
Evaluating Automatic Parameter Control Methods for
Locomotion in Multiscale Virtual Environments

Jong-In Lee

Simon Fraser University,

Adobe Research

jonginl@sfu.ca

Paul Asente

Byungmoon Kim

asente@adobe.com

bmkim@adobe.com

Adobe Research

Yeojin Kim

Ewha Womans University,

Adobe Systems

kim@adobe.com

Wolfgang Stuerzlinger

Simon Fraser University

w.s@sfu.ca

ABSTRACT

Virtual environments with a wide range of scales are becoming com-

monplace in Virtual Reality applications. Methods to control loco-

motion parameters can help users explore such environments more

easily. For multi-scale virtual environments, point-and-teleport lo-

comotion with a well-designed distance control method can enable

mid-air teleportation, which makes it competitive to flying inter-

faces. Yet, automatic distance control for point-and-teleport has not

been studied in such environments. We present a newmethod to au-

tomatically control the distance for point-and-teleport. In our first

user study, we used a solar system environment to compare three

methods: automatic distance control for point-and-teleport, man-

ual distance control for point-and-teleport, and automatic speed

control for flying. Results showed that automatic control signifi-

cantly reduces overshoot compared with manual control for point-

and-teleport, but the discontinuous nature of teleportation made

users prefer flying with automatic speed control. We conducted a

second study to compare automatic-speed-controlled flying and

two versions of our teleportation method with automatic distance

control, one incorporating optical flow cues. We found that point-

and-teleport with optical flow cues and automatic distance control

was more accurate than flying with automatic speed control, and

both were equally preferred to point-and-teleport without the cues.

CCS CONCEPTS

• Human-centered computing → Human computer interac-

tion (HCI); User studies.

KEYWORDS

VR navigation, Automatic control, Point-and-teleport, multiscale

virtual environments

ACM Reference Format:

Jong-In Lee, Paul Asente, Byungmoon Kim, Yeojin Kim, and Wolfgang

Stuerzlinger. 2020. Evaluating Automatic Parameter Control Methods for

Locomotion in Multiscale Virtual Environments. In 26th ACM Symposium

on Virtual Reality Software and Technology (VRST ’20), November 1–4, 2020,

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

VRST ’20, November 1–4, 2020, Virtual Event, Canada

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-7619-8/20/11. . . $15.00

https://doi.org/10.1145/3385956.3418961

Figure 1: Navigation that requires both long-distance and

fine-grained movement in an unconstrained multiscale VE.

Images (a)-(c) illustrate a user teleporting with manual dis-

tance control. (d)-(f) show our method, which automatically

controls the distance based on the proximity of the sur-

roundings and enables efficient travel. Our second method

provides continuous visual updates (g)-(i), which lets users

track the direction to the target more effectively. Reversing

the pathswould requiremid-air navigation, which could not

be accomplished with traditional point-and-teleport.

Virtual Event, Canada. ACM, New York, NY, USA, 10 pages. https://doi.org/

10.1145/3385956.3418961

1 INTRODUCTION

Locomotion is a core navigation task in Virtual Environments (VEs).

Changing poses through a Virtual Reality (VR) locomotion interface

lets users find appropriate viewpoints for activities like inspection,

selection, and manipulation. Multiscale VEs present special chal-

lenges for such activities. These environments occur in many fields,

including cosmology, medicine, and architecture [9, 17, 23, 40]. Fea-

ture sizes and the distances between them vary widely, often by

many orders of magnitude. Such VEs contain features ranging from

mountains to molehills, or even from planets to individual plants.

While exploring a new environment, users must be able to quickly

traverse the large gap between major objects without getting lost in

https://doi.org/10.1145/3385956.3418961
https://doi.org/10.1145/3385956.3418961
https://doi.org/10.1145/3385956.3418961


VRST ’20, November 1–4, 2020, Virtual Event, Canada Jong-In Lee, Paul Asente, Byungmoon Kim, Yeojin Kim, and Wolfgang Stuerzlinger

empty space [11] while still having sufficient fine-grained control to

inspect and manipulate small details. Using constant travel param-

eters, especially speed, would be impractical. A speed that is low

enough for a detailed explorationwould be too slow to cross the vast

empty spaces between major objects, and one that is suitable for

large spaces would make it impossible to accurately move among

small objects (Figure 1). Furthermore, high speeds are known to

cause overshooting—passing an intended target [38].

To resolve this problem, the usermust be able to change the travel

parameters. However, manually controlling speed, acceleration, and

gain for travel at different scales is challenging. Extra cognitive load,

longer travel times, and greater distances lead to higher navigation

error rates [1]. It is useful to distinguish between surface-viewpoint

and unconstrained-viewpoint VE navigation, a distinction that has

been made in previous work [25, 34]. In the first, a user virtually

stands on a ground plane or another object, with a viewpoint some

distance above the standing position. In the second, the viewpoint

can be positioned arbitrarily in space. Surface-viewpoint VE nav-

igation is simpler since there is always some geometry present

that the user can use to specify a destination. With unconstrained-

viewpoint VE navigation, there might be nothing near the intended

destination. Flying is one technique for navigating a multiscale

VE with an unconstrained viewpoint. Researchers have proposed

several automatic speed control techniques for it [1, 27, 33, 38].

However, automatic distance control for the other major navigation

interfaces, such as teleportation, remain unstudied.

Since Bowman et al. [6] showed that pointing-based techniques

are comfortable to use through the decoupling of viewing and mov-

ing actions, and perform better than gaze-based technique, tele-

portation had been studied in VR research [3, 5, 13]. After decades,

Bozgeyilkli et al. presented a similar technique called “Point-and-

Teleport” [7]. It showed that point-and-teleport is intuitive, easy-to-

use, and does not necessarily lead to spatial disorientation, as long

as the orientation is preserved. This makes it the dominant ego-

centric technique for constrained-viewpoint navigation, with the

user’s viewpoint bound to surfaces, and it is now commonly used

in commercial VR applications. However, such point-and-teleport

techniques require users to specify a target destination on a 2D sur-

face, making them impossible to use for unconstrained-viewpoint

VE navigation. One of a few exceptions is the work of Drogemuller

et al. [8], which uses pointing direction and manual distance control

to specify a destination in space.

In this paper we present a novel approach to automatically con-

trol the user’s teleport distance, letting the user easily teleport to

destinations in multiscale VEs by simply aiming the controller. It

uses the distance between the user’s viewpoint and the closest sur-

face combined with the gradient computed from the distance field

of the scene. To evaluate our new method, we conducted a user

study in a large open VE and compared our method with flying with

automatic speed control, currently the most prominent locomotion

technique in Multiscale VEs, and with teleportation with manual

distance control. The results showed that our method decreases

task completion time, task load, and allows more precise naviga-

tion in a large open VE. However, due to its discontinuous nature,

participants found it challenging to use in terms of spatial updating.

To address this issue, we implemented a variant of our method

incorporating continuous movement, and assessed its effectiveness

in another study. The results showed that this variant enabled users

to navigate more accurately in a dense VE.

2 RELATEDWORK

Teleportation has been widely used for various VR applications

[12, 32, 35, 36]. In VR research, portal-based teleportation for a

CAVE was proposed by Freitag et al. [13], which let users create

a “target portal” by pointing at any visible position and entering

a “start portal” to jump to the target. Authors reported that this

technique frequently caused a loss of orientation after exiting the

portal. Liu et al. [22] later presented redirected teleportation for

HMDs, which is similar to Freitag’s approach, but addressed the

disorientation issue by creating portals that gradually redirect the

user towards the center of the tracking space.

Since Bowman et al. identified the advantages of pointing-based

locomotion [6], several subsequent studies investigated pointing-

based teleportation. Bolte et al. [5] proposed a technique in which

users aim their heads to the target and then physically jump for-

ward to execute teleportation. Even though this technique does not

require an additional input device, it is impractical for a long usage

due to its physical inefficiency. Bozgeyikli et al. [7] later proposed

a point-and-teleport technique that was easier and less physically

fatiguing. Since then, many researchers studied its properties. Xu et

al. [45] found that a user’s performance in building spatial knowl-

edge was not significantly different between point-and-teleport,

joystick, and walk-in-place techniques. Also, Frommel et al. [14]

found that point-and-teleport induced the least discomfort com-

pared with teleportation to predefined positions, automatic loco-

motion, and joystick-based techniques. Bhandari et al.[4] presented

the “Dash” teleportation technique that moved the user’s viewpoint

continuously to the destination. While there was no difference

in VR sickness between Dash and regular teleportation, Dash sig-

nificantly improved the path integration process, which mentally

updates one’s position and orientation from the initial position [24].

Researchers also introduced different techniques that enable pre-

defining the orientation before teleporting[10, 15]. These decreased

the need to correct the orientation afterwards, but required extra

time and effort to specify that orientation before travel execution.

The techniques and user evaluations in these studies focused on

2D constrained-viewpoint teleportation where the user is always

moving parallel to a ground plane. However, for unconstrained-

viewpoint VE navigation, one must be able to specify destinations

in mid-air, whether there is geometry nearby or not, making these

techniques unusable. Drogemuller et al. [8] let users teleport to

arbitrary destinations by pointing the controller and specifying a

distance through a trackpad, but their VEs were neither particularly

large nor multiscale. They performed extensive evaluations, but

not in the kinds of environments we are investigating.

When navigating in a multiscale VE, travel parameters like speed

should be controlled in a way that lets users explore the scene easily.

Constant speed without control can lead to various problems. A

user may feel frustrated if travel speed is either too slow, substan-

tially increasing travel completion time, or too fast, leading the

user to overshoot and forcing them to turn around and readjust the

viewpoint frequently. However, manual speed control increases the

complexity of the interface. Trindade and Raposo [38] found that

users tend to make errors manually controlling the speed, which



Evaluating Automatic Parameter Control Methods for Locomotion in Multiscale Virtual Environments VRST ’20, November 1–4, 2020, Virtual Event, Canada

Figure 2: The figure on the left shows 3D objects rendered

with raycasting and the right shows a visualization of a

plane through the signed distance field. Values are negative

in the blue area and positive in the red area. The level of

saturation shows the magnitude of the value.

leads to increased travel times and lower usability. Researchers

have studied various approaches to automatic speed control for

flying. Since Mackinlay et al. [26] first suggested a speed control

method based on the target distance, Ware and Fleet [41] presented

a method that considers distances to visible points and found that

both the minimum and average distance work well. McCrae et al.

[27] proposed a cubemap-based approach that generated six depth

maps by looking from the viewpoint in the six axial directions with

90
◦
frustums, then computed a weighted average from the depth

maps to control the speed. Trindade and Raposo [38] improved

this method for multiscale VE navigation by using an exponential

weighted average between the global minimum and the distance to

the closest object in the view direction. This avoided having nearby

out-of-sight objects influence the global minimum, which slowed

the travel speed drastically when traveling close to any objects.

Papoi and Stuerzlinger [33] further improved on this approach by

weighing the contribution of all scene content in the forward di-

rection depending on its closeness to the view vector. Argelaguet

et al. [1] developed an approach that adjusted the speed to main-

tain constant optical flow. They found no significant difference

between their method and other distance-based approaches. Arge-

laguet and Maignant then developed the GiAnt technique, which

automatically adjusts flying speed and the VE scale factor to keep

the perceived speed constant and to avoid diplopia [2]. Taunay

et al. proposed a spatial partitioning heuristic for controlling the

speed in static scenes and later extended it for dynamic scenes

through distributed computation [37]. Even though previous work

presented different approaches for automatically controlling flying

speed, automatic distance control for teleportation remains unstud-

ied. Here, we present a new technique that automatically controls

distance to enable users to teleport in any pointed direction even

when nothing exists in that direction in the air.

3 AUTOMATIC DISTANCE CONTROL

Our new automatic distance control technique uses a signed dis-

tance field of the entire scene for distance calculations. We generate

this distance field once for the whole scene using an efficient hier-

archical octree-based method [21], which we modified to support

very large spaces with a high level of detail. The distance of each

cell was calculated as the Euclidean distance between its center and

the center of the closest non-void voxel. The field enables users

to benefit from automatic distance control for unconstrained ex-

ploration in any unknown environment. This differentiates our

approach from the NaviFields method, which requires predefining

target positions [30]—a time-consuming approach this is not fea-

sible for large environments. Figure 2 visualizes a distance field

around three spherical objects. Because distances can be precom-

puted with a distance field, the computation at runtime is much

faster than for the cubemap approaches, which require substantial

computation at each frame [27, 33, 38]. While our user studies use

static scenes and precomputed distance fields, it is also possible to

support dynamic scenes by updating distance fields in real-time

with GPU computation or distributed methods [37].

We calculate the teleportation displacement based on the dis-

tance field and its gradient. The length l of the teleportation vector

from the position of the controller c is:

l = f (c) + kd · ∇f (c) (1)

In the above equation, f (c) is the value of the distance field at

c, and k is a weight that controls how much the field gradient

affects the distance. Using a pilot study, we determined that setting

k to 1 prevented users from colliding with an object that they

are approaching while still minimizing the number of teleports.

d is a unit vector in the direction pointed to by the controller

(Figure 3). l is affected by the distance from the controller to the

closest surface as given by the distance field function. Then, the

pose of the controller d influences the final value of l . The value
increases when the controller is aimed in the same direction as

the gradient vector and decreases when the controller is aimed

against it. Since the gradient vectors always point outward from

the closest surface, this method prevents users from teleporting

directly onto a surface. It also lets them quickly teleport away from

nearby surfaces. If a user stands on a large surface, points up into

mid-air, and triggers multiple teleports, the distance will gradually

increase as the user moves further from the surface. Conversely, the

distance will gradually decrease as the user approaches an object,

reducing the potential for overshooting.When the teleport direction

is parallel to a surface, the distance depends on the height above

the surface, with larger heights triggering longer teleports. When

traversing a narrow tunnel, the gradient vectors in the centerline are

perpendicular to the movement direction, which makes the second

term of the equation zero, and thus the distance is only determined

Figure 3: The teleport distance is based on the distance to

the closest object and the gradient at the controller position.

(a) illustrates the position of the controller c, the closest dis-

tance f (c) retrieved from the distance field, and the gradient

at the controller’s position ∇f (c). In (b), the gradient is pro-

jected onto the pointing vector and increases the length of

the ray by the magnitude of the projected vector.



VRST ’20, November 1–4, 2020, Virtual Event, Canada Jong-In Lee, Paul Asente, Byungmoon Kim, Yeojin Kim, and Wolfgang Stuerzlinger

Figure 4: The experiment included two sessions. (a) In the

first session, PlanetTask, participants were asked to travel

large distances and collect targets in a solar-system like envi-

ronment. (b) In the second session, TunnelTask, they were

asked to travel through a tunnel and to collect targets along

its walls. (c) The instruction for the current task, displayed

below the current teleport distance.

by the first term. We did not incorporate viewing direction into

the equation to decouple pointing action from head movement.

This enables users to even point behind them to back away from a

surface while facing it to get a better view.

4 USER STUDY 1: LOCOMOTIONWITH

AUTOMATIC PARAMETER CONTROL IN A

LARGE OPEN ENVIRONMENT

We conducted a user study to evaluate our automatic distance

control for point-and-teleport (AutoTeleport) in comparison to

automatic speed control for flying (AutoFlying) and to manual

distance control for point-and-teleport (ManualTeleport) .

4.1 Design

A single-variable within-subject design with three navigation Tech-

niques were used: ManualTeleport, AutoTeleport, AutoFlying.

For AutoTeleport and AutoFlying, users only had to point the

controller held in their dominant hand and push the touchpad to

teleport or to fly. We designed an automatic speed control similar to

previous work [27] that uses the minimal distance from the user’s

viewpoint to the nearest geometry to determine flying speed.
1
To

develop ManualTeleport for mid-air point-and-teleport, we built

on a technique from previous work, where users control the dis-

tance using the touchpad [8].
2
The y-touch position determined

the speed with which the teleport distance changes—touching the

upper or lower part of the touchpad made the distance longer or

shorter, with the rate of change controlled by how far the touch

was from the center. The distance increased or decreased by up to

0.2m every 10 milliseconds. This mapping was determined through

a pilot study, where we aimed to balance the goals of letting users

quickly set a desired distance while not being too sensitive, to avoid

large over- and undershoots. To improve the technique, we devel-

oped additional features. First, we moved the distance control input

to the controller held in the non-dominant hand so that the the dom-

inant hand controlled solely pointing and executing teleportation.

This let users change distance and point-and-click at the same time.

In the pilot study, we observed that users could travel to intended

1
We did not use Trindade et al.’s method [38] because it uses a single ray, which

introduces instability in large environments. We did not use GiAnt [2] because it also

scales the environment. Other work has been done since our user study [33, 37].

2
Funk et al.’s technique [15] is newer, but it only supports targets on surfaces and does

not allow mid-air teleportation.

positions quicker and more comfortably compared with the inter-

face that combined all functionality onto a single controller. Second,

we let users reset the distance to its initial value by pressing the

distance-control touchpad. Results showed that users sometimes

increased the distance so much that it took a long time to return to

a reasonable value.

Montello’s taxonomy identifies two components of navigation:

locomotion and wayfinding [31]. The scope of this study was lo-

comotion, the motor component of navigation. As this study was

not about an aided wayfinding task [43], we did not incorporate

guidance and visualization techniques for selecting distant targets,

such as that done by Mendes et. al [29].

The studywas split into two sessions. First, we asked participants

to navigate to targets in a solar-system-like multiscale environment,

with all targets being placed far apart (PlanetTask). Second, par-

ticipants were asked to acquire targets while travelling through a

tunnel (TunnelTask).

4.2 Participants

We recruited 15 participants for the study from the local university.

There were ten males and five females, and the average age was 24.3

(SD=4.09). All participants had experience with 3D games. They

were compensated with 15 Canadian dollars for their participation.

4.3 Apparatus and Environment

Our experiment was conducted with an HTC Vive HMD, with

1080 × 1200 pixels for each eye, and Vive controllers for input. The

physical space was 3m × 3m, spacious enough to let participants

turn freely and perform point-and-teleport in any direction.

To evaluate our distance control method, we sketched the solar

system in the Canvox system
3
. The VE contained celestial bodies of

varying scales, with a sun, nine planets and hundreds of asteroids

in two asteroid belts. The diameter of the sun was more than 100

times larger than that of the smallest object in the asteroid belts.

The HUD interface always showed the current teleport distance

or the flying speed, instructions for the current task, and a target

direction indicator (Figure 4), rendered as a 3D green arrow pointing

towards the target. In ManualTeleport and AutoTeleport, the

interface included a cyan vector with a green sphere at the far end

to visualize where the user would end up with a teleportation using

the current settings. In AutoFlying, it included a cyan cone at the

tip of the controller to visualize the direction of flying.

4.4 Task

In the first part of the experimental task session, they were asked

to “collect” 14 targets as quickly as possible by navigating to them.

A target was considered to be collected when the user’s HMD

position overlapped with it. The targets were positioned far from

each other (Figure 4(a)). The user could not see the next target from

the current one, because they were either much too far away to

be visible or were hidden behind other celestial bodies. The label

of the planet with the current target was always visible regardless

of the distance. Participants were shown a description of how to

3
Canvox is a volumetric VR painting system that uses an efficient dynamic octree data

structure together with GPU acceleration [21]. We used this system because of its

hierarchical-distance field computation and octree traversal faster than other 3D game

engines. High-performance of these features was crucial for our method to provide

smooth navigation experience without any notable latency and error in teleportation

distance calculation.



Evaluating Automatic Parameter Control Methods for Locomotion in Multiscale Virtual Environments VRST ’20, November 1–4, 2020, Virtual Event, Canada

get to the next target’s location, for example, “Go to the south pole

of Uranus,” and asked to follow a direction indicator to find the

way to the target. We refer to this as the PlanetTask. The second

task required subjects to collect 20 targets along the walls of the

tunnel mentioned above as quickly as possible (Figure 4(b)). We

call this the TunnelTask. All the targets in both task were at the

same locations across different conditions.

4.5 Procedure

First, participants were asked to complete a brief questionnaire

about their background. After the survey, they were asked to wear

the HMD and hold both of the controllers while standing in the

middle of the experimental space. They were encouraged to ro-

tate their body freely, but asked to stay roughly in the middle.

Participants encountered the three conditions, (AutoTeleport,

ManualTeleport, and AutoFlying) in counterbalanced order to

cancel learning effects. In each condition participants were first

instructed in the use of the current navigation interface and con-

ducted seven practice travel tasks. Before conducting the first part

of the main experimental task, they were asked to read the task

instructions out loud to make sure that they fully understood the

current task. Before starting TunnelTask, they also performed six

practice tasks collecting three targets in the tunnel. To prevent col-

lisions, the interfaces did not let users jump or fly into any objects.

AutoTeleport prevented this automatically. If the user tried to

jump into an object with ManualTeleport, the interface ignored

the action and played an error sound. Similarly, the interface played

an error sound and ignored the action when the users tried to fly

into an object using AutoFlying. After finishing both parts of the

experimental task, participants were asked to fill out a simulator

sickness (SSQ) [20] and NASA task load index (NASA-TLX) [18]

questionnaire. Then they experienced the other two experimental

conditions in sequence. Users then completed a post-task question-

naire. All techniques had identical settings for the view parameters.

The average study duration was about 90 minutes.

4.6 Result

We analyzed the collected data for task completion time and task

load of all three methods. We conducted inferential analysis using

repeated-measures ANOVA with α = 0.05 in R.

4.6.1 Task Completion Time. For PlanetTask, Mauchly’s test

showed that the sphericity assumption was violated for Technique.

Therefore, we adjusted the degree of freedom using Greenhouse-

Geisser correction (ϵ = 0.81). The one-way ANOVA identified a

significant difference on task completion time between control

methods (F (1.62, 22.71) = 30.69,p < .0001). Post-hoc analysis with
Tukey-HSD revealed that the ManualTeleport method was sig-

nificantly slower than AutoTeleport (p < .0001) and AutoFlying
(p < .0001), while AutoTeleport and AutoFlying were not differ-

ent from each other (p = 0.87) (Figure 5). The ANOVA for Tunnel-

Task revealed that the task completion times between control meth-

ods was again significantly different (F (2, 28) = 30.69,p < .0001).
Unlike the first task, pairwise comparison showed that the Auto-

Teleport method was not only significantly faster than Manual-

Teleport (p < .0001), but also than AutoFlying (p < .05). Auto-

Flying and ManualTeleport were significantly different from

each other (p < 0.001).

Figure 5: (a) In PlanetTask, AutoTeleport reduced task

completion time significantly compared with Manual-

Teleport, but there was no difference from AutoFlying.

(b) However, in TunnelTask, AutoTeleport significantly

reduced completion time compared with the others. Error

bars show 95% confidence intervals.

Figure 6: There were significant differences between Tech-
niques for the most categories except for Temporal demand.

The overall task load of ManualTeleportwas significantly

higher thanAutoFlying andAutoTeleport. There was no

difference between AutoFlying and AutoTeleport. Error

bars show 95% confidence intervals.

4.6.2 Number of Trigger Presses. The average number of trig-

ger presses for each control method were: ManualTeleport (M =
26.09, SD = 13.92), AutoFlying (M = 10.13, SD = 7.41), Auto-

Teleport (M = 23.54, SD = 2.01). An ANOVA identified a signifi-

cant difference between control methods in terms of trigger presses

(F (2, 28) = 22.329,p < .0001). Post-hoc analysis with Tukey’s HSD

revealed that the number of trigger presses for AutoFlying is

significantly smaller than AutoTeleport (p < .0001) and Manual-

Teleport (p < .0001), but there is no difference between Auto-

Teleport and ManualTeleport.

4.6.3 Overshoot. We detected an overshoot when the dot prod-

uct of the last and the current travel direction became negative, i.e.,

when participants reversed their direction. The average number

of overshoot occurrences for each control method were: Manual-

Teleport (M = 37.8, SD = 6.55), AutoFlying (M = 23, SD = 8.94),

AutoTeleport (M = 21, SD = 6.50). An ANOVA identified a

significant difference between control methods in terms of occur-

rences of overshoot (F (2, 28) = 37.97,p < .0001). Post-hoc analysis
with Tukey’s HSD revealed that the number of overshoot occur-

rences of ManualTeleport is significantly higher than Auto-

Flying (p < .0001) and AutoTeleport (p < .0001), but there is no
difference between AutoFlying and AutoTeleportḞor the most

of the TLX sub-categories except for Temporal demand, there were

significant difference between Technique (Figure 7).



VRST ’20, November 1–4, 2020, Virtual Event, Canada Jong-In Lee, Paul Asente, Byungmoon Kim, Yeojin Kim, and Wolfgang Stuerzlinger

Figure 7: The graphs show each participant’s trajectory with

projected distance for conducting task #8 in PlanetTask:

going to the south pole on Uranus from Pluto, which was

outside the outer asteroid belt. The number above each

graph is the participant ID. To get the projected distance, a

position vector from the current target to the user’s HMD

position was projected onto the ideal vector from the cur-

rent target position to the previous one. Participants tended

to overshootmorewithManualTeleport andAutoFlying

than with AutoTeleport.

4.6.4 Collision. The average of collisions for each Technique

were: ManualTeleport (M = 0.21, SD = 0.57), AutoFlying

(M = 0.15, SD = 0.71), AutoTeleport (M = 0.14, SD = 0.50).

An ANOVA did not identify a significant difference between Tech-

nique in terms of the number of collisions (F (2, 28) = 1.14,p = 0.33).

4.6.5 Task Load Index. The averages of the overall task load of

each control method measured with the NASA-TLX questionnaire

were: ManualTeleport (M = 54.00, SD = 18.57), AutoFlying

(M = 37.53, SD = 15.71), AutoTeleport (M = 43.06, SD = 19.38).

An ANOVA identified a significant difference between control meth-

ods in terms of overall task load score (F (2, 28) = 11.77,p < .0001).
Post-hoc analysis with Tukey’s HSD revealed that the overall task

load of ManualTeleport is significantly higher than AutoFlying

(p < .001) and AutoTeleport (p < .03), but there is no difference

between AutoFlying and AutoTeleport (Figure 6).

4.6.6 Simulator SicknessQuestionnaire. The average SSQ scores

of each Technique were: ManualTeleport (M = 7.31, SD = 9.81),

AutoFlying (M = 13.52, SD = 18.11), and AutoTeleport (M =

7.19, SD = 9.08). For PlanetTask, Mauchly’s test of sphericity

showed that the assumption was violated for Technique. Therefore,

we adjusted the degree of freedom using Huynh-Feldt correction

(ϵ = 0.65). One-Way ANOVA showed that there was a significant

difference on the SSQ score between Techniques (F(1.31,18.31)=4.06,

p<0.05). Post-hoc analysis with Tukey’s HSD revealed that the SSQ

score of AutoFlying was significantly higher than AutoTeleport

(p < .05), and higher than ManualTeleport but not significantly

so (p = 0.05). There was no significant difference between Manual-

Teleport and AutoTeleport.

4.6.7 Post-TaskQuestionnaire Response. Nine participants pre-

ferred AutoFlying to ManualTeleport and AutoTeleport. Six

of them explained that the method was “easy to use”, and four

answered that it was “comfortable”. Several explained why Auto-

Flying was the easiest. P100 explained that “Flying was smoother

and more realistic and familiar.” P108 described using AutoFlying

as having “Not much physical and mental effort and less frustration.

It is a lot more comfortable than other methods because I get a feeling

of control.” Those who did not prefer AutoFlying explained that

the method “causes nausea” (P109), “motion sickness” (P112) when

the participant went through cluttered spaces, and that it was diffi-

cult to get used to it because of “abrupt speed changes” (P107) so it

“speeds up too fast, and [slows] down too much” (P111).

Three participants reported that they preferred AutoTeleport.

Most of them explained the reason was that it was more “easy to

use” than the others. P113 described AutoTeleport as “didn’t have

to think too much by looking at the distance above.” P114 commented

that “it gives me more confidence to get me where I wanted.” Five

participants who did not prefer AutoTeleport responded that

it was physically “tiring” and required multiple presses to get to

the intended position. Three participants commented about the

discontinuity of travel with point-and-teleport. P103 described the

method as “jumpy” and P101 described it “didn’t flow as smoothly.”

Three participants preferred ManualTeleport. They explained

that “I had control over my decisions and preferences” (P107), and “I

prefer to have the level of control” (P109). Of those that did not prefer

ManualTeleport, six said it was demanding and difficult to use.

The other six mentioned they had difficulty estimating the distance

with ManualTeleport and overshot the targets frequently.

4.7 Discussion

Our study showed that AutoTeleport reduced overshooting and

enabled traveling a large distance as quickly and efficiently as one of

the prominent methods, AutoFlying. Users traversed small tunnels

more quickly than either ManualTeleport or AutoFlying. Our

approach reduced the under- and overshooting associated with

manual control, which delayed completing tasks. AutoTeleport

also reduced the overall task load compared to ManualTeleport.

Manual distance control methods are inherently prone to er-

rors because humans’ ability to estimate distance is limited, which

is even worse in a VE [44]. Teleporting with ManualTeleport

incurred frequent overshooting because participants could not es-

timate the distance or control it precisely. AutoFlying was also

worse than AutoTeleport in this regard, because it was challeng-

ing to steer to the target when flying speed was too fast. While the

number of overshoot occurrences was different between Techniques,

there was no significant difference in the number of collisions.

Manual control was even more challenging when the destination

was so far away that the teleportation destination marker (in this

study, the green sphere) became invisible and the user had only the

distance indicator to rely on. This limitation could be alleviated by

providing additional visual guidance and widgets to enhance user’s

distance estimation [16, 39] and performance on selecting distant

objects [29]. These issues remain to be studied in future work.

However, our method has a few limitations. First, the automat-

ically computed distance might not always match the distance



Evaluating Automatic Parameter Control Methods for Locomotion in Multiscale Virtual Environments VRST ’20, November 1–4, 2020, Virtual Event, Canada

the user wants to travel to achieve their navigation goal. For in-

stance, when there is no object close to the desired viewpoint,

AutoTeleport can compute a longer-than-desired distance. Also,

when moving away from an object, the gradually-increasing dis-

tance means that several teleports are often needed to travel large

distances. Manual control can require fewer teleports if the user

can judge the distance well. Our results show that with Manual-

Teleport four participants managed to move away faster and also

got closer to the next target more quickly and with fewer teleports.

However, two of them (P101, P109) also overshot afterwards, which

negated the benefits of the manual control. This issue could be

addressed by using a hybrid method that affords both automatic

and manual control, i.e., a method that lets the user freely adjust

the distance if the computed one does not match the user’s intent.

Furthermore, most participants preferred AutoFlying to the

two point-and-teleport techniques due to its easy control and con-

tinuous movement. In a previous study, steering-based techniques

like flying were shown to improve spatial updating because users

continuously perceive the scene while travelling [42]. Thus, we

incorporated optical flow cues [4] into AutoTeleport , and con-

ducted a second study to see whether the cues had a positive effect.

The environment was designed to be more complex and cluttered,

to increase the potential effect of optical flow, which tends to be

small in vast open spaces. We also added a feature that automati-

cally repeats teleports to mitigate the physical fatigue from repeated

trigger presses in the teleport techniques.

5 USER STUDY 2: LOCOMOTIONWITH

AUTOMATIC PARAMETER CONTROL IN A

DENSE VR

In contrast to the vast open and sparse environment in Study 1,

Study 2 was conducted in a dense and closed VE. We compared

the original point-and-teleport technique with automatic distance

control to a variant with optical flow cues [4] to see if such cues

have the same effect for path integration that the flying tech-

nique affords in a complex multiscale VE. To address the issue

that users in the first study found it tiring to do multiple presses

in point-and-teleport, we added automatic teleport repeats as long

as the user held the trigger button down. Here, we call the new

point-and-teleport with optical flow AutoDash, and the original

AutoTeleport. The VE had four rooms with different levels of

scale and each room had two parts: a maze-like corridor and a room

cluttered with different objects.

5.1 Design

This study used as within-subject design with two independent

variables, the navigation Technique and the level of Scale. Technique

had three values: AutoTeleport, AutoDash, and AutoFlying. As

long as the touchpad was held down, Automatic triggering repeated

the teleportation at short intervals. This interval was customized

by each participant during the training (M = 0.12, SD = 0.03).

The movement speed of AutoDash was set inversely proportional

to this custom interval, as the user dashed faster with a smaller

interval and slower with a larger one. Scale had four levels: 1, 1/8,

1/64, and 1/512. The order of levels of Scale was randomized while

Techniques were counter-balanced with a Latin square.

Figure 8: In User Study 2, the VE had four rooms with the

same structure and object layout but decreasing scale levels

(1:1, 1:8, 1:64, 1:512).

5.2 Participants

We recruited 12 participants for the study. Since recruitment was

limited due to COVID-19, we used participants from our lab (n =
3) and acquaintances (n = 9). Seven participated remotely with

their own VR setup: three had a full set of equipment with an

HMD with a controller and two lighthouses, and four had the HMD

with one controller and one lighthouse. People who had only one

lighthouse were asked to set it up the lighthouse in a way that

minimized tracking issues during the experiment. The average age

was 29.3 years (SD = 2.31 years). Four participants were female and

eight male. All were right-handed. Ten participants had experience

with VR systems, and seven had logged 20+ hours. They were

compensated with 15 Canadian dollars for their participation.

5.3 Apparatus and Environment

The hardware setup and input space for in-person experiments

were identical as the first user study. The VE design and the navi-

gation tasks were inspired by previous work on navigation [1, 33],

with an additional room at an even smaller scale. The VE had thus

four rooms at different scales, each with the same structure and

object layout (Figure 8). The first part of each room was a maze-like

corridor. In the second part, rather than using simple 3D primitives

as obstacles, we made objects (two types of cacti, plants, and rocks)

with more complex structures and textures to make it easier to

identify any effects of the optical flow cues. All techniques required

only one-handed control—pointing the controller in a direction and

using the touchpad to execute teleportation or flying.

5.4 Task

The task was to collect a set of red spherical targets (Figure 9) as

quickly as possible, using AutoTeleport, AutoDash or Auto-

Flying, as in previous work [1, 33]. A target was “collected” when

the user put the top of the controller into it. This was different from

Study 1, which used HMD position, because it was not feasible to

put one’s head into the target at the smallest level of scale. Partici-

pants were asked to take the shortest path possible. Targets were in

mid-air and at different vertical heights and distances to the near-

est surface, forcing participants to use unconstrained-viewpoint

navigation to change their altitude continuously during the task.

5.5 Procedure

At the start, participants filled out a consent form and completed a

pre-questionnaire. During the experiment they were encouraged



VRST ’20, November 1–4, 2020, Virtual Event, Canada Jong-In Lee, Paul Asente, Byungmoon Kim, Yeojin Kim, and Wolfgang Stuerzlinger

Figure 9: Similar to Study 1, targets appeared as red spheres

and the green direction indicator pointed to the current tar-

get to reduce disorientation.

Figure 10: The graphs show the average deviation of the

viewpoint from the ideal path at scale 1 for each participant.

The value was computed as the average distance between

the participant’s position and the line connecting the previ-

ous and current target for the task. The top number of each

graph is the participant ID, the X-axis is the task number,

and the Y-axis is in meters at a logarithmic scale.

to stay in one place but to freely turn around. They were asked

to use the controller with their dominant hand. At the beginning

of each condition, there was a practice session with 20 targets to

acquire. During this session, they were asked to set the interval

for automatically triggering repeated teleportation. In the actual

session, 15 targets were in each room, 60 targets in total. Participants

filled a Simulator Sickness Questionnaire before and after each

condition, and a NASA-TLX questionnaire after each condition.

After the experiment, they filled a post-questionnaire regarding

their preference on techniques and the reasons for their preference.

5.6 Results

5.6.1 Task completion time. The assumption of sphericity was

violated for Scale. We used Greenhouse-Geisser correction (ϵ = 0.96

for Technique, ϵ = 0.53 for Scale, and ϵ = 0.66 for Technique × Scale).

ANOVA of Technique and Scale versus Time found no significant

effects on task completion time for Technique (F (1.92, 21.14) =

2.64,p = 0.09,η2 = 0.04) nor Scale (F (1.60, 17.61) = 3.50,p =
0.06,η2 = 0.11). There was no interaction between Technique and

Scale (F (3.95, 43.43) = 0.41,p = 0.80).

5.6.2 Task Load Index. We averaged the NASA-TLX score

across all scales to analyze task load for each Technique. The aver-

ages of the overall task load of each Techniquewere: AutoTeleport

(M = 26.64, SD = 25.67), AutoDash (M = 25.69, SD = 19.45), and

AutoFlying (M = 28.21,SD = 24.05). ANOVA found no effect of

Technique on the TLX score (F (2, 22) = 0.22,p = 0.80,η2 = 0.002).

5.6.3 Simulator Sickness Questionnaire. Similar to the TLX,

we averaged SSQ ratings of each Technique across all scales. The av-

erage SSQ score of each Technique was: AutoTeleport (M = 17.84,

SD = 14.54), AutoDash (M = 10.83, SD = 13.12), and AutoFlying

(M = 17.84, SD = 22.77). ANOVA identified no significant difference

on the SSQ score between Techniques (F (2, 22) = 2.48,p = 0.10).

5.6.4 Average Deviation from Ideal Path. To measure the nav-

igation accuracy for each Technique, we computed the average

deviation from the ideal path (i.e. the shortest path from the cur-

rent to the next target) for each task. Mauchly’s test of sphericity

was violated for Scale and Technique × Scale. We used Greenhouse-

Geisser correction (ϵ = 0.88 for Technique, ϵ = 0.34 for Scale,

and ϵ = 0.31 for Technique × Scale). The two-way ANOVA of

Technique and Scale versus average distance showed that both

Technique (F (1.75, 19.26) = 9.89,p < 0.01,η2 = 0.05) and Scale

(F (1.00, 11.05) = 33.40,p < 0.001,η2 = 0.63) had significant effects

on average distance to the ideal travel path. There was an interac-

tion between Technique and Scale (F (1.87, 20.55) = 9.98,p < 0.001).

Post-hoc tests with Tukey-HSD revealed significant differences

between techniques at scale 1 (AutoTeleport: M = 48.38m, Auto-

Dash: M = 56.40 m, AutoFlying: M = 89.68 m). There was no

difference between AutoTeleport and AutoDash, but Auto-

Flying was different from AutoTeleport (p < 0.0001) and Auto-

Dash(p < 0.0001). The deviation from the shortest path of the

participants’ trajectories with AutoFlying was larger than for

AutoTeleport and AutoDash (Figure 10). There was no signifi-

cant difference at the other three levels of scale.

5.6.5 Post-questionnaire Response. Half of the participants

(n = 6) preferred AutoDash, and the other half preferred (n = 6)

AutoFlying. Participants who preferred AutoDash explained that

the technique “made it easier to reach the target” and “prevents over-

shoot”, while incurring “less motion sickness.” P310 described the

experience with AutoDash as “It provided a semblance of flying

without the problem of overshooting.” P311 stated that “I had more

control with AutoDash than AutoTeleport and had less dizziness

than AutoFlying.” Three participants who did not like AutoDash

explained that the technique was “hard to adapt [to].” People who

preferred AutoFlying mentioned that it was more “natural” and

“easy to use.” Six who did not like it reported that it incurred “dizzi-

ness” and “motion sickness.” Three of them explained that it was

hard to reach a nearby target using AutoFlying. P301 described

that is was “hard to control near the goal target.” P311 reported “some

dizziness in my head when changing direction” close to the target.

Six participants did not prefer AutoTeleport due to the optical

discontinuity that made it difficult to track the relative position of

the target. They stated that they “missed the target.” P301 explained



Evaluating Automatic Parameter Control Methods for Locomotion in Multiscale Virtual Environments VRST ’20, November 1–4, 2020, Virtual Event, Canada

it was “tiring and confusing” and even felt “nausea because of [dis-

continuous] rendering.” P310 described the technique as “too jittery”

and P311 responded that it created “more temporal/mental load to

locate my position and figure out the next target.”

5.7 Discussion

While there was no significant difference in task completion time

and work load, AutoDash was preferred to AutoTeleport, since

it let users reach targets more easily, likely through the continuous

visual updates. Moreover, the technique enabled users to travel

with less trajectory deviation from the ideal path than AutoFlying.

The results of our study suggest that in a dense VE, point-and-

teleport techniques with automatic distance control enable users

to travel more accurately and closer to an ideal path than flying

with automatic speed control. Due to the nature of steering-based

techniques, users’ trajectories with AutoFlying had the largest

deviations from the ideal path. Flying techniques are known for

being difficult to control [28], which may even get worse when

the speed is too high. At the largest scale (1), the automatic speed

was too high, which led to deviations from the ideal path, in turn

requiring users to turn their heads more to track the target. This

might be the cause of the increase in simulator sickness [19].

The task and environment did not induce substantial amounts of

simulator sickness. Even though the questionnaire results did not

reveal any significant difference between teleportation techniques

and flying, four participants reported that AutoFlying was motion-

sickness-inducing and made them feel exhausted. Further studies

with a larger participant pool might reveal a statistical difference

here. In regards to the preference, while half of the participants

chose AutoDash due to its comfort and accuracy, the other half

chose AutoFlying due to the familiarity of interaction.

6 GENERAL DISCUSSION

In this section, we discuss the advantages, disadvantages, and pos-

sible use cases for each automatic parameter controlled technique

in multiscale VEs.

6.1 Point-and-Teleport with Automatic

Distance Control

Point-and-teleport with automatic distance control combines the

known benefits of teleportation in reducing simulator sickness with

the usefulness of automatic speed control to facilitate navigation in

large multiscale VEs. It removes the need to manually specify the

teleport distance, reducing the overall task load required of users.

Through optical flow cues, it improves the user’s path integration,

which flying techniques also afford.

However, the cost of constructing the distance field can require

more computation than other approaches, especially for dynamic

scenes. This can be mitigated through methods to update the dis-

tance field on the fly using a distributed approach [37]. Another

potential disadvantage is that point-and-teleport with automatic

distance control is unfamiliar to users. More experience might be

needed before the technique achieves its full potential.

Beside the scenarios we explored, other use cases include travel-

ling through a space filled with a great number of small particles

as might be generated by a simulation, and exploring an internal

structure with many levels of scale, such as a human body with

elements modeled at the cell level or an airplane with small screws.

6.2 Flying with Automatic Speed Control

Flying with automatic speed control also facilitates multiscale navi-

gation. It prevents most over- and undershooting in multiscale VEs,

enabling users to quickly approach targets. Since steering-based

locomotion is familiar through its use in VR applications, users can

quickly adapt to the addition of automatic speed control.

However, when the level of scale of surrounding environment

changes quickly, flying speed also changes abruptly. Also, in a large

scale environment the computed speed can be too high, which

might make users struggle to reach targets. Both of these increase

the potential for navigation errors and frustration. To recover from

such errors, they must look around more frequently, which might

incur simulator sickness.

Flying with automatic speed control might be more appropriate

for travelling in VEs with simple structures or where scale changes

gradually. Examples include tunnel structures, such as a model of a

lung with different vessel sizes or a passage with varying width in

a model of a large power plant.

7 CONCLUSION

Our major contribution is a new automatic distance control method

for 3D teleportation, enabling users to easily and efficiently travel

both to distant places or through small tunnels in multiscale vir-

tual environments. Unlike previous work, our method does not

require heavy real-time computation and can be used on many

systems, including portable ones. We also showed the benefits and

drawbacks of automatic distance control for teleportation through

user studies. In Study 1, our method outperformed manual distance

control in terms of task completion time, travel accuracy, and task

load. Moreover, our method enabled users to travel faster in a small

tunnel than automatic speed control for flying, while significantly

reducing simulator sickness. In Study 2, point-and-teleport with

our method let users travel more closely to the ideal path, i.e., users

were more accurate in their navigation. Modifying our method by

adding optical flow and automatic repeat made it more popular

with the users. Several open questions remain. First, we plan to

investigate faster methods to compute the distance field. Our cur-

rent, unoptimized implementation takes five minutes, which is only

usable for precomputation in static environments. We plan to inves-

tigate other approaches. When navigating a narrow twisted path

like a maze, our current implementation dramatically decreases the

teleport distance because walls are always close to the user. We

plan to address this with different weights for different directions

relative to the view direction. We also plan to investigate the auto-

matic adaptation of the user’s scale based on the distance field of

the scene. Finally we would like to explore the effects of combining

different locomotion techniques in multiscale environments.

ACKNOWLEDGMENTS

We thank the artist Jini Kwon for creating great environments for

the experiments and designing the main figure. We thank Adobe

Research for supporting the project.

REFERENCES

[1] Ferran Argelaguet. 2014. Adaptive navigation for virtual environments. In 2014

IEEE Symposium on 3D User Interfaces (3DUI). 123–126. https://doi.org/10.1109/

https://doi.org/10.1109/3DUI.2014.7027325
https://doi.org/10.1109/3DUI.2014.7027325


VRST ’20, November 1–4, 2020, Virtual Event, Canada Jong-In Lee, Paul Asente, Byungmoon Kim, Yeojin Kim, and Wolfgang Stuerzlinger

3DUI.2014.7027325

[2] Ferran Argelaguet and Morgant Maignant. 2016. GiAnt: stereoscopic-compliant

multi-scale navigation in VEs. In Proceedings of the 22nd acm conference on virtual

reality software and technology. 269–277.

[3] Niels H Bakker, Peter O Passenier, and Peter J Werkhoven. 2003. Effects of

head-slaved navigation and the use of teleports on spatial orientation in virtual

environments. Human factors 45, 1 (2003), 160–169.

[4] Jiwan Bhandari, Paul Macneilage, and eelke folmer. 2018. Teleportation with-

out Spatial Disorientation using Optical Flow Cues. In Proceedings of Graphics

Interface 2018. 153–158.

[5] Benjamin Bolte. 2011. The Jumper Metaphor: An Effective Navigation Technique

for Immersive Display Setups. In Proceedings of Virtual Reality International

Conference, Vol. 1. 2–1.

[6] Doug. A. Bowman, David Koller, and Larry F. Hodges. 1997. Travel in immersive

virtual environments: an evaluation of viewpoint motion control techniques.

In Proceedings of IEEE 1997 Annual International Symposium on Virtual Reality.

45–52. https://doi.org/10.1109/VRAIS.1997.583043

[7] Evren Bozgeyikli, Andrew Raij, Srinivas Katkoori, and Rajiv Dubey. 2016. Point

& Teleport Locomotion Technique for Virtual Reality. In Proceedings of the 2016

Annual Symposium on Computer-Human Interaction in Play (CHI PLAY ’16). ACM,

New York, NY, USA, 205–216. https://doi.org/10.1145/2967934.2968105

[8] Adam Drogemuller, Andrew Cunningham, James Walsh, Maxime Cordeil,

William Ross, and Bruce Thomas. 2018. Evaluating navigation techniques for 3d

graph visualizations in virtual reality. In 2018 International Symposium on Big

Data Visual and Immersive Analytics (BDVA). IEEE, 1–10. https://doi.org/10.1109/

BDVA.2018.8533895

[9] Dynamoid. 2016. COSM Worlds. [steamVR]. https://store.steampowered.com/

app/467480/C_O_S_M/

[10] Carmine Elvezio, Mengu Sukan, Steven Feiner, and Barbara Tversky. 2017. Travel

in large-scale head-worn VR: Pre-oriented teleportation withWIMs and previews.

Proceedings - IEEE Virtual Reality (2017), 475–476. https://doi.org/10.1109/VR.

2017.7892386

[11] George Fitzmaurice, Justin Matejka, Igor Mordatch, Azam Khan, and Gordon

Kurtenbach. 2008. Safe 3D navigation. In Proceedings of the 2008 symposium on

Interactive 3D graphics and games. 7–15.

[12] Adrien Fonnet, Florian Melki, Yannick Prié, Fabien Picarougne, and Gregoire

Cliquet. 2018. Immersive Data Exploration and Analysis. In Student Interaction

Design Research conference. Helsinki, Finland. https://hal.archives-ouvertes.fr/

hal-01798681

[13] Sebastian Freitag, Dominik Rausch, and Thorsten Kuhlen. 2014. Reorientation in

virtual environments using interactive portals. In 2014 IEEE Symposium on 3D

User Interfaces (3DUI). 119–122. https://doi.org/10.1109/3DUI.2014.6798852

[14] Julian Frommel, Sven Sonntag, and Michael Weber. 2017. Effects of Controller-

based Locomotion on Player Experience in a Virtual Reality Exploration Game.

In Proceedings of the 12th International Conference on the Foundations of Digital

Games (FDG ’17). ACM, New York, NY, USA, 30:1–30:6. https://doi.org/10.1145/

3102071.3102082

[15] Markus Funk, Florian Müller, Marco Fendrich, Megan Shene, Moritz Kolvenbach,

Niclas Dobbertin, Sebastian Günther, and Max Mühlhäuser. 2019. Assessing the

Accuracy of Point & Teleport Locomotion with Orientation Indication for Virtual

Reality Using Curved Trajectories. In Proceedings of the 2019 CHI Conference

on Human Factors in Computing Systems (CHI ’19). ACM, New York, NY, USA,

147:1–147:12. https://doi.org/10.1145/3290605.3300377

[16] Chris Furmanski, Ronald Azuma, and Mike Daily. 2002. Augmented-reality

visualizations guided by cognition: Perceptual heuristics for combining visible

and obscured information. In Proceedings. International Symposium on Mixed and

Augmented Reality. IEEE, 215–320. https://doi.org/10.1109/ISMAR.2002.1115091

[17] Google. 2016. Google Earth VR. [steamVR]. https://arvr.google.com/earth

[18] Sandra G Hart. 1986. NASA Task load Index (TLX). Volume 1.0; Paper and pencil

package. (1986).

[19] Ping Hu, Qi Sun, Piotr Didyk, Li-Yi Wei, and Arie E Kaufman. 2019. Reducing

simulator sickness with perceptual camera control. ACM Transactions on Graphics

(TOG) 38, 6 (2019), 1–12. https://doi.org/10.1145/3355089.3356490

[20] Robert S. Kennedy, Norman E. Lane, Kevin S. Berbaum, and Michael G. Lilienthal.

1993. Simulator Sickness Questionnaire: An Enhanced Method for Quantifying

Simulator Sickness. The International Journal of Aviation Psychology 3, 3 (July

1993), 203–220. https://doi.org/10.1207/s15327108ijap0303_3

[21] Yeojin Kim, Byungmoon Kim, and Young J. Kim. 2018. Dynamic Deep Octree

for High-resolution Volumetric Painting in Virtual Reality. Computer Graphics

Forum 37, 7 (2018), 179–190. https://doi.org/10.1111/cgf.13558

[22] James Liu, Hirav Parekh, Majed Al-Zayer, and Eelke Folmer. 2018. Increasing

Walking in VR Using Redirected Teleportation. In Proceedings of the 31st Annual

ACM Symposium on User Interface Software and Technology (UIST ’18). ACM, New

York, NY, USA, 521–529. https://doi.org/10.1145/3242587.3242601

[23] The Body VR LLC. 2016. The Body VR. [steamVR]. https://thebodyvr.com

[24] Jack M. Loomis, Roberta L. Klatzky, and Reginald G. Golledge. 2001. Navigating

without vision: basic and applied research. Optometry and vision science : official

publication of the American Academy of Optometry 78, 5 (2001), 282–289. https:

//doi.org/10.1097/00006324-200105000-00011

[25] Mayra D. Barrera Machuca, Wolfgang Stuerzlinger, and Paul Asente. 2019.

Smart3DGuides: Making Unconstrained Immersive 3D Drawing More Accurate.

In 25th ACM Symposium on Virtual Reality Software and Technology (Parramatta,

NSW, Australia) (VRST ’19). Association for Computing Machinery, New York,

NY, USA, Article 37, 13 pages. https://doi.org/10.1145/3359996.3364254

[26] Jock D. Mackinlay, Stuart K. Card, and George G. Robertson. 1990. Rapid Con-

trolled Movement Through a Virtual 3D Workspace. In Proceedings of the 17th

Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH

’90). ACM, New York, NY, USA, 171–176. https://doi.org/10.1145/97879.97898

[27] James McCrae, Igor Mordatch, Michael Glueck, and Azam Khan. 2009. Multiscale

3D navigation. Proceedings of the 2009 symposium on Interactive 3D graphics and

games - I3D ’09 (2009), 7–14. https://doi.org/10.1145/1507149.1507151

[28] Daniel Medeiros, Antönio Sousa, Alberto Raposo, and Joaquim Jorge. 2019. Magic

Carpet: Interaction Fidelity for Flying in VR. IEEE transactions on visualization

and computer graphics (2019). http://dx.doi.org/10.1109/TVCG.2019.2905200

[29] Daniel Mendes, Daniel Medeiros, Eduardo Cordeiro, Maurício Sousa, Alfredo

Ferreira, and Joaquim Jorge. 2017. PRECIOUS! Out-of-reach selection using

iterative refinement in VR. In 2017 IEEE Symposium on 3D User Interfaces (3DUI).

IEEE, 237–238. doi.org/10.1109/3DUI.2017.7893359

[30] Roberto A Montano Murillo, Elia Gatti, Miguel Oliver Segovia, Marianna Obrist,

Jose P Molina Masso, and Diego Martinez Plasencia. 2017. NaviFields: Relevance

fields for adaptive VR navigation. In Proceedings of the 30th Annual ACM Sym-

posium on User Interface Software and Technology. 747–758. doi.org/10.1145/

3126594.3126645

[31] D. R. Montello. 2001. International encyclopedia of the social & behavioral

sciences. In International encyclopedia of the social & behavioral sciences, Neil J.

Smelser and Paul B. Baltes (Eds.). Elsevier, 14771–14775.

[32] Mtschoen-unity. 2019. EditorXR. https://github.com/Unity-Technologies/

EditorXR

[33] Domi Papoi andWolfgang Stuerzlinger. 2019. Improved Automatic Speed Control

for 3D Navigation. In 2019 Computer Graphics International (CGI). 278––290.

https://doi.org/10.1007/978-3-030-22514-8_23

[34] Christopher Scharver, James Patton, Robert Kenyon, and Eric Kersten. 2005.

Comparing adaptation of constrained and unconstrained movements in three

dimensions. In 9th International Conference on Rehabilitation Robotics, 2005. ICORR

2005. 434–439. https://doi.org/10.1109/ICORR.2005.1501136

[35] Bethesda Softworks. 2017. Fallout 4 VR. [steamVR].

[36] Bethesda Softworks. 2018. The Elder Scrolls V: Skyrim VR. [steamVR].

[37] Henrique Taunay, Daniel Medeiros, and Alberto Raposo. 2019. A Distributed

Approach for Automatic Speed Adjustment during Navigation in 3D Multiscale

Virtual Environments. In 2019 21st Symposium on Virtual and Augmented Reality

(SVR). IEEE, 140–146.

[38] Daniel Ribeiro Trindade and Alberto Barbosa Raposo. 2014. Improving 3D

navigation techniques in multiscale environments: a cubemap-based approach.

Multimedia Tools and Applications 73, 2 (Nov. 2014), 939–959. https://doi.org/10.

1007/s11042-012-1127-8

[39] Kengo Uratani, Takashi Machida, Kiyoshi Kiyokawa, and Haruo Takemura. 2005.

A study of depth visualization techniques for virtual annotations in augmented

reality. In IEEE Proceedings. VR 2005. Virtual Reality, 2005. IEEE, 295–296. http:

//dx.doi.org/10.1109/VR.2005.1492802

[40] Orbital Views. 2018. Overview. [steamVR]. https://www.overviewexperience.

com

[41] Colin Ware and Daniel Fleet. 1997. Context Sensitive Flying Interface. In Pro-

ceedings of the 1997 Symposium on Interactive 3D Graphics (I3D ’97). ACM, New

York, NY, USA, 127–130. https://doi.org/10.1145/253284.253319

[42] Tim Weißker, André Kunert, Bernd Fröhlich, and Alexander Kulik. 2018. Spatial

updating and simulator sickness during steering and jumping in immersive

virtual environments. In 2018 IEEE Conference on Virtual Reality and 3D User

Interfaces (VR). IEEE, 97–104. http://dx.doi.org/10.1109/VR.2018.8446620

[43] Jan M Wiener, Simon J Büchner, and Christoph Hölscher. 2009. Taxonomy of

human wayfinding tasks: A knowledge-based approach. Spatial Cognition &

Computation 9, 2 (2009), 152–165.

[44] Bob G.Witmer and Paul B. Kline. 1998. Judging Perceived and Traversed Distance

in Virtual Environments. Presence: Teleoperators and Virtual Environments 7, 2

(April 1998), 144–167. https://doi.org/10.1162/105474698565640

[45] Mengxin Xu, Maria Murcia-López, and Anthony Steed. 2017. Object location

memory error in virtual and real environments. In 2017 IEEE Virtual Reality (VR).

315–316. https://doi.org/10.1109/VR.2017.7892303

https://doi.org/10.1109/3DUI.2014.7027325
https://doi.org/10.1109/VRAIS.1997.583043
https://doi.org/10.1145/2967934.2968105
https://doi.org/10.1109/BDVA.2018.8533895
https://doi.org/10.1109/BDVA.2018.8533895
https://store.steampowered.com/app/467480/C_O_S_M/
https://store.steampowered.com/app/467480/C_O_S_M/
https://doi.org/10.1109/VR.2017.7892386
https://doi.org/10.1109/VR.2017.7892386
https://hal.archives-ouvertes.fr/hal-01798681
https://hal.archives-ouvertes.fr/hal-01798681
https://doi.org/10.1109/3DUI.2014.6798852
https://doi.org/10.1145/3102071.3102082
https://doi.org/10.1145/3102071.3102082
https://doi.org/10.1145/3290605.3300377
https://doi.org/10.1109/ISMAR.2002.1115091
https://arvr.google.com/earth
https://doi.org/10.1145/3355089.3356490
https://doi.org/10.1207/s15327108ijap0303_3
https://doi.org/10.1111/cgf.13558
https://doi.org/10.1145/3242587.3242601
https://thebodyvr.com
https://doi.org/10.1097/00006324-200105000-00011
https://doi.org/10.1097/00006324-200105000-00011
https://doi.org/10.1145/3359996.3364254
https://doi.org/10.1145/97879.97898
https://doi.org/10.1145/1507149.1507151
http://dx.doi.org/10.1109/TVCG.2019.2905200
doi.org/10.1109/3DUI.2017.7893359
doi.org/10.1145/3126594.3126645
doi.org/10.1145/3126594.3126645
https://github.com/Unity-Technologies/EditorXR
https://github.com/Unity-Technologies/EditorXR
https://doi.org/10.1007/978-3-030-22514-8_23
https://doi.org/10.1109/ICORR.2005.1501136
https://doi.org/10.1007/s11042-012-1127-8
https://doi.org/10.1007/s11042-012-1127-8
http://dx.doi.org/10.1109/VR.2005.1492802
http://dx.doi.org/10.1109/VR.2005.1492802
https://www.overviewexperience.com
https://www.overviewexperience.com
https://doi.org/10.1145/253284.253319
http://dx.doi.org/10.1109/VR.2018.8446620
https://doi.org/10.1162/105474698565640
https://doi.org/10.1109/VR.2017.7892303

	Abstract
	1 INTRODUCTION
	2 RELATED WORK
	3 AUTOMATIC DISTANCE CONTROL
	4 USER STUDY 1: LOCOMOTION WITH AUTOMATIC PARAMETER CONTROL IN A LARGE OPEN ENVIRONMENT
	4.1 Design
	4.2 Participants
	4.3 Apparatus and Environment
	4.4 Task
	4.5 Procedure
	4.6 Result
	4.7 Discussion

	5 USER STUDY 2: LOCOMOTION WITH AUTOMATIC PARAMETER CONTROL IN A DENSE VR
	5.1 Design
	5.2 Participants
	5.3 Apparatus and Environment
	5.4 Task
	5.5 Procedure
	5.6 Results
	5.7 Discussion

	6 GENERAL DISCUSSION
	6.1 Point-and-Teleport with Automatic Distance Control
	6.2 Flying with Automatic Speed Control

	7 CONCLUSION
	Acknowledgments
	References

