
Multiplanes: Assisted Freehand VR Sketching
Mayra D. Barrera Machuca1, Paul Asente2, Wolfgang Stuerzlinger1, Jingwan Lu2, Byungmoon Kim2

1SIAT, Simon Fraser University, Vancouver, Canada, 2Adobe Research, San Jose, USA
1{mbarrera, w.s}@sfu.ca, 2{asente, jlu, bmkim}@adobe.com

Figure 1: Step-by-step process of drawing two adjacent faces of a cube with Multiplanes. First the user draws a square on a
plane in space (images 1-5) and then a second square (images 6-8) on an orthogonal plane that is suggested based on the
controller orientation. Beautification trigger points help the user to keep stroke length uniform. Stroke beautification

ensures straight lines.

ABSTRACT
The presence of a third dimension makes accurate drawing in
virtual reality (VR) more challenging than 2D drawing. These
challenges include higher demands on spatial cognition and motor
skills, as well as the potential for mistakes caused by depth
perception errors. We present Multiplanes, a VR drawing system
that supports both the flexibility of freehand drawing and the
ability to draw accurate shapes in 3D by affording both planar and
beautified drawing. The system was designed to address the
above-mentioned challenges. Multiplanes generates snapping
planes and beautification trigger points based on previous and
current strokes and the current controller pose. Based on
geometrical relationships to previous strokes, beautification
trigger points serve to guide the user to reach specific positions in
space. The system also beautifies user’s strokes based on the most
probable intended shape while the user is drawing them. With
Multiplanes, in contrast to other systems, users do not need to
manually activate such guides, allowing them to focus on the
creative process.

CCS CONCEPTS
• Human-centered computing: Virtual Reality, User Studies, User
Interface Design

ADDITIONAL KEYWORDS AND PHRASES
Virtual Reality Drawing; 3D User Interfaces; Depth Perception;
Spatial Cognition

1 INTRODUCTION
High quality Virtual Reality (VR) devices, such as the HTC

Vive and the Oculus Rift, are now easily available to the public.
These products have rekindled interest in using VR technologies
in the design process by letting users draw directly in a 3D virtual
environment. An example of a commercial product for 3D
drawing is Tilt Brush [12]. Most of these tools build on the
freehand drawing technique, in which the stroke follows the
controller position. Although this technique provides an intuitive
and effective method of conceptualizing new shapes, which helps
in the creative process [32], prior work shows that the resulting
drawings are less accurate than 2D sketches [2,25]. One possible
explanation is that depth perception errors prevent the user from
realizing the desired stroke, because they cannot see accurately
enough where they are drawing in space – especially in relation
to other content [2,30]. Another possible reason is the higher
difficulty of the task, as the additional third dimension could result
in higher cognitive and sensorimotor demands [33]. Finally, the
absence of a physical surface also affects drawing accuracy [2].

In this paper, we present a system called Multiplanes, which
assists freehand VR drawing a) by helping users identify the

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than ACM must be honored. Abstracting with credit is
permitted. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee. Request permissions
from Permissions@acm.org.

SUI '18, October 13–14, 2018, Berlin, Germany
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5708-1/18/10…$15.00
https://doi.org/10.1145/3267782.3267786

mailto:Permissions@acm.org
https://doi.org/10.1145/3267782.3267786

SUI’2018, Berlin, Germany M. D. Barrera Machuca et al.

2

correct visual depth for drawing their strokes and b) by helping
users draw perfect shapes (Figure 1). Our system aims to be used
in the early stages of the design process for situations where
accurate depictions of shapes and their spatial relationships
matter, for example, to show that the shape is a cube or that edges
of two shapes are aligned. Following Lim’s [19] classification of
sketches based on their visual features, such sketches are part of
the perceptual level of the design process, with the other levels
being functional and conceptual [19]. Multiplanes is positioned at
an intermediate stage between “pure” sketching and “pure”
computer-aided design. To achieve this our system automatically
identifies drawing surfaces and guides based on previous and
current strokes and the current controller pose. Our system also
automatically beautifies circles and lines while the user is drawing
them. Through the user interface of Multiplanes, designers can
focus more on the creative process and worry less – or not at all
– about finding the correct stroke position in space. Our
contributions are the following:

 Automatic snapping planes: we present a new
technique that automatically generates potential
drawing planes based on the current controller pose and
previous strokes.

 Beautification trigger points: based on the shape of
the current stroke and its geometric relationship with
the controller our system automatically creates a new
kind of visible guides, called beautification trigger
points. Moving the controller into such a trigger point
while drawing triggers potential beautification of the
current stroke.

 Real-time beautification: we introduce a new method
for automatic identification and beautification of
strokes while the user is drawing them.

 Evaluation of all the above: we evaluate the usability
of Multiplanes in a first user study and compare it with
freehand 2D and 3D drawing in a second study.

2 RELATED WORK

2.1 Challenges of 3D drawing in VR
Drawing is an important element of human expression since it

is an efficient way to convey or record information and/or to start
the design process [31]. Previous work has studied the challenges
of 3D drawing and its usability for 3D content creation in VR. One
example is Arora et al. [2], who analyzed the factors affecting the
human ability to sketch in VR environments. Their goal was to
identify the reasons behind the efficiency difference between 2D
and 3D drawing. Compared to 2D drawing, drawing accuracy in
VR decreased 148%, as measured via the mean overall deviation
from a target stroke. They also found that visual guidance, in
which users try to follow the guide with the controller; can
improve mid-air sketching accuracy, but leads to worse aesthetic
quality of strokes, as measured by curve fairness. They identify
these problems to be a consequence of the lack of a physical
surface and the depth perception issues associated with VR
devices.

Wiese, et al. [33] investigated the learnability of freehand
sketching in VR. They hypothesized that the difference between
2D and 3D drawing could correspond to higher manual effort and
error proneness or to higher cognitive and sensorimotor demands.
Yet, they were not able to identify which of the two reasons is the
specific cause. However, they found that the users’ sensorimotor
skills for 3D drawing improve rapidly over time.

Finally, Tramper and Gielen [30] investigated the differences
between eye-hand coordination in the frontal plane and in the
depth plane while doing tracking and tracing tasks. They found
differences in the coordination of gaze and finger position for both
planes. For example, for tracking, gaze leads finger position in the
frontal plane but lags behind the finger in the depth plane. Based
on these results they conclude that the different lead times reflect
differences in the dynamics of visuomotor control for coupled eye
movements in the same lateral/vertical direction, known as
version, and independent eye movements in opposite directions
for depth accommodation, known as vergence.

2.2 3D Drawing
Irrespective of the challenges for 3D drawing, there has been a

boom in VR drawing tools. Such systems rely on 3D input with
VR controllers to let users draw 3D strokes. Some earlier systems
such as 3DM [6], HoloSketch [7] or CavePainting [17], showed the
possibilities of directly drawing in 3D, without promoting 2D lines
into 3D space. Similar to them, newer commercial systems, for
example Quill [10], FreeDrawer [32], and Tilt Brush [12], directly
map the stroke position to user movement with a freehand
drawing technique. Freehand drawing is easy to learn and
everybody can operate these systems regardless of their
experience level with VR systems [26,32]. Also, such systems are
powerful enough that even an experienced user can be satisfied
with the drawn results [27]. However, one problem with freehand
drawing systems is that they are less accurate, in comparison to
2D sketches as well as 3D geometric drawings, which can affect
the final product or outcome [2].

To solve this problem, Jackson and Keefe noted, “new tools are
needed that provide functionality that goes beyond straight one-to-
one mappings of body movements to operations on digital geometry”
[15]. Examples of such systems are those that project the 3D
position to a plane to remove a DOF from the stroke creation
process. For example, Digital Tape Drawing [13] surrounds the
drawing with a cubic volume so users can select an axis-aligned
plane and position it in the desired place before drawing there.
Users can also create non-planar surfaces onto which they can
later draw. Another example is ImmersiveFiberMesh [23], which
automatically fits a plane through the stroke. Yet another example
is Kim et al. [18], where the users can create curved surfaces with
3D hand gestures. The user can then draw later onto these
surfaces with a tablet and pen. Finally, SymbiosisSketch [3]
utilizes AR to let users draw in 3D using a tablet. In this system
the user positions the tablet manually in 3D space and uses the
tablet screen as the current drawing surface. Users can create
surfaces and then draw on them. In contrast, Multiplanes uses a
mixed approach in which the user controls the general position of
the stroke, but the system automatically selects an appropriate
drawing surface based on the controller pose and the position of

Multiplanes: Assisted Freehand VR Drawing SUI’2018, Berlin, Germany

 3

previous strokes. Another difference is that Multiplanes currently
only supports drawing on planar surfaces. These surfaces can be
positioned and rotated with 6DOF to create 3D drawings from
planar strokes.

Other systems use novel metaphors to constrain user actions.
For example, Drawing on Air [16] uses the metaphor of “drawing”
by applying/rolling tape. This system also uses a force feedback
device to emulate the resistance of a physical surface while the
pen is moving through the air. Finally, Lift-Off [15] lets users
select curves from a 2D image previously positioned in space and
then rotate these curves with two hands/controllers until they are
in the desired pose. As these curves already have their final shape,
users only need to focus on positioning them. With Multiplanes
we wanted to avoid introducing novel UI metaphors to keep the
flexibility of freehand drawing for sketching [19]. Yet, for
structured drawings, novel UI metaphors can produce visually
better results than systems that support only freehand drawing.
When appropriate, Multiplanes automatically beautifies the users’
hand movement to create simple geometric shapes without
requiring additional user interactions.

2.3 3D Drawing Beautification
Another area of research relevant to 3D drawing is

beautification, which is the process of transforming informal and
ambiguous freehand input to more formal and structured
representations [21]. According to Wiese et al. beautification is
useful in 3D drawings since “creating a volumetric shape require
users to make connections between several 2D objects, which is an
error-prone action consequence of the depth perception problems that
limit the user ability to exactly locate a previously drawn object
point in space” [33]. The main challenge in this area is correctly
interpreting the users’ intentions while they are making such
freehand sketches, because, by nature, such drawings are informal
and ambiguous.

An example of a beautification algorithm for 3D drawings is
the work of Fiorentino et al. [11], which beautifies a user stroke
as the user is creating it in an immersive freehand 3D sketching
system. Their method first filters the position data to reduce noise,
and then segments the stroke into sections using position, speed
and curvature. Finally, they create spline points to create a smooth
Bézier curve from the different segments. Rausch et al. proposed
an approach [25], where they use a fuzzy logic algorithm for
primitive shape recognition and a textual description language to
define compound symbols to identify sketches done in a fully
immersive freehand 3D sketching system. The first step of their
algorithm is to separate each stroke into segments that are then
recognized as primitives. Using those primitives, they analyze the
whole sketch by matching it to previously learned symbols. This
process happens after the user finishes the current stroke, and the
system can group strokes together. In contrast to these
algorithms, which smooth a curve but do not recognize the type
of the shape [11], or recognize the shape and perform
beautification only after the stroke is complete [25], Multiplanes’
beautification algorithm automatically beautifies strokes in real-
time as the user is drawing them.

3 Design Goals
Freehand (2D) sketching has an important role in the early

phase of the design process [8,9,19]. However, such 2D design
representations can be highly ambiguous and difficult to interpret,
as they are composed of different symbols, including annotations,
and diagrams, that represent the visual features and spatial
relations between objects [19]. For example, a sketch of a room
with its furniture needs to consider the orthogonality of the walls
and the furniture, and maintain an appropriate proper size
relationship between the furniture and the room. Moreover, the
designer should be able to annotate the furniture to specify its
color and material. Another problem with 2D design sketches is
that designers need to understand the 2D representations of 3D
objects, which requires strong visual intelligence and spatial skills
[5]. Sketching in 3D can help simplify these problems since the
drawings are done directly in a 3D environment. An advantage of
sketching compared to 3D modeling is the short creation times, as
3D modeling require users to focus on the model geometry in
addition to the design process.

However, 3D sketches are often more inaccurate than their 2D
counterpart. Wiese, et al. [33] identified two possible causes for
the differences in accuracy between 2D and 3D drawing. First, 3D
drawing requires higher manual effort, making this activity more
prone to errors than 2D drawing. Second, 3D drawing demands a
higher cognitive and sensorimotor load. Tremper & Gielen [30]
attribute this to the differences between the dynamics of
visuomotor control for lateral/vertical (version) eye movements –
which roughly speaking corresponds to drawing on a plane
directly in front of a user – and vergence eye movements – which
occur with visual depth changes.

Based on this research, our main design goal is to reduce the
user effort to create accurate strokes, accurate angles, and
accurate aligned or snapped vertices while drawing in VR systems
by reducing the cognitive load and error proneness of 3D drawing.
Our system assists at the perceptual level of the design process by
helping designers draw sketches where the spatial relationship
between features is accurate. To achieve this, we build on the
guidelines proposed by Arora et al. [2] for 3D drawing and
Stuerzlinger and Wingrave [28] for 3D user interfaces, and
identify the following requirements of our system:

3.1 Show the most appropriate drawing surface: due to the
limitations of depth perception in VR, positioning objects floating
in free space accurately is hard. However, guiding the user with a
drawing surface improves accuracy. Therefore, our system always
shows the most appropriate drawing surface based on the current
controller pose. Such a surface also highlights geometrical
relevant relationships to previous strokes to help the designer to
better sketch the spatial relationships between objects.

3.2 Every stroke needs a parent surface: our system projects
every stroke onto a surface to remove one degree of freedom from
the inaccuracies introduced by the user’s arm movement.
Parenting all strokes to a surface makes the creation of orthogonal
and parallel strokes easier. This method helps to mimic 2D pen
and pencil sketching in 3D.

3.3 Incorporate visual guides into the 3D world: our system
shows guide surfaces and points as 3D objects inside the
composition, with shading and occlusion as depth cues, to make

SUI’2018, Berlin, Germany M. D. Barrera Machuca et al.

4

it easier for users to generate accurate results. Also, we use small
spheres as guides, which have the smallest possible visual impact
on the 3D content. This also avoids tracing actions in which the
user follows a guide with their hand, which have been shown to
decrease user accuracy.

3.4 Let users participate in the beautification process: most
beautification systems infer a user’s drawing intention after they
finish the stroke. Doing the beautification in real-time during the
stroke lets users adapt and correct the result before finishing the
stroke by appropriate changes to their hand movement. This
permits user to achieve their desired result, even if the initial
beautification result is not the desired one, which reduces the
need to re-draw a stroke. The current implementation detects
circles, arcs, and lines.

3.5 Minimal use of GUI and gestures: our system bases its
guides and plane predictions on the current position and rotation
of the controller and information about the closest previous
stroke, which reduces user’s cognitive demands since they do not
have to learn/remember gestures or GUI options.

4 Multiplanes
In Multiplanes, users directly draw freehand in the virtual

environment. To diminish the freehand drawing problems like the
inaccuracies produced by the changes in depth, every stroke is
projected onto a surface. To further simplify the drawing,
Multiplanes recognizes the type of stroke based upon the
geometric relationship between controller position and previous
strokes and automatically beautifies the user stroke to the
identified type. If the geometric relationships do not suggest any
known shape, the system leaves the stroke as a general curve that
follows the hand movement, so users are still able to draw
arbitrary shapes.

4.1 3D Snapping
Two of our main interactions, the drawing surface generation

and the beautification trigger points (BTPs), require identification
of the closest vertex of the closest stroke to the current controller
position and rotation. To identify this vertex our algorithm
proceeds as follows: first we calculate the angular distance, which
we compute as a dot product between each stroke’s parent plane
normal and the direction the controller is pointing.

Figure 2: Illustration of the different guide types based on
the distance to the closest vertex.

Then we add that value to the distance from the controller to
the vertex. This gives us a weighted distance based on the
controller rotation. Using this distance, we find the closest vertex

and stroke. Once we find the closest stroke, the system visually
outlines it to provide feedback to the user as to which stroke is
influencing the system.

Our system also uses the distance to the closest vertex to show
the correct guides. As explained before this distance is calculated
with the current controller position. The potentially available
guide types are vertex, stroke and plane, Figure 2. We empirically
choose the appropriate distances to heuristically change among
types based on human depth perception limitations [22]. For the
vertex type, the controller needs to be closer than 5 cm to the
stroke; for the stroke type, the controller needs to be closer than
5 cm in visual depth and inside a 50 cm radius of the stroke; and
for the plane type, the controller needs to be between 5 cm and
50 cm in visual depth to the stroke. To change between guides and
create BTPs users only need to move the controller closer to the
stroke/feature they want the guide to follow from. For example, if
they want to create a BTP based on the end vertex of a stroke, they
would move the controller towards that vertex. Once the
controller is less than 5 cm from the end, the BTP automatically
appears.

4.2 Drawing Surface Generation
A main feature of our system is the generation of virtual

surfaces, called drawing surfaces, onto which strokes are
projected. Our approach removes the need for the user to press
buttons or perform gestures to define such a surface. At the same
time, it still leaves the user in control of the process. In contrast
to our approach, manually activated systems suffer from the limits
of human depth perception and the need to control 6DOF
simultaneously, which make it difficult to accurately position
such a plane [2,28]. This problem can further be aggravated in
immersive virtual environments by the need to move around to
find the best view to position such a plane. On the other hand,
fully automatic systems may frustrate users by removing their
sense of agency [20,23].

In Multiplanes, we implemented an enhanced 3D version of a
previously presented surface creation approach by Igarashi and
Hughes [14] called Suggestive Interface, in a desktop interface
with a mouse as input device. However, their work only supports
lines, while we also allow curves, arcs, and circles. We also use the
3D controller pose inside the virtual environment and previously
created surfaces to define the position and rotation of the new
surface. The surface generation involves two states. In the first
state, the user creates a feedback surface while they move the
controller in the virtual environment. Such visualizations have
been shown to be a good approach to handle 3D drawing in
immersive environments [13], where they improve user accuracy.
In the second state, the user then creates a drawing surface, a static
visual guide, upon which the user then can draw new strokes. This
approach also helps users understand the assistance provided by
the system and lets them make corrections in real time. In
contrast, in other systems, such as ImmersiveFiberMesh [23],
when the plane is created after the user draws a stroke, users need
to do an additional interaction step to change the plane position.

4.2.1 Feedback Surface: in every frame, the 3D snapping
algorithm returns the closest stroke parent surface. Together with
the controller pose, the system then decides on the most

Multiplanes: Assisted Freehand VR Drawing SUI’2018, Berlin, Germany

 5

appropriate feedback surface for that frame. Our algorithm first
calculates the relationship between the controller rotation and the
rotation of the closest stroke parent surface using the dot product
of their normal vectors with a threshold. The possible
relationships we consider are parallel, perpendicular, acute45° and
no relationship. The angular tolerance for determining the
controller relationship is 10° for parallel and acute45°, and 15° for
perpendicular planes. These values were heuristically chosen
through a pilot study, where participants preferred a higher
angular tolerance for perpendicular surfaces than for parallel and
acute45° surfaces. To avoid confusing users through the automatic
change between planes, each plane type has a unique color. The
second step uses this relationship to determine the drawing
surface position and rotation. We rotate the plane based on the
coordinate system of the stroke’s parent surface. However, if the
controller is inside a beautification trigger point (BTP, see below),
we use the local coordinate system of the BTP instead. We
calculate this local coordinate system from the stroke information
and its parent plane. The first vector of the coordinate system, the
normal vector, is the plane normal; the second, the right vector,
depends on the type of geometry (the stored direction vector for
lines and circles, or the right vector of the plane for general
curves). The third vector, the forward vector, is defined by the
cross product between those two vectors.

 This extra information allows users to better visualize the
orientation of a new stroke compared to previous strokes. Table 1
summarizes the relationship between these elements. Finally, our
algorithm checks if the feedback surface is similar to a previously
saved surface. To do this, we compare the new surface against all
the stored surfaces by calculating the dot product of both surface
normal vectors. If they are parallel, we then see if the new surface
position is on the second surface by calculating the distance
between the new surface and the old surface. To consider a surface
similar to a previous one, the distance needs to be smaller than
5 cm [22]. When a new surface is in a similar position and
orientation to a saved plane, we copy the saved surface values to
the new surface.

Table 1: Drawing Surface Rotations

Relationship to closest plane Used Values for new plane

Parallel Keep controller position, copy
plane rotation.

Perpendicular, Acute45° Keep controller position, rotate
accordingly to relationship.

No relationship Keep controller position and
rotation.

Our feedback surface is a 5 × 5 cm square. We decided to

highlight the surface edges as the user needs to perceive where
the surface is in space and the orientation of infinite surfaces is
harder to perceive without texture [29]. This size also helps the
user perceive the surface as part of their hand/controller/drawing
device. The color of the feedback surface enables the user to see
the values used to create it. Green is for existing surfaces rotations

(i.e., parallel planes), yellow for perpendicular surfaces, orange for
acute45° surfaces, and blue for entirely new surfaces. Based on our
experience in pilots, we expect that users quickly associate each
color with a specific relationship.

4.2.1 Drawing Surfaces: once the user starts drawing, the
system creates a static surface with the same rotation and position
as the displayed feedback surface. The system stores the surface if
it is a new one, which allows the system to refer later to it for the
creation of feedback surfaces. If the surface is not new, we add the
new stroke to the previously generated surface.

4.3 Beautification Trigger points (BTPs)
We created a new type of guide called a beautification trigger

point (BTP). These points trigger actions when the user starts or
ends a stroke inside them, or when they are crossed during
drawing, see Figure 3. This way we can improve user accuracy
and at the same time avoid tracing actions, which are detrimental
to the aesthetic quality of strokes [2]. Previous work used points
to show vertex positions like end points and intersections [4], but
BTPs also show geometrical relationships like parallel strokes. In
addition, by embedding the trigger points directly inside the 3D
environment, we enable the user to benefit from multiple depth
cues (the BTPs are rendered as textured spheres, which diminish
in visual size with distance), which improves spatial perception.

Figure 3: Different BTPs generated depending on stroke
shape and the relationship between the plane and

controller normal vectors. 1) Vertex; 2) Local coordinate
system, created when another BTP is hit; 3) Vertices

forming lines parallel to the snapping stroke; 4) Vertices
forming tangent line to the circle; 5) 8 circle offset BTPs,
to make it easier to perceive the shape of the offset circle;
6) Vertices forming lines perpendicular to the snapping

stroke.

In Multiplanes, BTPs have multiple functionalities. First, when
the user is not drawing, they work as normal snapping points and
effectively help to define starting positions on vertices of previous
strokes. They also show where to create a stroke relative to
previous strokes with a given geometric relationship, such as
parallelism, perpendicularity, or offset circles. The distance of the
parallel and perpendicular BTPs to the stroke is the same as the
stroke length. For the circle offset BTPs the distance to the stroke
is the same as the controller distance to the stroke. Second, while
the user is drawing, BTPs show position(s) where ending the
current stroke will snap to a previous drawn stroke. BTPs also

SUI’2018, Berlin, Germany M. D. Barrera Machuca et al.

6

help to avoid user mistakes, such as selecting a wrong snapping
plane or performing a careless hand movement, since hitting a
BTP automatically triggers the 3D stroke beautification module
(described below) and updates the drawing surface coordinate
system with the BTP coordinate system. Triggering the 3D stroke
beautification module can result in the stroke being beautified,
based on criteria specific to the module.

Table 2: BTP Types

BTP Type Guide
Type

Stroke Type Relationship

Vertex Vertex Any Any

Center Stroke Circle Any, less than
5 cm from circle
center

Parallel Stroke,
Plane

Line, General
Curve

Parallel

Perpendicular Stroke,
Plane

Line, General
Curve

Perpendicular

Tangent Stroke Circle Parallel

Circle Offset Stroke Circle Any

4.3.1 BTP creation: in each frame, regardless if the user is

drawing or not, the system creates BTPs when the 3D snapping
algorithm returns a new closest vertex or changes the guide type.
To do this our system uses the closest stroke type, the guide type
and the current mathematical relationship to the controller
calculated when creating the drawing surface. Table 2 explains
how these values interact with each other. To avoid the
generation of too many points inside the virtual environment,
once we have created a list of potential BTPs, our system uses
their position to compare them with existing BTPs. The system
does not store such a duplicated BTP, except when the old point
is a local coordinate system BTP, in which case the system deletes
the old BTP. With this strategy, we avoid having old local
coordinate systems affect the drawing plane when they do not
match the current stroke. Then we add the new BTPs to the
existing ones and calculate the distance and direction for each
BTP to the controller. To further limit the number of points, we
keep old BTPs generated by a different stroke only if the controller
is getting closer and oriented towards that BTP. Finally, to reduce
the visual clutter of showing all potential BTPs, we identify the
fifteen BTPs that are closest to the controller and display only
those.

4.3.2 BTP hit: in our system, users can interact with BTPs by
“colliding” with them, i.e. intersecting them with the controller
while drawing a stroke. This collision can be part of a longer
movement, i.e. when users are drawing strokes with multiple
sections, which makes it similar to the crossing-based interfaces
from Accot and Zhai [1]. Or a BTP can be hit at the end of the
stroke, to finish the stroke at that position. Regardless of the user
intention, if the controller hits a BTP, we first change its color to
yellow and send a vibration to the controller to give the user

haptic feedback that they reached the correct point in space. Then,
we create special BTPs called Local Coordinate System (LCS) BTPs
based on the strokes’ local coordinate system. With LCS BTPs,
users can make use of a local reference frame, if desired, which
helps, for example, with drawing right-angled geometry
regardless of orientation of the “base feature”. LCS BTPs are used
to keep an implicit record of the orthogonality between two
strokes. They are also useful creating strokes parallel to diagonal
strokes.

If the user is drawing when they hit a BTP the drawing surface
is oriented automatically to map the coordinate system to the local
coordinate system of the BTP. Hitting a BTP triggers the 3D stroke
beautification module, which may result in a beautification
depending on the stroke. A stroke section is an independent
segment of a stroke, created when the user hits a BTP. Once a new
section is created, the stroke beautification module no longer uses
stroke points from previous sections. This approach is
computationally efficient and lets users create complicated shapes
with a single multi-section stroke. Finally, if the user exits the BTP
during drawing we delete that BTP to avoid creating multiple
redundant stroke sections.

4.4 3D Stroke Beautification
Our 3D beautification algorithm identifies the type of stroke

based upon the geometric relationship between controller
positions (Figure 4) and automatically beautifies the user stroke to
the identified type, either circle or line. Automatic identification
of the stroke type while the stroke is being drawn gives users
automatic feedback about the detected shape and lets them change
their hand movement to approve or disapprove that identification.
Because we focus only on simple shapes in the current prototype
we only beautify lines and circles, with the objective to see how
beautification affects the quality of the results.

Our algorithm works as follows: first we identify the shape of
the section by using a list of controller positions. To reduce noise,
we only save controller positions that are separated by at least
1 cm in space. For this identification, the current section point list
needs to have more than four positions – having fewer positions
almost always results in a line. Once we have the required number
of positions we compute the curvature vector. For this, we utilize
the 1D version of the 2D surface Laplace-Beltrami operator [24]
by applying the finite element method to diffusions along 1D
curves in 3D space. The resulting 1D Laplace-Beltrami operator in
3D space is computed as follows: let the current vertex be p, and
the previous and next vertices be pi-1 and pi+1. Let

L-1= ||p – pi-1||, and L1=||pi+1 – p|| (1)

The curvature normal is then:

H = ((pi+1 – p) / L1 – (p – pi-1) / L-1) / ((L1 + L-1) / 2) (2)

From H, we then compute the curvature k = ||H||. We also
compute the steering angle, the angle that indicates the rotation
between p, pi+1and pi-1, as

cos-1((p-pi-1) / L-1  (pi+1-p) / L1) (3)

From the curvature and the steering angle of each vertex, we
calculate the average curvature, the mean angle, and the number

Multiplanes: Assisted Freehand VR Drawing SUI’2018, Berlin, Germany

 7

of times that the angle changes direction (the zero-cross rate of
the steering angle) for that section. Depending on these values we
identify the section as a line, a circle, an arc or a general curve.
We determined the threshold values heuristically by having users
draw specific shapes multiple times in a pilot study and finding
the optimal threshold parameters that works for most cases. The
second step is to calculate and store the geometric properties of
that section depending on its type. For general curves we store the
start, middle and end vertices, for lines we store the start, middle
and end vertices, plus line direction and length, and for circles we
store the radius and the center position.

Figure 4: Line and circle beautification. The third column
overlays both to facilitate comparisons.

The start, middle and end vertices are taken directly from the
vertex list of the section. The line direction and line length are
calculated using the start and end vertex positions. To calculate
the radius and center we create a circumscribed circle for our
points list. This involves creating a triangle for every 3 vertices by
calculating its edges and then calculating the normal using the
edges. The radius from those 3 vertices is the magnitude of the
normal and the center is calculated using the barycentric
coordinates equation. We avoid doing a regression, as we know
that all our points are already in the same plane. Once we have
the radius and center for every 3 vertices, we calculate the mean
of those values to get the current section radius and center. The
final step is to calculate the beautified stroke positions using the
line or circle equation and the calculated values. Again, we use the
2D equation of a circle and line, as they are projected into a plane.

4.5 Other User Interactions

Figure 5: Controller user interface for Multiplanes

Our system supports two additional interactions methods.
They permit the user to change the stroke size and color (Figure
5). Stroke size can be adjusted by moving the thumb vertically on
the touchpad in the right-hand controller. Stroke color can be

adjusted by moving the left thumb on the left-hand controller
touchpad. The color space is an HSL plane with saturation on the
vertical axis and hue on the horizontal one.

4.6 Implementation
We implemented this system using Unity (version 5.6.1f1) in

C# on a 3.60 GHz PC with Windows 10 and an nVidia GTX1080.
For the virtual reality headset, we used an HTC Vive with two
standard HTC Vive controllers. Figure 6 show an example of a
cube created with the system.

Figure 6: Example of a cube created with the implemented
system. (Left) with Multiplanes and (right) freehand

drawing.

5 EVALUATION
We evaluated Multiplanes with two user studies on novice

users. One qualitative study evaluated the usability and
functionality of our prototype. The second quantitative study
compared the quality of 2D and 3D sketches done with our
prototype to freehand 3D drawing. We choose to compare our
system with freehand drawing to let users focus on the underlying
strokes without the distractions of all other features available in
commercial systems. Also, having a single software for running
our study reduced the effect of small differences in interface
methods and standardized the logging.

5.1 Usability Study 1
5.1.1 Participants: we recruited eight participants from the

undergrad university community. Five were female. All of them
were between 18 and 24 years old. Among all participants only
25% had drawing experience in VR.

5.1.2 Methodology: first, participants were introduced to the
features of Multiplanes. Then participants used the system in a
practice phase until they felt comfortable with drawing in 3D.
Subsequently, they were asked to do a set of simple exercises to
test their knowledge of the features. These exercise tasks were:
create a line, create a circle, change color and size of a stroke, draw
a cube, and draw a smiley face. Once participants could complete
these tasks, they were instructed to perform the main task: to
draw a 3D chair. Participants were shown a picture of a chair on
a piece of paper and the experimenter explained its elements to
the participants (Figure 7a). They were then instructed to draw
the chair as accurately as possible, to make sure that all strokes
touch each other and to avoid adding any extra elements to the
sketch. Then participants drew the same chair 5 times: one time
using only drawing surfaces, one time using only BTPs, one time
using only beautification, one time using the full system and one
time freehand. When only beautification was enabled, all strokes

SUI’2018, Berlin, Germany M. D. Barrera Machuca et al.

8

triggered the beautification module. While drawing, participants
were asked to use the “think-aloud” method to explain their
actions. Between each drawing interaction method, participants
filled a questionnaire and were interviewed briefly about that
interaction. We used the same order for all conditions for the first
3 drawings (drawing surface, BTPs, and beautification) to enable
users to practice each functionality before trying the full system.
For the last 2 drawings (full system vs freehand) the order of
conditions was counter-balanced across participants. For the full
system and freehand drawings participants only did the interview.
We recorded a video of the participant’s display and their voice
while they were drawing, as well as their voice during the
interview sections.

5.1.3 Design: participants answered a multipart questionnaire
about ease of interaction, perceived speed, perceived accuracy and
overall opinion for each interaction method. In the interview
participants answered questions about their experience while
drawing the chair and their opinion about the system and the
interactions.

5.1.4 Results, Observations & Discussion: all participants could
complete the tasks, see Figure 7b for several examples. Results
from the questionnaire were lower than expected (average of 4.5
on the 7-point Likert scale), see Table 3 for individual scores.
However, it was particularly interesting that, although the scores
rated Multiplanes as “medium”, in the interview six participants
talked positively and were excited about the system and its
features. For example, participant 4 said “I liked when you
combined all [methods] together, because when I was drawing the
chair, I could match the points. I took this plane here and this
beautification points here. Make sure that it matches up, then I draw
them together.” On a similar note, participant 5 responded to the
same question in a similar way, “I loved the full system, like it helps
with [drawing] flat [content]. And I can use it to see if [things are]
perpendicular or parallel”. Finally, participant 1 said that “it gives
a good idea where you are drawing, because it helps you see how the
planes are correlated in 3D”.

Figure 7: a) The picture of a chair shown to participants b)
Three examples of chairs created with the implemented

system.

The two participants that did not like the full system both
experienced problems activating the features, especially the BTPs
and the beautification. For example, participant 2 said that “the
system doesn’t detect the beautification”. This, together with the
“think-aloud” transcripts, leads us to believe that the scores
correspond more to problems with the prototype than real
problems with the proposed interactions. Figure 7b illustrates

some of these problems, with some strokes not being beautified
and some not snapping to previous strokes.

When asked about the BTPs, most participants liked their
functionality. For example, participant 4 said that “when I was
looking at the other side, it kind of helped me to double check to see
if everything was good. And it was easy because it kind of [popped
up] and show[ed] me this [BTP] point here to draw the line here”.
However, they complained that sometimes the BTPs got in their
way, especially the circle offset BTPs. For example, participant 3
said that “[I] wanted to draw one line freely, but the points were in
the way. This was frustrating”. When asked about the plane
creation and the automatic snapping algorithm, participants used
the change in color to identify the different relationships, for
example participant 2 said that “works fine, I understand the
[plane] colors. Look for it [the color] and get it fast”. Some
participants found the automatic snapping algorithm too sensitive
but were still able to use it. For example, participant 4 said that
“[the plane was] a little bit jerky at times when I was trying to switch
to a different plane. But when I was trying to draw to a new plane,
it worked really well”. Finally, when asked about the beautification
module, participants also had positive words about it. For
example, participant 6 said that “[beautification] will create the
lines perfectly straight and circles into proper circles instead of
distorting them with different starting points. So that was a good
one”. One problem that participants identified was that the
algorithm was not sensitive enough and sometimes they felt that
it was not beautifying their stroke as expected, for example,
participant 1 said that “I think [it] was trying to, but it keep creating
a line automatically”.

We also analyzed the participant’s opinion about drawing
freehand. Most participants complained about having problems
when they tried to connect strokes and when trying to draw in
the same plane without assistance. These results agree with
previous work [2]. More important, four participants said they
preferred Multiplanes as it helped them solve these problems. For
example, participant 6 stated that “I will add the plane because you
can draw in a particular dimension or axis, rather than beginning in
a certain axis and ending in another”. And participant 8 stated that
“drawing freehand is hard because it has no plane and no points”.
Therefore, based on the interview answers we believe that
Multiplanes fulfills its design goal to simplify 3D drawing by
making it easier to draw shapes accurately, particularly by
removing the need to correctly judge the depth of a stroke while
drawing.

Table 3: Study 1 Likert Scores

Interaction Ease Speed Accuracy Overall

Drawing Surface 4.9 4.5 4.6 5.5

BTPs 4.8 4.6 3.9 4.6

Beautification 4.9 4.6 4.3 5

Multiplanes: Assisted Freehand VR Drawing SUI’2018, Berlin, Germany

 9

5.2 Study 2: Comparison with freehand
drawing

In this study we aimed to compare the quality of Multiplane
drawings with freehand 3D sketches. We used a similar version of
Multiplanes, with fixes for some of the usability problems that
might have affected the results of the first study.

5.2.1 Participants: we recruited six paid participants from the
university community. 50% were female. 50% of the participants
were between 18 and 24 years old, 34% were between 25-34 years
old, and 16% were between 35 and 44 years old. Among all
participants only 33% had drawing experience in VR.

Figure 8: a) The sketch of a flower in a pot shown to
participants. B) The sketch of a 3D house with a tree

shown to participants

5.2.2 Methodology: participants experienced the same
introduction, training and explanation phase as in study 1. Figure
8 shows the sketches shown to participants to explain the task.
However, in this experiment participants performed two drawing
tasks, each with Freehand and Multiplanes, for a total of four
drawings. The first drawing was a 2D sketch of a flower in a pot
and the second one was a 3D house with a tree (Figures 9 and 10).
For the 2D sketching tasks, participants were not permitted to
move away from their starting position. For the 3D sketch tasks
participants were encouraged to move around the sketch. We
evaluated both 2D and 3D sketches, because we wanted to see if
the accuracy problems in VR drawing are caused only by depth
perception errors or also by the user spatial perception of the 3D
environment and their navigation within it. Such issues may
become more pronounced when the user moves around in the
virtual environment than when they stay in the same place.
Between drawing tasks, participants were permitted to rest for up
to five minutes. Once participants finished the 3D task, they were
asked to answer a questionnaire. Screen recordings of the
participants were done to later evaluate the quality of the
drawings.

5.2.3 Design: the study used a 2x2 within-subjects design. The
independent variables were interaction technique (freehand and
multiplanes), and sketch type (2D and 3D). The order of conditions
across both dimensions was counter-balanced across participants.
We coded their final drawings using the method from Wiese et al.
[33] to evaluate the quality of the drawings based on the strokes.
This coding method evaluates the quality of a drawing using four
categories: a) line straightness, b) matching of line pairs, c) degree
of deviation, and c) corrective movements. Drawings can get up
to 3 points in each category and the total score is the sum of these

values (maximum 12 points). Finally, participants answered a
usability questionnaire similar to study 1.

Figure 9: Examples of 3D drawings created by participants
(top Multiplanes, bottom Freehand).

Figure 10: Examples of 2D drawings created by
participants (top Multiplanes, bottom Freehand).

Figure 11: Drawing Scores for each interaction technique
divided by sketch type.

5.2.4 Results & Discussion: all participants could complete the
tasks, see Figure 9 & 10 for several examples. We analyzed the
total scores for each drawing using repeated measures ANOVA

SUI’2018, Berlin, Germany M. D. Barrera Machuca et al.

10

with α = 0.05. The data was normally distributed. Table 4 shows
the average scores for each condition. Statistical results are
reported below:

Interaction Technique (F1, 5 = 107.8, p < 0.001): overall, there
was a significant main effect of score on interaction technique, see
Table 4 and Figure 11. Average score for drawings made with
Multiplanes (m = 9.9, SD = 1.24) were significantly higher than for
freehand drawings (m = 7.8, SD = 1.34). Cohen’s d = 1.6 identifies
a large effect size.

Sketch Type (F1, 5 = 12.11, p < 0.05): overall, there was a
significant main effect of score on sketch type, see Table 4 and
Figure 11. The average score for 2D drawings (m = 9.7, SD = 1.37)
was significantly higher than for 3D drawings (m = 8.1, SD = 1.56).
The effect size was again large (d = 1.1).

Interaction Technique × Sketch Type (F1, 5 = 0.05, p = 0.83): there
was no significant main effect of interaction technique on sketch
type.

Table 4: Study 2 Drawing Accuracy Scores,
higher scores are bolded

Drawing 2D
Freehand

2D
Multiplane

s

3D
Freehand

3D
Multiplanes

Line
Straightness

2.3 3.0 1.7 2.3

Match Line 2.5 2.5 1.8 2.3

Degree
Deviation

1.7 2.7 1.5 2.0

Corrective
Movement

2.2 2.5 2.0 2.5

Total 8.7 10.7 7 9.2

Although our study had a small number of participants, the

effect sizes were large, and the mean difference between groups is
larger than one standard deviation. Together with the visually
more appealing drawings created with Multiplanes, this motivates
us to believe that Multiplanes is better than freehand drawing for
VR sketching.

When analyzing the questionnaire results, most participants
liked the freedom of freehand drawing. Yet, the results also show
that they appreciated the benefit of higher accuracy achievable
with Multiplanes. Moreover, they rated the ease of interaction,
automatic and unobtrusive beautification, and the BTP
functionality high (average of 5.5 on the 7-point Likert scale or
better). The results of study 2 together with those from study 1,
confirm that Multiplanes help increase accuracy when drawing in
VR by providing interactions that help reduce depth perception
and visuomotor errors.

An interesting finding was that for both systems 2D drawings
had higher scores than 3D drawings. This finding is also reflected
in the questionnaire results, where the ratings for the 2D sketches
were in general higher. These results lead us to hypothesize that
the higher cognitive load when drawing in VR is not only a

consequence of depth perception issues and higher visuomotor
skill requirements, but also reflects challenges with the user’s
spatial perception of the environment.

6 CONCLUSION
We presented Multiplanes, a VR freehand drawing assistant

that incorporates novel interaction techniques, which help users
be more accurate. Our work aims to help users, especially non-
artists, in creating sketches of concepts or ideas that rely on
geometrical relationships between strokes, such as parallel
features. For the current controller pose and stroke, Multiplanes
automatically identifies an appropriate drawing surface. The
system then also displays guides beautification trigger point
guides, called BTPs, based on previous strokes. These guides show
geometrical relationships to previous strokes and snapping
points. Multiplanes also automatically beautifies a stroke in real-
time while the user is drawing it or when users hit a BTP. Our two
studies identified that participants liked the system and
appreciated the increased accuracy they could achieve with it. Not
only that, but an analysis of the stroke quality show that
Multiplanes drawings had a better quality than freehand
drawings. We believe that this difference is a consequence of our
design since Multiplanes addresses some of the depth perception
and visuomotor errors present in VR systems, which cause
problems, for example, when joining two lines or correctly
identifying the drawing surface of a stroke. In the future we plan
to extend the functionality of Multiplanes.

6.1 Limitations
In our current system we only implemented planar surfaces as

we wanted to focus on evaluating our automatically generated
surfaces in a reasonably simple context. This approach limits the
variety of sketches that can be created in our system to planar
shapes. We believe the design of the Multiplanes interaction
techniques can be generalized to non-planar surfaces, perhaps
based on arcs or freeform curves, which will let users draw shapes
such as animals and humanoids. We plan to include such types of
surfaces in a future version of our system. Another limitation is
that the beautification system only beautifies to arcs, circles and
lines. In the future, we plan to further improve our system to use
a larger variety of shapes, including spline curves.

ACKNOWLEDGMENTS
This research began during an internship at Adobe Research,

and was sponsored in part by Adobe Research, CONACYT and
NSERC.

REFERENCES
1. Johnny Accot and Shumin Zhai. 2002. More than dotting the i’s ---

foundations for crossing-based interfaces. Proceedings of the SIGCHI
conference on Human factors in computing systems Changing our world,
changing ourselves - CHI ’02, 4: 73. https://doi.org/10.1145/503376.503390

2. Rahul Arora, Rubaiat Habib Kazi, Fraser Anderson, Tovi Grossman,
Karan Singh, and George Fitzmaurice. 2017. Experimental Evaluation of
Sketching on Surfaces in VR. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems (CHI ’17), 5643–5654.
https://doi.org/10.1145/3025453.3025474

Multiplanes: Assisted Freehand VR Drawing SUI’2018, Berlin, Germany

 11

3. Rahul Arora, Rubaiat Habib Kazi, Tovi Grossman, George Fitzmaurice,
and Karan Singh. 2018. SymbiosisSketch : Combining 2D & 3D Sketching
for Designing Detailed 3D Objects in Situ. Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems (CHI ’18): 1–15.
https://doi.org/10.1145/3173574.3173759

4. Eric A. Bier. 1990. Snap-dragging in three dimensions. Proceedings of the
Conference on Computer Graphics and Interactive Techniques (SIGGRAPH
’90) 24, 2: 193–204. https://doi.org/10.1145/91394.91446

5. Ernesto Bueno and Benamy Turkienicz. 2014. Supporting Tools for Early
Stages of Architectural Design. International Journal of Architectural
Computing 12, 4: 495–512. https://doi.org/10.1260/1478-0771.12.4.495

6. Jeff Butterworth, Andrew Davidson, Stephen Hench, and Marc. T.
Olano. 1992. 3DM: A Three Dimensional Modeler Using a Head-
Mounted Display. In Proceedings of the ACM SIGGRAPH Symposium on
Interactive 3D Graphics and Games (I3D’92), 135–138.
https://doi.org/10.1145/147156.147182

7. Michael F. Deering. 1996. The HoloSketch VR sketching system.
Communications of the ACM 39, 5: 54–61.
https://doi.org/10.1145/229459.229466

8. Catherine Elsen, Jean Noël Demaret, Maria C. Yang, and Pierre Leclercq.
2012. Sketch-based interfaces for modeling and users’ needs: Redefining
connections. Artificial Intelligence for Engineering Design, Analysis and
Manufacturing: AIEDAM 26, 3: 281–301.
https://doi.org/10.1017/S0890060412000157

9. Daniela Faas, Qifang Bao, and Maria C. Yang. 2014. Preliminary
Sketching and Prototyping: Comparisons in Exploratory Design-and-
Build Activities. Proceedings of the ASME International Design
Engineering Technical Conferences and Computers and Information in
Engineering Conference 7, January 2016: V007T07A018.
https://doi.org/10.1115/DETC2014-34928

10. Facebook. 2018. Quill. Retrieved from
https://www.facebook.com/QuillApp/

11. Michele Fiorentino, Giuseppe Monno, Pietro A. Renzulli, and Antonio E.
Uva. 2003. 3D Sketch Stroke Segmentation and Fitting in Virtual Reality.
In International Conference on the Computer Graphics and Vision, 188–
191.

12. Google. 2016. Tilt Brush. Retrieved from https://www.tiltbrush.com/

13. Tovi Grossman, Ravin Balakrishnan, Gordon Kurtenbach, George
Fitzmaurice, Azam Khan, and Bill Buxton. 2002. Creating principal 3D
curves with digital tape drawing. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems (CHI ’02), 121–128.
https://doi.org/10.1145/503376.503398

14. Takeo Igarashi and John F. Hughes. 2001. A suggestive interface for 3D
drawing. In Proceedings of the ACM Symposium on User Interface
Software and Technology (UIST ’01), 173–181.
https://doi.org/10.1145/502348.502379

15. Bret Jackson and Daniel F. Keefe. 2016. Lift-Off: Using Reference
Imagery and Freehand Sketching to Create 3D Models in VR. IEEE
Transactions on Visualization and Computer Graphics 22, 4: 1442–1451.
https://doi.org/10.1109/TVCG.2016.2518099

16. Daniel F. Keefe, Robert C. Zeleznik, and David H. Laidlaw. 2007.
Drawing on Air: Input Techniques for Controlled 3D Line Illustration.
IEEE Transactions on Visualization and Computer Graphics 13, 5: 1067–
1081. https://doi.org/10.1109/TVCG.2007.1060

17. Daniel F Keefe, Daniel Acevedo, Tomer Moscovich, David H Laidlaw,
and Joseph LaViola. 2001. CavePainting: A Fully Immersive 3D Artistic
Medium and Interactive Experience. Proceedings of the ACM Symposium
on Interactive 3D Graphics (I3D 2001): 85–93.
https://doi.org/http://doi.acm.org/10.1145/364338.364370

18. Yongkwan Kim, Sang-Gyun An, Joon Hyub Lee, and Seok-Hyung Bae.
2018. Agile 3D Sketching with Air Scaffolding. Proceedings of the SIGCHI

Conference on Human Factors in Computing Systems (CHI ’18): 1–12.
https://doi.org/10.1145/3173574.3173812

19. Chor-kheng Lim. 2003. An insight into the freedom of using a pen: Pen-
based system and pen-and-paper. Proceedings of Asian Design
International Conference. Retrieved from
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.131.759

20. Hannah Limerick, David Coyle, and James W. Moore. 2014. The
experience of agency in human-computer interactions: a review.
Frontiers in Human Neuroscience 8, August: 1–10.
https://doi.org/10.3389/fnhum.2014.00643

21. S. Murugappan, S. Sellamani, and K. Ramani. 2009. Towards
beautification of freehand sketches using suggestions. In Proceedings of
the Eurographics Symposium on Sketch-Based Interfaces and Modeling
(Expressive’09), 69. https://doi.org/10.1145/1572741.1572754

22. Robert Patterson and Wayne L. Martin. 1992. Human stereopsis. Human
Factors: The Journal of the Human Factors and Ergonomics Society 34, 6:
669–92. https://doi.org/10.1177/001872089203400603

23. Helen Perkunder, Johann Habakuk Israel, and Marc Alexa. 2010. Shape
Modeling with Sketched Feature Lines in Immersive 3D Environments.
In Proceedings of the Eurographics Symposium on Sketch-Based Interfaces
and Modeling (Expressive’10), 127–134.

24. Ulrich Pinkall and Konrad Polthier. 1993. Computing discrete minimal
surfaces and their conjugates. Experimental Mathematics 2, 1: 15–36.

25. Dominik Rausch, I Assenmacher, and Torsten W. Kuhlen. 2010. 3D
Sketch Recognition for Interaction in Virtual Environments. The
Eurographics Association.
https://doi.org/10.2312/PE/vriphys/vriphys10/115-124

26. Steven Schkolne, Michael Pruett, and Peter Schröder. 2001. Surface
drawing: Creating Organic 3D Shapes with the Hand and Tangible
Tools. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems (CHI ’01), 261–268.
https://doi.org/10.1145/365024.365114

27. Ryan Schmidt, Azam Khan, Gord Kurtenbach, and Karan Singh. 2009.
On expert performance in 3D curve-drawing tasks. In Proceedings of the
Eurographics Symposium on Sketch-Based Interfaces and Modeling
(Expressive’09), 133–140. https://doi.org/10.1145/1572741.1572765

28. Wolfgang Stuerzlinger and Chadwick A. Wingrave. 2008. The Value of
Constraints for 3D User Interfaces. In Virtual Realities: Dagstuhl
Seminar, Sabine Coquillart, Guido Brunnett and Greg Welch (eds.).
Springer Vienna, Dagstuhl, 203–223. https://doi.org/10.1007/978-3-211-
99178-7_11

29. Geb Thomas, Joseph H Goldberg, David J Cannon, and Steven L Hillis.
2002. Surface textures improve the robustness of stereoscopic depth
cues. Human Factors: The Journal of the Human Factors and Ergonomics
Society 44, 1: 157–170. https://doi.org/10.1518/0018720024494766

30. Julian J. Tramper and Stan Gielen. 2011. Visuomotor coordination is
different for different directions in three-dimensional space. The Journal
of Neuroscience 31, 21: 7857–7866.
https://doi.org/10.1523/JNEUROSCI.0486-11.2011

31. David. G. Ullman, Stephen Wood, and David Craig. 1990. The
importance of drawing in mechanical design process. Computer &
Graphics 14, 2: 263–274.

32. Gerold Wesche and Hans-Peter Seidel. 2001. FreeDrawer: A Free-Form
Sketching System on the ResponsiveWorkbench. In Proceedings of the
ACM Symposium on Virtual Reality Software and Technology (VRST ’01),
167. https://doi.org/10.1145/505008.505041

33. Eva Wiese, Johann Habakuk Israel, A. Meyer, and S. Bongartz. 2010.
Investigating the learnability of immersive free-hand sketching.
Proceedings of the Seventh Sketch-Based Interfaces and Modeling
Symposium (SBIM’10), October 2017: 135–142.

