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Figure 1: Step-by-step process of drawing two adjacent faces of a cube with Multiplanes. First the user draws a square on a 
plane in space (images 1-5) and then a second square (images 6-8) on an orthogonal plane that is suggested based on the 
controller orientation. Beautification trigger points help the user to keep stroke length uniform. Stroke beautification 

ensures straight lines.  

ABSTRACT 
The presence of a third dimension makes accurate drawing in 
virtual reality (VR) more challenging than 2D drawing. These 
challenges include higher demands on spatial cognition and motor 
skills, as well as the potential for mistakes caused by depth 
perception errors. We present Multiplanes, a VR drawing system 
that supports both the flexibility of freehand drawing and the 
ability to draw accurate shapes in 3D by affording both planar and 
beautified drawing. The system was designed to address the 
above-mentioned challenges. Multiplanes generates snapping 
planes and beautification trigger points based on previous and 
current strokes and the current controller pose. Based on 
geometrical relationships to previous strokes, beautification 
trigger points serve to guide the user to reach specific positions in 
space. The system also beautifies user’s strokes based on the most 
probable intended shape while the user is drawing them. With 
Multiplanes, in contrast to other systems, users do not need to 
manually activate such guides, allowing them to focus on the 
creative process. 
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• Human-centered computing: Virtual Reality, User Studies, User 
Interface Design 
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1 INTRODUCTION 
High quality Virtual Reality (VR) devices, such as the HTC 

Vive and the Oculus Rift, are now easily available to the public. 
These products have rekindled interest in using VR technologies 
in the design process by letting users draw directly in a 3D virtual 
environment. An example of a commercial product for 3D 
drawing is Tilt Brush [12]. Most of these tools build on the 
freehand drawing technique, in which the stroke follows the 
controller position. Although this technique provides an intuitive 
and effective method of conceptualizing new shapes, which helps 
in the creative process [32], prior work shows that the resulting 
drawings are less accurate than 2D sketches [2,25]. One possible 
explanation is that depth perception errors prevent the user from 
realizing the desired stroke, because they cannot see accurately 
enough where they are drawing in space – especially in relation 
to other content [2,30]. Another possible reason is the higher 
difficulty of the task, as the additional third dimension could result 
in higher cognitive and sensorimotor demands [33]. Finally, the 
absence of a physical surface also affects drawing accuracy [2]. 

In this paper, we present a system called Multiplanes, which 
assists freehand VR drawing a) by helping users identify the 
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correct visual depth for drawing their strokes and b) by helping 
users draw perfect shapes (Figure 1). Our system aims to be used 
in the early stages of the design process for situations where 
accurate depictions of shapes and their spatial relationships 
matter, for example, to show that the shape is a cube or that edges 
of two shapes are aligned. Following Lim’s [19] classification of 
sketches based on their visual features, such sketches are part of 
the perceptual level of the design process, with the other levels 
being functional and conceptual [19]. Multiplanes is positioned at 
an intermediate stage between “pure” sketching and “pure” 
computer-aided design. To achieve this our system automatically 
identifies drawing surfaces and guides based on previous and 
current strokes and the current controller pose. Our system also 
automatically beautifies circles and lines while the user is drawing 
them. Through the user interface of Multiplanes, designers can 
focus more on the creative process and worry less – or not at all 
– about finding the correct stroke position in space. Our 
contributions are the following: 

 Automatic snapping planes: we present a new 
technique that automatically generates potential 
drawing planes based on the current controller pose and 
previous strokes. 

 Beautification trigger points: based on the shape of 
the current stroke and its geometric relationship with 
the controller our system automatically creates a new 
kind of visible guides, called beautification trigger 
points. Moving the controller into such a trigger point 
while drawing triggers potential beautification of the 
current stroke. 

 Real-time beautification: we introduce a new method 
for automatic identification and beautification of 
strokes while the user is drawing them. 

 Evaluation of all the above: we evaluate the usability 
of Multiplanes in a first user study and compare it with 
freehand 2D and 3D drawing in a second study. 

2 RELATED WORK 

2.1 Challenges of 3D drawing in VR 
Drawing is an important element of human expression since it 

is an efficient way to convey or record information and/or to start 
the design process [31]. Previous work has studied the challenges 
of 3D drawing and its usability for 3D content creation in VR. One 
example is Arora et al. [2], who analyzed the factors affecting the 
human ability to sketch in VR environments. Their goal was to 
identify the reasons behind the efficiency difference between 2D 
and 3D drawing. Compared to 2D drawing, drawing accuracy in 
VR decreased 148%, as measured via the mean overall deviation 
from a target stroke. They also found that visual guidance, in 
which users try to follow the guide with the controller; can 
improve mid-air sketching accuracy, but leads to worse aesthetic 
quality of strokes, as measured by curve fairness. They identify 
these problems to be a consequence of the lack of a physical 
surface and the depth perception issues associated with VR 
devices. 

Wiese, et al. [33] investigated the learnability of freehand 
sketching in VR. They hypothesized that the difference between 
2D and 3D drawing could correspond to higher manual effort and 
error proneness or to higher cognitive and sensorimotor demands. 
Yet, they were not able to identify which of the two reasons is the 
specific cause. However, they found that the users’ sensorimotor 
skills for 3D drawing improve rapidly over time.  

Finally, Tramper and Gielen [30] investigated the differences 
between eye-hand coordination in the frontal plane and in the 
depth plane while doing tracking and tracing tasks. They found 
differences in the coordination of gaze and finger position for both 
planes. For example, for tracking, gaze leads finger position in the 
frontal plane but lags behind the finger in the depth plane. Based 
on these results they conclude that the different lead times reflect 
differences in the dynamics of visuomotor control for coupled eye 
movements in the same lateral/vertical direction, known as 
version, and independent eye movements in opposite directions 
for depth accommodation, known as vergence. 

2.2 3D Drawing 
Irrespective of the challenges for 3D drawing, there has been a 

boom in VR drawing tools. Such systems rely on 3D input with 
VR controllers to let users draw 3D strokes. Some earlier systems 
such as 3DM [6], HoloSketch [7] or CavePainting [17], showed the 
possibilities of directly drawing in 3D, without promoting 2D lines 
into 3D space. Similar to them, newer commercial systems, for 
example Quill [10], FreeDrawer [32], and Tilt Brush [12], directly 
map the stroke position to user movement with a freehand 
drawing technique. Freehand drawing is easy to learn and 
everybody can operate these systems regardless of their 
experience level with VR systems [26,32]. Also, such systems are 
powerful enough that even an experienced user can be satisfied 
with the drawn results [27]. However, one problem with freehand 
drawing systems is that they are less accurate, in comparison to 
2D sketches as well as 3D geometric drawings, which can affect 
the final product or outcome [2]. 

To solve this problem, Jackson and Keefe noted, “new tools are 
needed that provide functionality that goes beyond straight one-to-
one mappings of body movements to operations on digital geometry” 
[15]. Examples of such systems are those that project the 3D 
position to a plane to remove a DOF from the stroke creation 
process. For example, Digital Tape Drawing [13] surrounds the 
drawing with a cubic volume so users can select an axis-aligned 
plane and position it in the desired place before drawing there. 
Users can also create non-planar surfaces onto which they can 
later draw. Another example is ImmersiveFiberMesh [23], which 
automatically fits a plane through the stroke. Yet another example 
is Kim et al. [18], where the users can create curved surfaces with 
3D hand gestures. The user can then draw later onto these 
surfaces with a tablet and pen. Finally, SymbiosisSketch [3] 
utilizes AR to let users draw in 3D using a tablet. In this system 
the user positions the tablet manually in 3D space and uses the 
tablet screen as the current drawing surface. Users can create 
surfaces and then draw on them. In contrast, Multiplanes uses a 
mixed approach in which the user controls the general position of 
the stroke, but the system automatically selects an appropriate 
drawing surface based on the controller pose and the position of 
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previous strokes. Another difference is that Multiplanes currently 
only supports drawing on planar surfaces. These surfaces can be 
positioned and rotated with 6DOF to create 3D drawings from 
planar strokes.  

Other systems use novel metaphors to constrain user actions. 
For example, Drawing on Air [16] uses the metaphor of “drawing” 
by applying/rolling tape. This system also uses a force feedback 
device to emulate the resistance of a physical surface while the 
pen is moving through the air. Finally, Lift-Off [15] lets users 
select curves from a 2D image previously positioned in space and 
then rotate these curves with two hands/controllers until they are 
in the desired pose. As these curves already have their final shape, 
users only need to focus on positioning them. With Multiplanes 
we wanted to avoid introducing novel UI metaphors to keep the 
flexibility of freehand drawing for sketching [19]. Yet, for 
structured drawings, novel UI metaphors can produce visually 
better results than systems that support only freehand drawing. 
When appropriate, Multiplanes automatically beautifies the users’ 
hand movement to create simple geometric shapes without 
requiring additional user interactions. 

2.3 3D Drawing Beautification 
Another area of research relevant to 3D drawing is 

beautification, which is the process of transforming informal and 
ambiguous freehand input to more formal and structured 
representations [21]. According to Wiese et al. beautification is 
useful in 3D drawings since “creating a volumetric shape require 
users to make connections between several 2D objects, which is an 
error-prone action consequence of the depth perception problems that 
limit the user ability to exactly locate a previously drawn object 
point in space” [33]. The main challenge in this area is correctly 
interpreting the users’ intentions while they are making such 
freehand sketches, because, by nature, such drawings are informal 
and ambiguous. 

An example of a beautification algorithm for 3D drawings is 
the work of Fiorentino et al. [11], which beautifies a user stroke 
as the user is creating it in an immersive freehand 3D sketching 
system. Their method first filters the position data to reduce noise, 
and then segments the stroke into sections using position, speed 
and curvature. Finally, they create spline points to create a smooth 
Bézier curve from the different segments. Rausch et al. proposed 
an approach [25], where they use a fuzzy logic algorithm for 
primitive shape recognition and a textual description language to 
define compound symbols to identify sketches done in a fully 
immersive freehand 3D sketching system. The first step of their 
algorithm is to separate each stroke into segments that are then 
recognized as primitives. Using those primitives, they analyze the 
whole sketch by matching it to previously learned symbols. This 
process happens after the user finishes the current stroke, and the 
system can group strokes together. In contrast to these 
algorithms, which smooth a curve but do not recognize the type 
of the shape [11], or recognize the shape and perform 
beautification only after the stroke is complete [25], Multiplanes’ 
beautification algorithm automatically beautifies strokes in real-
time as the user is drawing them. 

3 Design Goals 
Freehand (2D) sketching has an important role in the early 

phase of the design process [8,9,19]. However, such 2D design 
representations can be highly ambiguous and difficult to interpret, 
as they are composed of different symbols, including annotations, 
and diagrams, that represent the visual features and spatial 
relations between objects [19]. For example, a sketch of a room 
with its furniture needs to consider the orthogonality of the walls 
and the furniture, and maintain an appropriate proper size 
relationship between the furniture and the room. Moreover, the 
designer should be able to annotate the furniture to specify its 
color and material. Another problem with 2D design sketches is 
that designers need to understand the 2D representations of 3D 
objects, which requires strong visual intelligence and spatial skills 
[5]. Sketching in 3D can help simplify these problems since the 
drawings are done directly in a 3D environment. An advantage of 
sketching compared to 3D modeling is the short creation times, as 
3D modeling require users to focus on the model geometry in 
addition to the design process. 

However, 3D sketches are often more inaccurate than their 2D 
counterpart. Wiese, et al. [33] identified two possible causes for 
the differences in accuracy between 2D and 3D drawing. First, 3D 
drawing requires higher manual effort, making this activity more 
prone to errors than 2D drawing. Second, 3D drawing demands a 
higher cognitive and sensorimotor load. Tremper & Gielen [30] 
attribute this to the differences between the dynamics of 
visuomotor control for lateral/vertical (version) eye movements – 
which roughly speaking corresponds to drawing on a plane 
directly in front of a user – and vergence eye movements – which 
occur with visual depth changes.  

Based on this research, our main design goal is to reduce the 
user effort to create accurate strokes, accurate angles, and 
accurate aligned or snapped vertices while drawing in VR systems 
by reducing the cognitive load and error proneness of 3D drawing. 
Our system assists at the perceptual level of the design process by 
helping designers draw sketches where the spatial relationship 
between features is accurate. To achieve this, we build on the 
guidelines proposed by Arora et al. [2] for 3D drawing and 
Stuerzlinger and Wingrave [28] for 3D user interfaces, and 
identify the following requirements of our system: 

3.1 Show the most appropriate drawing surface: due to the 
limitations of depth perception in VR, positioning objects floating 
in free space accurately is hard. However, guiding the user with a 
drawing surface improves accuracy. Therefore, our system always 
shows the most appropriate drawing surface based on the current 
controller pose. Such a surface also highlights geometrical 
relevant relationships to previous strokes to help the designer to 
better sketch the spatial relationships between objects.  

3.2 Every stroke needs a parent surface: our system projects 
every stroke onto a surface to remove one degree of freedom from 
the inaccuracies introduced by the user’s arm movement. 
Parenting all strokes to a surface makes the creation of orthogonal 
and parallel strokes easier. This method helps to mimic 2D pen 
and pencil sketching in 3D. 

3.3 Incorporate visual guides into the 3D world: our system 
shows guide surfaces and points as 3D objects inside the 
composition, with shading and occlusion as depth cues, to make 
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it easier for users to generate accurate results. Also, we use small 
spheres as guides, which have the smallest possible visual impact 
on the 3D content. This also avoids tracing actions in which the 
user follows a guide with their hand, which have been shown to 
decrease user accuracy.  

3.4 Let users participate in the beautification process: most 
beautification systems infer a user’s drawing intention after they 
finish the stroke. Doing the beautification in real-time during the 
stroke lets users adapt and correct the result before finishing the 
stroke by appropriate changes to their hand movement. This 
permits user to achieve their desired result, even if the initial 
beautification result is not the desired one, which reduces the 
need to re-draw a stroke. The current implementation detects 
circles, arcs, and lines. 

3.5 Minimal use of GUI and gestures: our system bases its 
guides and plane predictions on the current position and rotation 
of the controller and information about the closest previous 
stroke, which reduces user’s cognitive demands since they do not 
have to learn/remember gestures or GUI options. 

4 Multiplanes 
In Multiplanes, users directly draw freehand in the virtual 

environment. To diminish the freehand drawing problems like the 
inaccuracies produced by the changes in depth, every stroke is 
projected onto a surface. To further simplify the drawing, 
Multiplanes recognizes the type of stroke based upon the 
geometric relationship between controller position and previous 
strokes and automatically beautifies the user stroke to the 
identified type. If the geometric relationships do not suggest any 
known shape, the system leaves the stroke as a general curve that 
follows the hand movement, so users are still able to draw 
arbitrary shapes.  

4.1 3D Snapping 
Two of our main interactions, the drawing surface generation 

and the beautification trigger points (BTPs), require identification 
of the closest vertex of the closest stroke to the current controller 
position and rotation. To identify this vertex our algorithm 
proceeds as follows: first we calculate the angular distance, which 
we compute as a dot product between each stroke’s parent plane 
normal and the direction the controller is pointing.  

 

Figure 2: Illustration of the different guide types based on 
the distance to the closest vertex. 

Then we add that value to the distance from the controller to 
the vertex. This gives us a weighted distance based on the 
controller rotation. Using this distance, we find the closest vertex 

and stroke. Once we find the closest stroke, the system visually 
outlines it to provide feedback to the user as to which stroke is 
influencing the system. 

Our system also uses the distance to the closest vertex to show 
the correct guides. As explained before this distance is calculated 
with the current controller position. The potentially available 
guide types are vertex, stroke and plane, Figure 2. We empirically 
choose the appropriate distances to heuristically change among 
types based on human depth perception limitations [22]. For the 
vertex type, the controller needs to be closer than 5 cm to the 
stroke; for the stroke type, the controller needs to be closer than 
5 cm in visual depth and inside a 50 cm radius of the stroke; and 
for the plane type, the controller needs to be between 5 cm and 
50 cm in visual depth to the stroke. To change between guides and 
create BTPs users only need to move the controller closer to the 
stroke/feature they want the guide to follow from. For example, if 
they want to create a BTP based on the end vertex of a stroke, they 
would move the controller towards that vertex. Once the 
controller is less than 5 cm from the end, the BTP automatically 
appears. 

4.2 Drawing Surface Generation 
A main feature of our system is the generation of virtual 

surfaces, called drawing surfaces, onto which strokes are 
projected. Our approach removes the need for the user to press 
buttons or perform gestures to define such a surface. At the same 
time, it still leaves the user in control of the process. In contrast 
to our approach, manually activated systems suffer from the limits 
of human depth perception and the need to control 6DOF 
simultaneously, which make it difficult to accurately position 
such a plane [2,28]. This problem can further be aggravated in 
immersive virtual environments by the need to move around to 
find the best view to position such a plane. On the other hand, 
fully automatic systems may frustrate users by removing their 
sense of agency [20,23]. 

In Multiplanes, we implemented an enhanced 3D version of a 
previously presented surface creation approach by Igarashi and 
Hughes [14] called Suggestive Interface, in a desktop interface 
with a mouse as input device. However, their work only supports 
lines, while we also allow curves, arcs, and circles. We also use the 
3D controller pose inside the virtual environment and previously 
created surfaces to define the position and rotation of the new 
surface. The surface generation involves two states. In the first 
state, the user creates a feedback surface while they move the 
controller in the virtual environment. Such visualizations have 
been shown to be a good approach to handle 3D drawing in 
immersive environments [13], where they improve user accuracy. 
In the second state, the user then creates a drawing surface, a static 
visual guide, upon which the user then can draw new strokes. This 
approach also helps users understand the assistance provided by 
the system and lets them make corrections in real time. In 
contrast, in other systems, such as ImmersiveFiberMesh [23], 
when the plane is created after the user draws a stroke, users need 
to do an additional interaction step to change the plane position.  

4.2.1 Feedback Surface: in every frame, the 3D snapping 
algorithm returns the closest stroke parent surface. Together with 
the controller pose, the system then decides on the most 
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appropriate feedback surface for that frame. Our algorithm first 
calculates the relationship between the controller rotation and the 
rotation of the closest stroke parent surface using the dot product 
of their normal vectors with a threshold. The possible 
relationships we consider are parallel, perpendicular, acute45° and 
no relationship. The angular tolerance for determining the 
controller relationship is 10° for parallel and acute45°, and 15° for 
perpendicular planes. These values were heuristically chosen 
through a pilot study, where participants preferred a higher 
angular tolerance for perpendicular surfaces than for parallel and 
acute45° surfaces. To avoid confusing users through the automatic 
change between planes, each plane type has a unique color. The 
second step uses this relationship to determine the drawing 
surface position and rotation. We rotate the plane based on the 
coordinate system of the stroke’s parent surface. However, if the 
controller is inside a beautification trigger point (BTP, see below), 
we use the local coordinate system of the BTP instead. We 
calculate this local coordinate system from the stroke information 
and its parent plane. The first vector of the coordinate system, the 
normal vector, is the plane normal; the second, the right vector, 
depends on the type of geometry (the stored direction vector for 
lines and circles, or the right vector of the plane for general 
curves). The third vector, the forward vector, is defined by the 
cross product between those two vectors.  

 This extra information allows users to better visualize the 
orientation of a new stroke compared to previous strokes. Table 1 
summarizes the relationship between these elements. Finally, our 
algorithm checks if the feedback surface is similar to a previously 
saved surface. To do this, we compare the new surface against all 
the stored surfaces by calculating the dot product of both surface 
normal vectors. If they are parallel, we then see if the new surface 
position is on the second surface by calculating the distance 
between the new surface and the old surface. To consider a surface 
similar to a previous one, the distance needs to be smaller than 
5 cm [22]. When a new surface is in a similar position and 
orientation to a saved plane, we copy the saved surface values to 
the new surface. 

Table 1: Drawing Surface Rotations 

Relationship to closest plane Used Values for new plane 

Parallel Keep controller position, copy 
plane rotation. 

Perpendicular, Acute45° Keep controller position, rotate 
accordingly to relationship. 

No relationship Keep controller position and 
rotation. 

 
Our feedback surface is a 5 × 5 cm square. We decided to 

highlight the surface edges as the user needs to perceive where 
the surface is in space and the orientation of infinite surfaces is 
harder to perceive without texture [29]. This size also helps the 
user perceive the surface as part of their hand/controller/drawing 
device. The color of the feedback surface enables the user to see 
the values used to create it. Green is for existing surfaces rotations 

(i.e., parallel planes), yellow for perpendicular surfaces, orange for 
acute45° surfaces, and blue for entirely new surfaces. Based on our 
experience in pilots, we expect that users quickly associate each 
color with a specific relationship. 

4.2.1 Drawing Surfaces: once the user starts drawing, the 
system creates a static surface with the same rotation and position 
as the displayed feedback surface. The system stores the surface if 
it is a new one, which allows the system to refer later to it for the 
creation of feedback surfaces. If the surface is not new, we add the 
new stroke to the previously generated surface. 

4.3 Beautification Trigger points (BTPs) 
We created a new type of guide called a beautification trigger 

point (BTP). These points trigger actions when the user starts or 
ends a stroke inside them, or when they are crossed during 
drawing, see Figure 3. This way we can improve user accuracy 
and at the same time avoid tracing actions, which are detrimental 
to the aesthetic quality of strokes [2]. Previous work used points 
to show vertex positions like end points and intersections [4], but 
BTPs also show geometrical relationships like parallel strokes. In 
addition, by embedding the trigger points directly inside the 3D 
environment, we enable the user to benefit from multiple depth 
cues (the BTPs are rendered as textured spheres, which diminish 
in visual size with distance), which improves spatial perception.  

 

Figure 3: Different BTPs generated depending on stroke 
shape and the relationship between the plane and 

controller normal vectors. 1) Vertex; 2) Local coordinate 
system, created when another BTP is hit; 3) Vertices 

forming lines parallel to the snapping stroke; 4) Vertices 
forming tangent line to the circle; 5) 8 circle offset BTPs, 
to make it easier to perceive the shape of the offset circle; 
6) Vertices forming lines perpendicular to the snapping 

stroke. 

In Multiplanes, BTPs have multiple functionalities. First, when 
the user is not drawing, they work as normal snapping points and 
effectively help to define starting positions on vertices of previous 
strokes. They also show where to create a stroke relative to 
previous strokes with a given geometric relationship, such as 
parallelism, perpendicularity, or offset circles. The distance of the 
parallel and perpendicular BTPs to the stroke is the same as the 
stroke length. For the circle offset BTPs the distance to the stroke 
is the same as the controller distance to the stroke. Second, while 
the user is drawing, BTPs show position(s) where ending the 
current stroke will snap to a previous drawn stroke. BTPs also 
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help to avoid user mistakes, such as selecting a wrong snapping 
plane or performing a careless hand movement, since hitting a 
BTP automatically triggers the 3D stroke beautification module 
(described below) and updates the drawing surface coordinate 
system with the BTP coordinate system. Triggering the 3D stroke 
beautification module can result in the stroke being beautified, 
based on criteria specific to the module. 

Table 2: BTP Types 

BTP Type  Guide 
Type 

Stroke Type Relationship 

Vertex Vertex Any Any 

Center Stroke Circle Any, less than 
5 cm from circle 
center 

Parallel Stroke, 
Plane 

Line, General 
Curve 

Parallel 

Perpendicular Stroke, 
Plane 

Line, General 
Curve 

Perpendicular 

Tangent Stroke Circle Parallel 

Circle Offset Stroke Circle Any 

 
4.3.1 BTP creation: in each frame, regardless if the user is 

drawing or not, the system creates BTPs when the 3D snapping 
algorithm returns a new closest vertex or changes the guide type. 
To do this our system uses the closest stroke type, the guide type 
and the current mathematical relationship to the controller 
calculated when creating the drawing surface. Table 2 explains 
how these values interact with each other. To avoid the 
generation of too many points inside the virtual environment, 
once we have created a list of potential BTPs, our system uses 
their position to compare them with existing BTPs. The system 
does not store such a duplicated BTP, except when the old point 
is a local coordinate system BTP, in which case the system deletes 
the old BTP. With this strategy, we avoid having old local 
coordinate systems affect the drawing plane when they do not 
match the current stroke. Then we add the new BTPs to the 
existing ones and calculate the distance and direction for each 
BTP to the controller. To further limit the number of points, we 
keep old BTPs generated by a different stroke only if the controller 
is getting closer and oriented towards that BTP. Finally, to reduce 
the visual clutter of showing all potential BTPs, we identify the 
fifteen BTPs that are closest to the controller and display only 
those. 

4.3.2 BTP hit: in our system, users can interact with BTPs by 
“colliding” with them, i.e. intersecting them with the controller 
while drawing a stroke. This collision can be part of a longer 
movement, i.e. when users are drawing strokes with multiple 
sections, which makes it similar to the crossing-based interfaces 
from Accot and Zhai [1]. Or a BTP can be hit at the end of the 
stroke, to finish the stroke at that position. Regardless of the user 
intention, if the controller hits a BTP, we first change its color to 
yellow and send a vibration to the controller to give the user 

haptic feedback that they reached the correct point in space. Then, 
we create special BTPs called Local Coordinate System (LCS) BTPs 
based on the strokes’ local coordinate system. With LCS BTPs, 
users can make use of a local reference frame, if desired, which 
helps, for example, with drawing right-angled geometry 
regardless of orientation of the “base feature”. LCS BTPs are used 
to keep an implicit record of the orthogonality between two 
strokes. They are also useful creating strokes parallel to diagonal 
strokes. 

If the user is drawing when they hit a BTP the drawing surface 
is oriented automatically to map the coordinate system to the local 
coordinate system of the BTP. Hitting a BTP triggers the 3D stroke 
beautification module, which may result in a beautification 
depending on the stroke. A stroke section is an independent 
segment of a stroke, created when the user hits a BTP. Once a new 
section is created, the stroke beautification module no longer uses 
stroke points from previous sections. This approach is 
computationally efficient and lets users create complicated shapes 
with a single multi-section stroke. Finally, if the user exits the BTP 
during drawing we delete that BTP to avoid creating multiple 
redundant stroke sections. 

4.4 3D Stroke Beautification 
Our 3D beautification algorithm identifies the type of stroke 

based upon the geometric relationship between controller 
positions (Figure 4) and automatically beautifies the user stroke to 
the identified type, either circle or line. Automatic identification 
of the stroke type while the stroke is being drawn gives users 
automatic feedback about the detected shape and lets them change 
their hand movement to approve or disapprove that identification. 
Because we focus only on simple shapes in the current prototype 
we only beautify lines and circles, with the objective to see how 
beautification affects the quality of the results. 

Our algorithm works as follows: first we identify the shape of 
the section by using a list of controller positions. To reduce noise, 
we only save controller positions that are separated by at least 
1 cm in space. For this identification, the current section point list 
needs to have more than four positions – having fewer positions 
almost always results in a line. Once we have the required number 
of positions we compute the curvature vector. For this, we utilize 
the 1D version of the 2D surface Laplace-Beltrami operator [24] 
by applying the finite element method to diffusions along 1D 
curves in 3D space. The resulting 1D Laplace-Beltrami operator in 
3D space is computed as follows: let the current vertex be p, and 
the previous and next vertices be pi-1 and pi+1. Let 

L-1= ||p – pi-1||, and L1=||pi+1 – p|| (1) 

The curvature normal is then: 

H = ((pi+1 – p) / L1 – (p – pi-1) / L-1) / ((L1 + L-1) / 2) (2) 

From H, we then compute the curvature k = ||H||. We also 
compute the steering angle, the angle that indicates the rotation 
between p, pi+1and pi-1, as  

cos-1((p-pi-1) / L-1  (pi+1-p) / L1) (3) 

From the curvature and the steering angle of each vertex, we 
calculate the average curvature, the mean angle, and the number 
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of times that the angle changes direction (the zero-cross rate of 
the steering angle) for that section. Depending on these values we 
identify the section as a line, a circle, an arc or a general curve. 
We determined the threshold values heuristically by having users 
draw specific shapes multiple times in a pilot study and finding 
the optimal threshold parameters that works for most cases. The 
second step is to calculate and store the geometric properties of 
that section depending on its type. For general curves we store the 
start, middle and end vertices, for lines we store the start, middle 
and end vertices, plus line direction and length, and for circles we 
store the radius and the center position. 

Figure 4: Line and circle beautification. The third column 
overlays both to facilitate comparisons. 

The start, middle and end vertices are taken directly from the 
vertex list of the section. The line direction and line length are 
calculated using the start and end vertex positions. To calculate 
the radius and center we create a circumscribed circle for our 
points list. This involves creating a triangle for every 3 vertices by 
calculating its edges and then calculating the normal using the 
edges. The radius from those 3 vertices is the magnitude of the 
normal and the center is calculated using the barycentric 
coordinates equation. We avoid doing a regression, as we know 
that all our points are already in the same plane. Once we have 
the radius and center for every 3 vertices, we calculate the mean 
of those values to get the current section radius and center. The 
final step is to calculate the beautified stroke positions using the 
line or circle equation and the calculated values. Again, we use the 
2D equation of a circle and line, as they are projected into a plane. 

4.5 Other User Interactions 

 

Figure 5: Controller user interface for Multiplanes 

Our system supports two additional interactions methods. 
They permit the user to change the stroke size and color (Figure 
5). Stroke size can be adjusted by moving the thumb vertically on 
the touchpad in the right-hand controller. Stroke color can be 

adjusted by moving the left thumb on the left-hand controller 
touchpad. The color space is an HSL plane with saturation on the 
vertical axis and hue on the horizontal one. 

4.6 Implementation 
We implemented this system using Unity (version 5.6.1f1) in 

C# on a 3.60 GHz PC with Windows 10 and an nVidia GTX1080. 
For the virtual reality headset, we used an HTC Vive with two 
standard HTC Vive controllers. Figure 6 show an example of a 
cube created with the system. 

 

Figure 6: Example of a cube created with the implemented 
system. (Left) with Multiplanes and (right) freehand 

drawing. 

5 EVALUATION 
We evaluated Multiplanes with two user studies on novice 

users. One qualitative study evaluated the usability and 
functionality of our prototype. The second quantitative study 
compared the quality of 2D and 3D sketches done with our 
prototype to freehand 3D drawing. We choose to compare our 
system with freehand drawing to let users focus on the underlying 
strokes without the distractions of all other features available in 
commercial systems. Also, having a single software for running 
our study reduced the effect of small differences in interface 
methods and standardized the logging. 

5.1 Usability Study 1 
5.1.1 Participants: we recruited eight participants from the 

undergrad university community. Five were female. All of them 
were between 18 and 24 years old. Among all participants only 
25% had drawing experience in VR. 

5.1.2 Methodology: first, participants were introduced to the 
features of Multiplanes. Then participants used the system in a 
practice phase until they felt comfortable with drawing in 3D. 
Subsequently, they were asked to do a set of simple exercises to 
test their knowledge of the features. These exercise tasks were: 
create a line, create a circle, change color and size of a stroke, draw 
a cube, and draw a smiley face. Once participants could complete 
these tasks, they were instructed to perform the main task: to 
draw a 3D chair. Participants were shown a picture of a chair on 
a piece of paper and the experimenter explained its elements to 
the participants (Figure 7a). They were then instructed to draw 
the chair as accurately as possible, to make sure that all strokes 
touch each other and to avoid adding any extra elements to the 
sketch. Then participants drew the same chair 5 times: one time 
using only drawing surfaces, one time using only BTPs, one time 
using only beautification, one time using the full system and one 
time freehand. When only beautification was enabled, all strokes 
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triggered the beautification module. While drawing, participants 
were asked to use the “think-aloud” method to explain their 
actions. Between each drawing interaction method, participants 
filled a questionnaire and were interviewed briefly about that 
interaction. We used the same order for all conditions for the first 
3 drawings (drawing surface, BTPs, and beautification) to enable 
users to practice each functionality before trying the full system. 
For the last 2 drawings (full system vs freehand) the order of 
conditions was counter-balanced across participants. For the full 
system and freehand drawings participants only did the interview. 
We recorded a video of the participant’s display and their voice 
while they were drawing, as well as their voice during the 
interview sections.  

5.1.3 Design: participants answered a multipart questionnaire 
about ease of interaction, perceived speed, perceived accuracy and 
overall opinion for each interaction method. In the interview 
participants answered questions about their experience while 
drawing the chair and their opinion about the system and the 
interactions. 

5.1.4 Results, Observations & Discussion: all participants could 
complete the tasks, see Figure 7b for several examples. Results 
from the questionnaire were lower than expected (average of 4.5 
on the 7-point Likert scale), see Table 3 for individual scores. 
However, it was particularly interesting that, although the scores 
rated Multiplanes as “medium”, in the interview six participants 
talked positively and were excited about the system and its 
features. For example, participant 4 said “I liked when you 
combined all [methods] together, because when I was drawing the 
chair, I could match the points. I took this plane here and this 
beautification points here. Make sure that it matches up, then I draw 
them together.” On a similar note, participant 5 responded to the 
same question in a similar way, “I loved the full system, like it helps 
with [drawing] flat [content]. And I can use it to see if [things are] 
perpendicular or parallel”. Finally, participant 1 said that “it gives 
a good idea where you are drawing, because it helps you see how the 
planes are correlated in 3D”.  

 

Figure 7: a) The picture of a chair shown to participants b) 
Three examples of chairs created with the implemented 

system. 

The two participants that did not like the full system both 
experienced problems activating the features, especially the BTPs 
and the beautification. For example, participant 2 said that “the 
system doesn’t detect the beautification”. This, together with the 
“think-aloud” transcripts, leads us to believe that the scores 
correspond more to problems with the prototype than real 
problems with the proposed interactions. Figure 7b illustrates 

some of these problems, with some strokes not being beautified 
and some not snapping to previous strokes. 

When asked about the BTPs, most participants liked their 
functionality. For example, participant 4 said that “when I was 
looking at the other side, it kind of helped me to double check to see 
if everything was good. And it was easy because it kind of [popped 
up] and show[ed] me this [BTP] point here to draw the line here”. 
However, they complained that sometimes the BTPs got in their 
way, especially the circle offset BTPs. For example, participant 3 
said that “[I] wanted to draw one line freely, but the points were in 
the way. This was frustrating”. When asked about the plane 
creation and the automatic snapping algorithm, participants used 
the change in color to identify the different relationships, for 
example participant 2 said that “works fine, I understand the 
[plane] colors. Look for it [the color] and get it fast”. Some 
participants found the automatic snapping algorithm too sensitive 
but were still able to use it. For example, participant 4 said that 
“[the plane was] a little bit jerky at times when I was trying to switch 
to a different plane. But when I was trying to draw to a new plane, 
it worked really well”. Finally, when asked about the beautification 
module, participants also had positive words about it. For 
example, participant 6 said that “[beautification] will create the 
lines perfectly straight and circles into proper circles instead of 
distorting them with different starting points. So that was a good 
one”. One problem that participants identified was that the 
algorithm was not sensitive enough and sometimes they felt that 
it was not beautifying their stroke as expected, for example, 
participant 1 said that “I think [it] was trying to, but it keep creating 
a line automatically”. 

We also analyzed the participant’s opinion about drawing 
freehand. Most participants complained about having problems 
when they tried to connect strokes and when trying to draw in 
the same plane without assistance. These results agree with 
previous work [2]. More important, four participants said they 
preferred Multiplanes as it helped them solve these problems. For 
example, participant 6 stated that “I will add the plane because you 
can draw in a particular dimension or axis, rather than beginning in 
a certain axis and ending in another”. And participant 8 stated that 
“drawing freehand is hard because it has no plane and no points”. 
Therefore, based on the interview answers we believe that 
Multiplanes fulfills its design goal to simplify 3D drawing by 
making it easier to draw shapes accurately, particularly by 
removing the need to correctly judge the depth of a stroke while 
drawing. 

Table 3: Study 1 Likert Scores 

Interaction Ease Speed Accuracy Overall 

Drawing Surface 4.9 4.5 4.6 5.5 

BTPs 4.8 4.6 3.9 4.6 

Beautification 4.9 4.6 4.3 5 



Multiplanes: Assisted Freehand VR Drawing SUI’2018, Berlin, Germany 

 

 9 

5.2 Study 2: Comparison with freehand 
drawing 

In this study we aimed to compare the quality of Multiplane 
drawings with freehand 3D sketches. We used a similar version of 
Multiplanes, with fixes for some of the usability problems that 
might have affected the results of the first study.  

5.2.1 Participants: we recruited six paid participants from the 
university community. 50% were female. 50% of the participants 
were between 18 and 24 years old, 34% were between 25-34 years 
old, and 16% were between 35 and 44 years old. Among all 
participants only 33% had drawing experience in VR. 

 

Figure 8: a) The sketch of a flower in a pot shown to 
participants. B) The sketch of a 3D house with a tree 

shown to participants 

5.2.2 Methodology: participants experienced the same 
introduction, training and explanation phase as in study 1. Figure 
8 shows the sketches shown to participants to explain the task. 
However, in this experiment participants performed two drawing 
tasks, each with Freehand and Multiplanes, for a total of four 
drawings. The first drawing was a 2D sketch of a flower in a pot 
and the second one was a 3D house with a tree (Figures 9 and 10). 
For the 2D sketching tasks, participants were not permitted to 
move away from their starting position. For the 3D sketch tasks 
participants were encouraged to move around the sketch. We 
evaluated both 2D and 3D sketches, because we wanted to see if 
the accuracy problems in VR drawing are caused only by depth 
perception errors or also by the user spatial perception of the 3D 
environment and their navigation within it. Such issues may 
become more pronounced when the user moves around in the 
virtual environment than when they stay in the same place. 
Between drawing tasks, participants were permitted to rest for up 
to five minutes. Once participants finished the 3D task, they were 
asked to answer a questionnaire. Screen recordings of the 
participants were done to later evaluate the quality of the 
drawings. 

5.2.3 Design: the study used a 2x2 within-subjects design. The 
independent variables were interaction technique (freehand and 
multiplanes), and sketch type (2D and 3D). The order of conditions 
across both dimensions was counter-balanced across participants. 
We coded their final drawings using the method from Wiese et al. 
[33] to evaluate the quality of the drawings based on the strokes. 
This coding method evaluates the quality of a drawing using four 
categories: a) line straightness, b) matching of line pairs, c) degree 
of deviation, and c) corrective movements. Drawings can get up 
to 3 points in each category and the total score is the sum of these 

values (maximum 12 points). Finally, participants answered a 
usability questionnaire similar to study 1.  

 

Figure 9: Examples of 3D drawings created by participants 
(top Multiplanes, bottom Freehand). 

 

Figure 10: Examples of 2D drawings created by 
participants (top Multiplanes, bottom Freehand). 

 

Figure 11: Drawing Scores for each interaction technique 
divided by sketch type. 

5.2.4 Results & Discussion: all participants could complete the 
tasks, see Figure 9 & 10 for several examples. We analyzed the 
total scores for each drawing using repeated measures ANOVA 
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with α = 0.05. The data was normally distributed. Table 4 shows 
the average scores for each condition. Statistical results are 
reported below: 

Interaction Technique (F1, 5 = 107.8, p < 0.001): overall, there 
was a significant main effect of score on interaction technique, see 
Table 4 and Figure 11. Average score for drawings made with 
Multiplanes (m = 9.9, SD = 1.24) were significantly higher than for 
freehand drawings (m = 7.8, SD = 1.34). Cohen’s d = 1.6 identifies 
a large effect size. 

Sketch Type (F1, 5 = 12.11, p < 0.05): overall, there was a 
significant main effect of score on sketch type, see Table 4 and 
Figure 11. The average score for 2D drawings (m = 9.7, SD = 1.37) 
was significantly higher than for 3D drawings (m = 8.1, SD = 1.56). 
The effect size was again large (d = 1.1). 

Interaction Technique × Sketch Type (F1, 5 = 0.05, p = 0.83): there 
was no significant main effect of interaction technique on sketch 
type. 

Table 4: Study 2 Drawing Accuracy Scores,  
higher scores are bolded 

Drawing 2D 
Freehand 

2D 
Multiplane

s 

3D 
Freehand 

3D 
Multiplanes 

Line 
Straightness 

2.3 3.0 1.7 2.3 

Match Line 2.5 2.5 1.8 2.3 

Degree 
Deviation 

1.7 2.7 1.5 2.0 

Corrective 
Movement 

2.2 2.5 2.0 2.5 

Total 8.7 10.7 7 9.2 

 
Although our study had a small number of participants, the 

effect sizes were large, and the mean difference between groups is 
larger than one standard deviation. Together with the visually 
more appealing drawings created with Multiplanes, this motivates 
us to believe that Multiplanes is better than freehand drawing for 
VR sketching. 

When analyzing the questionnaire results, most participants 
liked the freedom of freehand drawing. Yet, the results also show 
that they appreciated the benefit of higher accuracy achievable 
with Multiplanes. Moreover, they rated the ease of interaction, 
automatic and unobtrusive beautification, and the BTP 
functionality high (average of 5.5 on the 7-point Likert scale or 
better). The results of study 2 together with those from study 1, 
confirm that Multiplanes help increase accuracy when drawing in 
VR by providing interactions that help reduce depth perception 
and visuomotor errors. 

An interesting finding was that for both systems 2D drawings 
had higher scores than 3D drawings. This finding is also reflected 
in the questionnaire results, where the ratings for the 2D sketches 
were in general higher. These results lead us to hypothesize that 
the higher cognitive load when drawing in VR is not only a 

consequence of depth perception issues and higher visuomotor 
skill requirements, but also reflects challenges with the user’s 
spatial perception of the environment. 

6 CONCLUSION 
We presented Multiplanes, a VR freehand drawing assistant 

that incorporates novel interaction techniques, which help users 
be more accurate. Our work aims to help users, especially non-
artists, in creating sketches of concepts or ideas that rely on 
geometrical relationships between strokes, such as parallel 
features. For the current controller pose and stroke, Multiplanes 
automatically identifies an appropriate drawing surface. The 
system then also displays guides beautification trigger point 
guides, called BTPs, based on previous strokes. These guides show 
geometrical relationships to previous strokes and snapping 
points. Multiplanes also automatically beautifies a stroke in real-
time while the user is drawing it or when users hit a BTP. Our two 
studies identified that participants liked the system and 
appreciated the increased accuracy they could achieve with it. Not 
only that, but an analysis of the stroke quality show that 
Multiplanes drawings had a better quality than freehand 
drawings. We believe that this difference is a consequence of our 
design since Multiplanes addresses some of the depth perception 
and visuomotor errors present in VR systems, which cause 
problems, for example, when joining two lines or correctly 
identifying the drawing surface of a stroke. In the future we plan 
to extend the functionality of Multiplanes. 

6.1 Limitations 
In our current system we only implemented planar surfaces as 

we wanted to focus on evaluating our automatically generated 
surfaces in a reasonably simple context. This approach limits the 
variety of sketches that can be created in our system to planar 
shapes. We believe the design of the Multiplanes interaction 
techniques can be generalized to non-planar surfaces, perhaps 
based on arcs or freeform curves, which will let users draw shapes 
such as animals and humanoids. We plan to include such types of 
surfaces in a future version of our system. Another limitation is 
that the beautification system only beautifies to arcs, circles and 
lines. In the future, we plan to further improve our system to use 
a larger variety of shapes, including spline curves.  
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