stuerzlinger‡∗, Khoa Tran∗, Fred Popowich∗†
∗Computing Science, †Cognitive Science, ‡School of Interactive Arts + Technology – Simon Fraser University

Email: {smakonin, dmcveigh, w.s, khoa tran, popowich}@sfu.ca

Abstract—Existing surveys in visual analytics focus on the
importance of the topic. However, many do not discuss the
increasingly critical area of mixed-initiative systems. In this
survey we discuss the importance of research in mixed-initiative
systems and how it is different from visual analytics and other
research fields. We present the conceptual architecture of a
mixed-initiative visual analytics system (MIVAS) and the five key
components that make up MIVASs (data wrangling, alternative
discovery and comparison, parametric interaction, history track-
ing and exploration, and system agency and adaptation), which
forms our main contribution. We compare and contrast different
research that claims to be mixed-initiative against MIVASs and
show how there is still a considerable amount of work that
needs to be accomplished before any system can truly be mixed-
initiative.

Index Terms—mixed-initiative, visual analytics, big data, pre-
diction, human computer interaction

I. INTRODUCTION

Overall, people who are trained and tasked to reason ana-
lytically about data (experts) are good at it. However, when
these analytical experts are faced with overwhelmingly large
amounts of (big) data their capacity for cognitive processing
all of the presented data in its raw form proves quite limited.
As humans rely largely on vision for most interaction, it is
often beneficial for their of analytical reasoning if this data
is summarized and visualized in various different ways, such
as charts, networks, glyphs, and icons. However, static (or
closed) visualizations do not enable further exploration for
possible insights and to generate new hypotheses in a way
that is intuitive and matches the human analytic reasoning
process well. Adding interactive elements, where a human can
readily perform queries through a visual interface, or fine-tune
the visualization in real-time, e.g., zoom, scroll, add/remove
details/filters, and add/remove data, we enter the field of visual
analytics (see Figure 1(a)).

Yet, visual analytics (VA) has generally not used machine
learning techniques within visual interaction to assist and
enhance human analytical reasoning [2]–[4]. Examples for
potential assistance include having the system prompt the
human when it detects potential issues, identifies uncertainties
within datasets, or filters unwanted results. This kind of system
is often referred to as mixed-initiative (MI) [5]–[9], where a
human user and a predictive system, or machine-agent, work
in tandem to initiate actions towards accomplishing a common
goal (see Figure 1(b) for a visual definition). In VA, this may
include setting output filters, modifying parameters for mining
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(b) Mixed-Initiative (MI)

Fig. 1. In (a), VA is the science of analytical reasoning facilitated by
interactive visual interfaces [1]. In (b), mixed initiative approaches either
the computer or the human can take initiative and decide what to do next
[wiktionary.org].

algorithms and mapping models, exploring alternative mining
algorithms, identifying patterns for large classifications, and
setting visualization parameters based on the agents under-
standing of the task at hand. The predictive agent can then
communicate results to the user through a visualization or
more explicitly via dialogue; reflexively, the agent may learn
and adapt based on input from direct dialogue with the user
and from an awareness and memory of the user interacting
with the VA system (see Figure 1(b)).

In this survey we look in more detail at past research in
the various areas that comprise MI (Section II). We then
define the necessary functionality that a complete mixed-
initiative VA system (MIVAS) must include (Section III) and
critically compare and contrast existing MI systems to these
criteria: data wrangling (Section IV), alternative discovery and
comparison (Section V), parametric interaction (Section VI),
history tracking and exploration (Section VII), and system
agency and adaptation (Section VIII). We identified these
five components through our in depth analysis of existing
literature. With the exception of data wrangling, most of these
concepts already exist but are not well identified or defined.
This is an attempt to do so while encapsulating them in a
framework that shows how each component is a feedback loop
that reuses many existing systems (Figure 2) – but in different
combinations/ways. Table I summarizes our critical review
of the current state-of-the-art research by comparing each
research project or commercial package with the necessary
functionality of MI systems. We then discuss the broader
implications of MI systems and their critical part in VA and
big data research (Section IX). Lastly, conclusions (Section X).
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II. OTHER RELEVANT SURVEYS

A. Visual Analytics Surveys

As the amount of data increases, the task to analyze and
make sense of data and to pull insight from such larger
and larger datasets become increasingly difficult [10]. VA
takes advantage of two powerful human capacities to assist
in the analytics process; the human eye, supporting the largest
sensory bandwidth into the brain, and rapid reasoning skills,
specifically rapid object recognition and classification [1].
Effectively representing datasets using highly salient visual
features can enable an analyst to quickly review and explore
large quantities of data, facilitating the discovery of relevant
insight and hypotheses [11] – even measuring the confidence
of these discoveries [12].

Many visualization techniques have been created to help
the human analytical process [13]. Such techniques include:
visualizing time-varying volumetric data [14], [15]; comparing
one time series to another [16]; grouping data [17]; or ranking
data variables over time or different attributes [18], [19].
Interestingly, much of this work does not focus on intelligent
and adaptive interactions with the VA system.

Some surveys focus on a range of differentiable features
in VA software [20], [21]. Although some mention the need
for MI systems [3], [4], none actually survey the MI field.
Other work has surveyed the core concepts of VA and human
collaboration [22]. Further surveys within VA have focused
on visualization and analytical functionalities of available
software [20], [21], [23], [24]. A survey on intelligent agents
in data analytics focuses primarily on hard-coded intelligence,
and includes only a single example of a MI system [25].
A recent survey on tools and resources in modern analytics
encourages the integration of original data and metadata to
create software which can adapt to particular intentions or
insights derived from the user interaction with the analytics
system [26].

B. Predictive Analytics Surveys

Predictive analytics attempts to identify future events based
on previous observations using different machine learning
algorithms [27]. For the purposes of MI, predictive analytics
can be used to predict future human intentions (i.e. the
intended use of the system) as well as to predict which
modelling parameters or attributes need to be filtered, set, or
adjusted. Additionally, predictive analytics can learn from the
task output of a human and propose an optimized version (e.g.
the same 3D model but with a much lower polygonal count),
or provide alternative analysis (e.g. try different learning algo-
rithms to find one that yields better prediction). Recently [28]–
[30] there is a focus on the algorithms used, where the
algorithms performance is evaluated based on accuracy of
prediction. Neither the visualization of the prediction nor the
interaction techniques with said prediction are discussed.

Similar to VA where interaction is the bond between the vi-
sualization and the human, in MI two other forms of interactive
(or communicative) bonding are required: interaction between

data visualization and the prediction system, and interactive
negotiation between the human and the prediction system.

C. Contribution

Our survey does draw on many concepts discussed in
previous studies, such as [3], which discusses the possible
benefits of MI software. Yet, there are currently very few
examples within the field of VA.

Our focus is in surveying examples of MI research within
the field of VA, identifying various means of implementing
a MIVAS, and identifying under-utilized elements of adaptive
MI agents for future research. The definition of MIVASs and
the identification of its five key components forms our main
contribution.

III. DEFINING MIXED-INITIATIVE

A MI framework is defined as an efficient and natural
collaboration between multiple agents directed towards com-
pleting a goal or negotiating a solution to a problem [31]. In
software design, this interactive work effort may comprise the
collaboration between a human and any number of machine-
agents, or, in the case of complex-situation planning software,
a collaboration between multiple machine-agents [32]. The
advantage in splitting a workload is not merely to reduce
the individual efforts involved in accomplishing a task, but to
make the best use of individual strengths within a joint activity.
For example, MI planning software can include collaboration
between two machine-agents, each responsible for a specific
component of the planning process [33].

Generally, MI collaborations occur between a human and a
machine-agent, which plays to a more well defined division
of strengths, namely the division between human and ma-
chine intelligence. Human intelligence provides expert domain
knowledge and observational reasoning to a task, and also
ultimately generates context-specific meaning to the results
derived by computation, a concept referred to as sense-making.
Machine intelligence is the product of two major factors, rapid
access to large volumes of memory and bias-free information
processing [34]. Bias-free reasoning can be powerful in data
analysis. However, it would be a mistake to regards the
bias-laden reasoning of a human, who (possibly) has a rich
socio-cultural understanding of a given domain, merely as
a human fault. Rather, both forms of reasoning should be
applied in their appropriate problem solving contexts. Further,
there is natural flexibility to human cognition, allowing us to
quickly incorporate new information and adapt our reasoning
accordingly. This capacity may be more effectively utilized in
conjunction with a machine agent who can identify, possibly
through pattern recognition, when a user has become stuck
in a redundant or fruitless exploration, and suggest new
alternatives [35].

In the next five sections we will discuss each part of
functionality necessary for a complete mixed-initiative visual
analytics system (MIVAS): data wrangling (Section IV), al-
ternative discovery and comparison (Section V), parametric



User 
(Human)

Model

Agent
(System)

Dataset
(Database)

Interaction

Feedback
(Input)

Visualization
(Output)

Solicitation
(Prompt)

Metadata

A. see

B. focus

C. gives

D. translate

E. initiate

F. filter/set

G. analyze

H. track

I. update

K. mapping

Data Wrangling

Alternative Discovery & Comparison

Parametric Interaction

History Tracking & Exploration

System Agency & Adaptation

J. wrangle

Fig. 2. The different feedback loops for each functional piece of a fully integrated MIVAS. One key aspect is that within each feedback look the agent may
or may not be intelligent. For example, agent can represent a script or an algorithm that is run after the system receives input from the user. However, in
MIVASs the agent must be intelligent enough to adapt and respond appropriately to the user’s actions and intentions. Within interaction, we see solicitation
as the intersection between visualization and feedback. Solicitation uses visualization techniques to obtain required feedback from the user.

interaction (Section VI), history tracking and exploration (Sec-
tion VII), and system agency and adaptation (Section VIII).
Figure 2 depicts the components of a complete MIVAS. Within
this diagram, we highlight the feedback loops of each of these
five functional components. As noted in Figure 2, the agent
can represent a system or function using a fixed algorithm,
a predetermined script, a semi-intelligent agent that responds
differently based on statistical results, such as outlier detection,
or a fully intelligent agents that can adapt and respond to the
way the user interacts with the system. Fully intelligent agents
are a critical part of a MIVAS. MI agents can proactively use
other, potentially simpler, agents, such as algorithms or scripts,
to discover potential problems or identify discoveries that the
user may have overlooked and then prompt that user at the
appropriate time.

A. Differentiation from Other Fields

1) Human-Computer Interaction: Human-Computer Inter-
action (HCI) is the study of the interface between the computer
(or system) and a human. One major component of this field
studies the effectiveness of said interaction. For example,
the effectiveness of a particular visualization based on the
lifestyle factors of different people [36]. In Figure 2, HCI
focuses on the left to middle of the diagram; i.e., the user and
interaction. In contrast, MI systems subsume HCI research and
also encompass the system side. Building on this, MIVASs ask
how the system can behave in a more dynamic and intelligent
way to enhance the interaction between the user and the
system.

2) Semi-Autonomous Systems: Semi-autonomous systems
can only operate fully autonomously under certain conditions,
but cannot complete a task without outside assistance in
all circumstances [37]. Most of these systems are generally
perceived as autonomous agents that require minimal human
intervention only in certain situations. A simple example is
a Roomba vacuum, which becomes trapped and must be
realigned, or must be carried upstairs to complete its objective.

This form of automation would not qualify as being MI, as
the collaboration between agent and human is ultimately a
shortcoming of the agent. Incorporating a semi-autonomous
agent into a MI framework should improve and encourage
collaboration, as the human can then contribute to the agent
completing a task, or vice versa.

B. Issues in MIVAS Implementation

There are a range of concerns in properly implementing
a successful MI architecture, particularly software designs
intended to bring human interaction into the process [38].
In order to effectively benefit from interaction, the software
must not only provide better output than fully automated or
manual counterparts, but must also provide a flexible and
productive work environment for the human that enhances the
work performed by the user, as opposed to unintentionally
slowing or impeding natural human work flow.

Issues to be addressed include identifying how and under
which circumstances initiative is to be passed between the
human and machine agent, how to maintain awareness within
the machine agent as the exploratory task evolves over time,
and what degree and means of communication exists between
the human and machine agent. These concerns need to be
addressed while respecting the attention, patience, and existing
workload of the user. Otherwise the predictive agent becomes
no more useful to the collaboration than an uninformed and/or
controlling work partner. Also, greater degrees of agent-
based automation must take into account the possibility of
the automation failing, which might drastically reduce the
human’s work performance and overall confidence in the
machine agent [39]. Ultimately, the machine-agent does not
exist merely to assist a user’s task, but also to help develop
confidence in the data analytic process itself. Incorporating
meaningful human interaction into the knowledge discovery
process, and also the machine-agent as a more transparent and
accessible collaborator, enables the user to better understand
visual outputs and insights derived by the analytic software.



IV. DATA WRANGLING

While an effective visualization may significantly enhance
the speed and certainty with which an analyst performs their
work, the issue of data wrangling, i.e., cleaning and transform-
ing data into a form that is suitable for analysis, is still the most
tedious and labour-intensive aspect of data analytics [40]. Data
wrangling is separate from data mining, which involves some
method for extracting models, patterns, and general insights
from data. For an analyst, any effective insight resulting from
data mining must be preceded by some measure of data
quality and confidence resulting from a wrangling phase. To
perform large-scale data transformations, analysts often write
custom scripts to clean and standardize raw data. These scripts
greatly reduce the time required for data wrangling when
compared to manually editing datasets. However, they require
some level of programming proficiency and ultimately are only
as intelligent as the analyst writing them. Here we list data
wrangling software that builds on collaboration between users
and machine agents.

Figure 2 shows feedback loop K-D-A-C-G-J. A dataset is
loaded then mapped to a model. The model is translated to
a visualization that the user sees. As the user gives feedback
about the data, the agent analyses and then wrangles the data.

A. Research Examples

Here we describe two existing examples of approaches to
data wrangling. However, we do not include a summary of
this in Table I because data wrangling is generally available
and works reasonably well.

1) TimeCleanser: TimeCleanser [41] is a data wrangling
package specifically designed for cleaning time-series, a form
of data which is sensitive to ill-formatting and unit invariance.
Because TimeCleanser is specialized for time-series, collabo-
ration between the user and the system agent is predominantly
a fixed-initiative or semi-automatic process. The dataset is
checked against a list of syntax-related quality measures with
more complex checks for plausibility of the input. Addi-
tionally, user-definable checks can be performed once the
user becomes more familiar with the dataset. Anomalies and
plausibility issues are visually represented side-by-side with
data tables allowing the user to quickly identify erroneous
inputs and resolve them.

2) Trifacta: Extending previous research in MI data wran-
gling, Trifacta [42] is a commercially available system that
assists analysts in cleaning and preparing data prior to the
core analysis. The system intelligently assesses datasets and
visually reports outliers, distributions, missing, or inconsistent
values to the user. The software permits the user to quickly
generate additional data fields, create annotations for entities of
a dataset, and combine different datasets into one. The system
infers new recommendations from the contents of a dataset
towards shaping and preparing data to maximize the effective-
ness of future analytic exploration. In this sense, Trifacta goes
beyond standard spreadsheet manipulations, in that it employs
an assertive agent that can adapt to the particular context of a
dataset, intelligently guiding the user to create datasets that are

Fig. 3. An example of exploring alternatives in GEM-NI [43].

optimized for potential visual exploration. Trifacta observes
the users’ involvement, automatically recording interactions
and generating transformational scripts, which can be saved
and exported for use on other datasets. This not only creates a
reference of data provenance, but also the time saving benefit
of using scripts without having to write them.

V. ALTERNATIVE DISCOVERY & COMPARISON

VA aims to use the faculties of human visual processing
to richly derive clear and salient meaning from a visual
representation of data. To achieve this, analyst often must
repeatedly fine-tune both modelling choices and visual aes-
thetics, and compare alternative visualizations in search of
both insight and the appropriate means of communicating that
insight. This often involves an analyst jumping back and forth
between alternatives, either using basic measures to manually
capture possible outputs to contrast, or making adjustments to
a visualization and comparing it against the memory of past
alternatives. Having software that assist the user in navigating,
displaying, and even creating alternatives can greatly decrease
the cognitive workload placed upon the analyst and ultimately
increase the quality of the output.

Figure 2 shows feedback loop E-B-C-G. The agent initiates
solicitation requiring feedback on generated alternatives. The
user’s focuses on the prompt and gives feedback by selecting
one or more of the alternatives. The agent then analyses the
feedback and acts accordingly.

Recent research in generative graphic designs presents new
methods for navigating and creating alternatives for generative
networks; i.e., data-flow programs [43]. GEM-NI includes
functionality for branching off new alternatives, side-by-side
comparisons between them, parallel editing, resurrecting pre-
vious states from a visualized history, and the capability to
merge progress from one branch of exploration into another
(Figure 3). Further, GEM-NI introduces a structural design
gallery, which generates a set of parametrically and compu-
tationally different alternatives for further exploration. A MI
approach to game-level design has shown the effectiveness of
managing possible alternatives to foster co-creativity between
human and machine agents [44]. Such software attempts to
bolster diagrammatical lateral thinking by rapidly generating
possibilities for the user to evaluate, judge, and thus guide the



user through the space of possible creative alternatives in an
iterative manner.

A. Software Examples

Here we describe examples of existing research that imple-
ments alternative discovery and comparison (see Table I for
a summary of the discussion below).

1) ViA: ViA [9] is an assistive AI-agent that produces
visualizations based on hard-coded guidelines that reflect the
nature of human perception/cognition, search heuristics meant
to maximize visual salience, and information pulled from user
interactions. To find a meaningful and visually salient visual
mapping of a dataset, the user first answers a series of ques-
tions to help constrain the search, and is then presented with
a gallery of possible visualization alternatives for the user to
select from. The mapping search is run alongside an evaluation
engine, which rates the search results against a hard-coded
set of criteria informed by human visual perception. With this
evaluation, the machine-agent indicates a notion of uncertainty
and confidence regarding the effectiveness of visualization
alternatives, and thus further assist the users’ decision making.

2) LineUp: LineUp [19] is an interactive attribute
ranking software, part of the Caleydo Project (see
http://caleydo.github.io), a larger open-source suite of
VA solutions. Users can perform transformational operations
on attributes of entries, which immediately update the
visualized list of entries. Snapshots of visual lists can be
created and displayed side-by-side to help the user view how
filtering on different attributes changes the rankings.

3) ExPlates: ExPlates [45] is an approach to Exploratory
Data Analysis (EDA) that uses connected nodes, or Plates, to
represent steps and iterations of computational functions and
interactive visualizations. EDA lets the user think diagram-
matically as it encourages multiple data-driven hypotheses to
be investigated. However it places a high cognitive load on
memory, perception, and cross hypothesis reasoning. ExPlates
provides a workspace to offload part of this cognitive load
by spatially representing the exploratory history through a
branching trail of visualizations and their interconnected func-
tions. While this visual branching is effective at navigating and
comparing multiple alternatives, ExPlates does not offer any
agent initiated assistance in discovering alternatives.

4) TimeFork: TimeFork [8] is a MI platform for analyzing
predictions based on time series data, focused primarily on
stock market trading. The software provides both an overview
and isolated view of past stock market data. By interacting
with the visual representations of stock data, the user can
balance between various predictive algorithms and user gen-
erated predictions, viewing the immediate and interdependent
effects of buying and selling stocks in a side-by-side display.
This approach enables the analyst to leverage their domain
knowledge and expertise against the results of predictive
analytic algorithms to determine the best coarse of action.

5) READ: READ [7] is an EDA software, which breaks
the overall process of data exploration into segments that can

be defined and reused. READ aims to reduce EDA’s time-
intensive component of iteratively producing and evaluating
visual models, as well as to reduce the likelihood of the
user-driven exploration missing a viable modelling alternative.
Following a data preparation phase, READ enumerates a pool
of possible models for the user to search through, offering
validation metrics that help to identify the more interesting
models. The pool of alternatives can further be sorted via clus-
tering algorithms, allowing the user to interact with parametric
control panels to fine-tune clusters in search of interesting
models. Clusters can be annotated for later analysis.

VI. PARAMETRIC INTERACTION

There are many ways a user may visually interact with
data representations [46]. Some interactions focus on querying
or highlighting visualizations, while others are intended for
manipulating data mappings and aesthetic views. These latter
forms of interaction involve the user manipulating prede-
fined parameters within models, which map data to a visual
representation, and often require expert domain knowledge,
particularly a knowledge of how a visualization is being
produced by a given mapping algorithm [47]. Such parametric
interaction is typically supported by representing the set of
parameters within a control panel, either as a button, an
adjustable numerical value, or a slider. While this degree
of representation absolves the user of directly manipulating
modelling algorithms, it often results in a repetitive trial and
error workflow.

Figure 2 shows feedback loop D-A-C-G-F. A model is
translated into graphical form as a visualization. The user
sees it and gives feedback in response. The agent analyses
the feedback and sets new model parameters and may filter
out data to create a new model.

A MIVAS should provide some means of assisting the
user in these interactions, by creating an interface that is
understandable and intuitive for human workflow, and passing
off the computational and mathematical elements of data
analysis to the machine agent. In this sense, the visualization
becomes a common workspace between the user and the
predictive agent, whereby interactions are a means of bi-
directional communication between the human and agent, a
feature that is fundamental to implementing an effective MI
system [48]. Rather than using a natural language dialogue,
which currently limits the range of understanding for the
machine-agent, the use of visual metaphors can play an im-
portant role as a basis of communication through workspaces.
Primary visual metaphors [49], such as quantity or importance
is size, similarity is proximity, intensity is heat, or movement
is time, are easily understood by human reasoning and can be
artificially interpreted and generated through calculation.

While not all interactive workspaces provide a mixed col-
laboration between a human and an adaptive and autonomous
machine agent, it is still possible to discuss a form of in-
telligent interaction that maximally interweaves the capacities
of humans reason and judgment with the computational and
storage capacities of a reactive agent. Such an agent may not



develop and adapt to the evolving goals over the course of
the analyst work, and as such may not initiate any unsolicited
assistance. Yet, we a reactive agent can shadow the analytic
initiatives of a human user, automatically assisting with a
predefined set of computational and record keeping strengths.

A. Research Examples

Here we describe examples of existing research that imple-
ments parametric interaction (see Table I for a summary of
the discussion below).

1) ForceSpire: ForceSpire [50] is a text analysis software
designed as an open and interactive spatialized workspace that
incorporates force-attracted graph visualizations and adaptive
clustering algorithms. It permits users to layout, highlight, and
annotate text documents, through a visualized representation of
document relatedness through proximity and links. The Force-
Spire software offers an approach for adjusting parameters
by having the machine-agent interpret the user’s interactions
according to a spatialization metaphor of visual proximity to
express semantic similarity. As a user drags, pins, annotates,
and highlights text entities within the workspace, metadata is
created and used to update parameters within the clustering
algorithm, which in turn update the visualization. This creates
an active loop between the user and the predictive system,
which occurs at a semantic/visual level.

2) ScatterGather: Scatter-Gather [51] is a visual analytic
platform for clustering algorithms that uses a MI approach
to incorporate iterative user feedback in order to fine tune
the clustering output. Users are presented with a visualization
of an initial clustering, and can interactively and iteratively
update constraints through simple interaction in a control
panel. However, the user interacts with the model through
making decisions on splitting or combining visually repre-
sented clusters, not with clustering k-values, which allows the
workflow to be more centred on the analysis of the visual
output than on the clustering algorithms parameters.

3) LineUp: LineUp [19] incorporates visualized parametric
interaction by permitting users to witness real-time visual
updates through interacting with object-level representations of
parameters. While the visualized parameter control panel is not
an interpreted parametric interaction, the visual representations
provide a more intuitive workflow for parametric manipulation
than merely adjusting numerical values.

4) BixPlorer: BixPlorer [52] is an interactive analytic
workspace that uses bi-clusters as its main object for analyzing
relations within text documents and between entities. A bi-
cluster is two overlapping clusters or sets, where every entity
within one set is related to every entity from the other
set. By using bi-clusters as the primary interactive tool for
exploration, analysts can chain different bi-clusters together
to rapidly focus the scope to reveal interesting relations and
connect these relations to associated text documents. The
interactive workspace permits the user to spatially arrange
bi-cluster and related text elements, as well as highlight and
annotate important findings, to reduce the typical cognitive
load of exploratory data analysis. Bi-clusters elements are also

visually represented and the software can help draw attention
to important entities within a bi-cluster through a gradient
colour scheme that adapts to the ongoing connections the user
generates while exploring.

VII. HISTORY TRACKING & EXPLORATION

A critical element in data analysis environments is the
issue of data provenance. While humans are inherently well
equipped at reasoning and contextualizing, it is only with an
inherently limited scope of perceptual attention and available
working memory [53], which makes it inherently hard to keep
track of where (all) data came from. Figure 2 shows quasi
feedback loop G-H-I. Feedback is simultaneously analyzed but
the agent and tracked by recording metadata. Once the agent
finishes its analysis it updates the metadata with actions taken
in response to feedback received.

Data Provenance is used to track the movement and trans-
formation of data within and between datasets as the user pro-
gresses and develops insight into the data [54]. Software that
can assist the user with data provenance is useful or at times
necessary in systems that focus on human exploration through
manipulation of data and visualizations, as the evolutionary
process of exploration can often mask how or from where
certain insights are derived. Fully automated systems might
skip this step altogether, providing the user with an output
that must be trusted without enabling an understanding how
or under what set of presuppositions it was produced. In a MI
framework, data provenance is often assigned to the machine-
agent as a fixed initiative task whereby human work and
exploration is automatically rendered into an accessible history
of data transformations or branching avenues of exploration.

The key to effective data provenance is not merely to take
advantage of the superior memory capabilities of computers,
but to make this history accessible and useful to the exploration
process itself. This may include: allowing annotations from
the user; creating an action list based on user interactions
(e.g., to remind current and future users of what has occurred);
automatically creating exportable scripts for future data trans-
formations; and incorporating a visual history of exploration
to enable users to quickly and informatively return to prior
states of exploration without losing their progress.

A. Metadata

In addition to preserving a retractable path of exploration
and history of data transformation, a system may also store
information derived from user interactions with a particular
dataset, such as derived insights, semantic relevance, and/or
user preferences. Such secondary information, known as meta-
data, is stored separate from the original dataset, and can
be used as contextual guidance for machine-agent assistance.
While some researchers encourage the interaction between ini-
tial and secondary data to enhance visual analytic output [26],
[55], exactly how and what secondary information is to be
extracted from a user is still open to interpretation.



B. Software Example: CzSaw

CzSaw [56] is an analytic workspace for visualizing docu-
ment collections and entity relations in a graph format (sum-
mary in Table I). The software offers a user driven workflow
accompanied with automatic user interpretation, which gen-
erates an accessible, navigable, and reusable analytical work
history. As the user interacts with the visual representation,
filtering, connecting entities, and adjusting parameters within
the model, the software translates these actions to scripts and
generates dependency graphs displaying the branching history
of data transformations. These scripts are easily accessible
within the graph and can be reused to quickly duplicate
entity modifications. A visual timeline of analytic processes
enables the exploration of alternative solution paths through
split editing lineages.

VIII. SYSTEM AGENCY & ADAPTATION

Early research on MI designs categorized four stages or
levels of interaction that a machine-agent could undertake [57].
These are unsolicited reporting, sub-dialogue initiation, fixed
subtask initiative, and negotiated mixed initiative. The first two
levels involve prompting or dialoguing with the user to report
critical information or to clarify ambiguous information. A
fixed-initiative task is a predefined task that the machine-agent
attempts to solve when required, a definition, which matches
most implementations of semi-automatic interactions. Yet,
negotiated initiative is the truest form of mixed collaboration.
It involves communication and a shared awareness of both the
task at hand and the capabilities each collaborator has to offer
in finding a solution. The timing of collaborative interaction
is crucial to ensure success.

Figure 2 shows feedback loop C-H-I-E-B. The user gives
feedback, which is tracked using metadata. The agent can
receive and then update the metadata. If the agent takes
initiative and makes a substantial enough discovery it may
decide to solicit feedback from the user.

Given a specified circumstance or having met a condition
of relevancy, a machine agent may interact with or engage
the attention of the user by presenting a possible discovery or
insight within the data to the user. This may be a clustering
discovery, a particular visual mapping that highlights some
observation, an unforeseen result of different data mining
algorithms, or emphasizing certain avenues of exploration for
the user that have been neglected or might prove fruitful. A few
existing VA systems provide some of these features in a fully
automated manner. However, a MI framework considers these
features to be best utilized and most effective when human
reasoning is kept within the knowledge discovery loop.

The idea of “keeping the human in the loop” still places the
machine-agent at the center of the reasoning process, with the
human providing guidance on the overall outcome. Following
the notion that “a little domain knowledge goes a long way”,
Endert et al. [50] propose knowledge discovery loops that are
centred around the analysts work environment. This encour-
ages data exploration to be initiated primarily by human in-
terest, while the machine-agent provides guidance/insight. To

this end, the use of flexible, scalable exploratory workspaces,
interfaces which encourage spatial organization and planning
of data entities, is not only an effective means of visually
capturing and off-loading the process of exploratory reasoning,
but can become a means of situating machine-awareness to the
analysts task [53].

A. Software Examples

Here we describe examples of existing research that im-
plements system agency and adaptation (see Table I for a
summary of the discussion below).

1) RESIN: RESIN [6] is a predictive analytics system that
combines human analytic reasoning with an AI blackboard
agent, a fixed-initiative task modeller, and a visually interactive
analytics interface. The system focuses on the blackboard
component, which is used to create and monitor multiple hy-
potheses. The blackboard agent assists in determining problem
solutions, creating a hypothesis verification loop that assigns
analytical tasks to the user, who in turn returns the results to
the blackboard to update the knowledge generating loop. As
the task evolves through verification and dismissal of various
hypotheses, the system can make well-informed predictions, as
well as provide measures of confidence for various predictions
to the user. The task-structuring agent within RESIN also
adapts to shifting time-constraints as the project’s goals evolve
and new predictions are being verified.

2) PerCon: PerCon [5] is a dataset library management
tool that helps visually store and navigate large amounts of
datasets. Users can spatially arrange datasets within an analytic
workspace, generating implicit metadata regarding relations
between datasets. The system monitors and generates further
metadata derived from explicit user inputs and searches. This
additional information is used to propose relevant, yet un-
viewed datasets to the user, based on a history of recent
user interactions that reveal specific interests. The user can
also directly request recommendations that indicate explicit
interests.

3) ForceSpire: In the ForceSpire system [50], user in-
teraction with text entities (arranging semantically similar
documents closer together in the workspace) is observed and
interpreted by the predictive-agent, which may then present
hypotheses regarding the possible semantic relations between
text documents to the user. Rejecting or accepting the agent’s
hypotheses strengthens specific semantic terms in the cluster-
ing algorithm, and the visualization is updated accordingly.

4) ALIDA: ALIDA [58] is an adaptive agent designed
to determine a users interest while interacting with a VA
interface. The agent autonomously monitors users interface
behaviour and makes predictions after every minute based
on captured interactions. The agent can decide upon an area
of interest that the user is browsing, if results appear too
scattered, or that the user is inactive based on little to no recent
interactions. ALIDA records all past decisions as metadata for
multiple purposes. First, past decisions about user interests
are weighed into the decision function to increase decision
accuracy. Second, the metadata becomes an accessible history



of interest, similar to editing or interaction histories, which the
user can potentially explore through, functioning as a reminder
to momentarily forgotten areas of interest. This metadata may
also be expressed indirectly by rendering specific interests
within the interface more visibly predominant than others.

IX. DISCUSSION

MIVASs are inherently complex and we need to under-
stand the computational and implementation aspects of such
systems. MIVASs needs to be able to differentiate between
exploratory analysis and focused analysis tasks. The user’s
task type should modify the interaction style between the user
and the agent. For example, in an exploratory analysis the
agent might run a long term analysis that is not time critical
as opposed to a focused analysis task, where responsiveness
is more important and the agents need to adapt more quickly
to user goals.

There are a number of areas that can benefit from a MI
approach, from human-human collaboration to methods of
communication between users of varying technical abilities,
such as a group of non-technical people, analysts, engineers,
and programmers. Based on the type of user, the MI agent
should prompt at different levels of severity if a problem
is found. Prompts should reflect user appropriate details and
wording including appropriate responses. For example, a sim-
plistic response or prompt could frustrate an expert user, while
a complex message may overwhelm a non-technical person.

Agent assisted human-human collaboration is a topic in
which MI approaches will pay a key role [59]. This includes
multi-user user collaboration where users who are not in
the same location or cannot work at the same time, e.g.,
due to schedules or time zones, work together. For remote
collaboration, MI agents can focus attention on important
changes made by other remote collaborators. This also in-
cludes the synchronization of data to achieve the responsive-
ness of a system when coordinating distant interactions. For
collaboration based on availability, MI agents can support a
collaborator by showing what other collaborators have done
recently. The agent could recommend or notify the collaborator
about whether the changes made by others fit with the goals
and intentions of others or cause conflict.

Another approach is that the system autonomously revisits
the work of the user and checks if there is a more optimal so-
lution. For example, if the user used a data-mining algorithm,
the system could try other such algorithms in the background
and prompt the user if it finds one that yields both better
precision and recall for the current dataset. One interesting
user interface aspect of this approach is that such reports from
the system are likely best presented as alternatives to the user;
i.e., an alternative solution that does not override the users
work. This then enables the user to compare and contrast the
systems’ work with their own work and to analyze if the new
solution is truly better for the users’ goal.

Key concerns and considerations that need further inves-
tigation are how does a MI system deal with uncertainty in
the human’s decision making process and how do we insure

that the agent does not introduce more uncertainty into the
system?. If not addressed properly, these concerns can make
any system unusable. Further, when do agents take initiative?
And, how much initiative should they take? The system must
also be able to identify the degree of erratic human interaction.
Erratic human interaction can come in the form of frustration,
lack of a focused used of the systems, or just exploration
(ordered for negative to positive). When a negative interaction
is encountered the system agent should solicit and visualize
differently than with more positive interactions. At this point
we can only say that this is an issue that needs to be accounted
for in any MI system. Further, we can say that agents need
to be able to learn and anticipate human interactions (which
can be different for each user of the system) and if an agent’s
initiative is inappropriate then the agent needs to back off and
adapt, or unlearn that part of the anticipation.

X. CONCLUSIONS

In this survey we have discussed the importance of MI
research. We have shown that MI research is more then VA.
MI research expands into other key areas where the system
interacts intelligently with the user, negotiating who leads
analytical discovery – sometimes the human, sometimes the
computer. This is done through predictive machine learning
where the system learns to anticipate what the user wants and
proactively accomplishes this task for the user.

Our contribution is the description of our conceptual archi-
tecture of a mixed-initiative visual analytics system (MIVAS).
A MIVAS has five key components: data wrangling, alterna-
tive discovery and comparison, parametric interaction, history
tracking and exploration, and system agency and adaptation
(an additional contribution). As discussed, these components
appear separately in previous work, but not collectively in
a single system. For any system to be considered to be a
full MIVAS the missing components from Table I need to
be added..
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