
Improved Automatic Speed Control for 3D Navigation

Domi Papoi1and Wolfgang Stuerzlinger2

1 York University, Toronto ON M3J 1P3, Canada
2 SIAT, Simon Fraser University, Vancouver BC V3T 0A3, Canada

w.s@sfu.ca

Abstract. As technology progresses, it is possible to increase the size and com-
plexity of 3D virtual environments. Thus, we need deal with multiscale virtual
environments today. Ideally, the user should be able to navigate such environ-
ments efficiently and robustly, which requires control of the user speed during
navigation. Manual speed control across multiple scales of magnitude suffers
from issues such as overshooting behaviors and introduces additional complex-
ity. Most previously presented methods to automatically control the speed of nav-
igation do not generalize well to environments with varying scales. We present
an improved method to automatically control the speed of the user in 3D virtual
environment navigation. The main benefit of our approach is that it automatically
adapts the navigation speed in a manner that enables efficient navigation with
maximum freedom, while still avoiding collisions. The results of a usability test
show a significant reduction in completion time for a multi-scale navigation task.

Keywords: 3D Navigation; Virtual Environments.

1 Introduction

Virtual navigation, i.e., movement within a virtual environment (VE), is a common
interactive task in three-dimensional (3D) VE. During such navigation, users need to
maintain their orientation and interact to move their viewpoint. Thus, 3D navigation
involves two main tasks: wayfinding and travel, but we only focus on the later here.

Travel is the motor component of navigation. It can be defined as the actions that the
user makes through the user interface to control the position and orientation of their
viewpoint. In VEs, travel techniques enable the user to control their viewpoint and di-
rection, and other attributes of movement, such as the speed. Here, we present a new
method to control the speed of travel in multi-scale virtual environments (MSVEs).

Generally, the user can move in all 6 degrees of freedom (6DOF) in VEs. Yet, direct
control of all 6DOFs is challenging. Compare the skills required to pilot a car or plane
(which many can master) to those required to control a helicopter (which fewer pos-
sess). One can also observe this in most computer games, where navigation typically
involves control over four or fewer DOF, typically rotate left/right and up/down, move
forward/backward and both ways sideways, all at predefined speeds.

Many 3D user interfaces (UIs) ignore the aspect of changing the speed of the travel
and simply use a reasonable constant velocity. This works reasonably well as long as

2

the size and detail of the environment do not vary much. In MSVEs, a fixed speed leads
to problems because a constant speed will always be too slow in some situations and
too fast in others. If the speed is too slow, user frustration can set in quickly. If the speed
is too fast, the user can overshoot the target, forcing the user to turn around or back up,
to navigate back to the intended destination. On the other hand, allowing the user to
explicitly control the speed across multiple scales adds complexity to the interface, and
the user then even more easily overshoots or undershoots the target [21] and might be
forced to again take corrective actions [20]. Another issue with manual control is that
users can fly into objects when they do not stop in time or when backing up. This can
lead to usability issues, as especially novice users do not know how to recover quickly
from being inside an object [7]. A potential solution for this problem is to slow the user
down when they get close to an object. Another aspect of VE immersion that needs to
be considered is cybersickness. Recent work aims to reduce such symptoms [11].

There are many options for a user to control their speed, including buttons, sliders,
or various attributes of the users’ pose. A discrete technique for speed control might
use buttons, which increases/decreases the speed by a predefined amount (say by 50%)
and allows backward travel, while a slider-based control might use a linear mapping.
All these controls give the user direct control over the speed of travel. The main draw-
back is that this choice adds complexity to the user interface, as the user has to con-
stantly monitor their speed and adapt it to the current environment.

Ideally, a navigation control scheme should be as simple as possible, to make the
user interface easy to learn. Another constraint is that each navigation functionality
requires some physical control or a widget, which consumes either display space, re-
quires dedicated buttons, or introduces modes. That means that fewer controls are typ-
ically better. This design trade-off is directly visible in touchscreen user interfaces,
where space for widgets is at a premium, and multi-touch interaction possibilities are
limited to, e.g., one-/two-/three-finger-based controls. There, a system-controlled speed
technique might be more appropriate. Another ideal use case for automatic speed con-
trol are MSVEs where the user has to repeatedly travel between regions with radially
varying spatial complexity, such as tight corners that necessitate short, slow, and pre-
cise movements, while open spaces can benefit from higher speeds. In such cases, the
user can benefit much from automatic changes to the speed depending on the surround-
ing geometry. This idea is the main motivation for our research.

As example consider a VE for a star system, where the user is on a planet’s surface
and looks up into the vast empty space between planets. Launching, the user into space
at very high speeds seems a good choice but can lead to a loss of control if the user
steers in the wrong direction. Instead, we could take the (invisible) geometry behind
the user into account and start slow, but keep increasing the speed, if the user keeps
moving towards free space. In contrast, when the user approaches an object with high
speeds, the system will slow the user down, which avoids overshooting. This is espe-
cially important if the user aims just beside the planet to get to the other side of the
planet. Yet, as noted by Trindade [21], directly using the proximity of geometry can
slow the user down too much in certain scenarios. For example, if the user navigates
through a tunnel the system will reduce the speed drastically based on the close prox-
imity to the walls, which could lead to speeds that are perceived as frustratingly slow.

3

1.1 Previous Work

In VEs, user actions must be mapped in some more or less intuitive way to travel. Mine
[17] presented an overview of motion specification interaction techniques and, similar
to Robinett [19], also discussed issues relevant to their implementation of travel tech-
niques. Several studies of immersive travel techniques have been described in the liter-
ature, for instance comparing different travel modes and metaphors for specific VE
applications, e.g., [5,15]. Bowman et al. [3] discussed various ways to control travel
speed. Yet, allowing the user to explicitly control the speed across multiple scales adds
complexity to the interface, and the user then even more easily overshoots or under-
shoots the target [21] and might be forced to take corrective actions [20].

A common approach to scaling the user during navigation is to allow the user to
actively control the scale of the world. One of the earliest was the 3DM immersive
modeler [4], which enables the user to “grow” and “shrink”. SmartScene [14] also al-
lowed the user to control the scale of the environment to allow both rapid navigation
and manipulation of objects at all scales. The scaled-world grab technique [18] scales
the user in an imperceptible way when an object is selected. While active scaling ena-
bles the user to specify the scale of the world, it requires additional interface compo-
nents to do so. In contrast, a 3D UI could also change the scale of the world automati-
cally based on the user’s current task or position. This automated approach obviates the
need for the user to specify a scale. An example of an automated scaling approach is
“Multi-scale Virtual Environments” [12]. This approach allows the user to concentrate
on navigating instead of scaling while still benefitting from having the world scale up
or down. However, such VEs require careful design, as the hierarchy of objects and
scales need to be intuitive and usable for the user.

The speed control of a travel technique is at least weakly linked with the scale of the
environment and the user’s preferences. The maximum allowed speed is dictated by the
scale of the environment, while the minimum sensible speed corresponds to the finest
detail. Users can manually adjust the speed through a travel interface by various input
commands [10] or speed mappings [1]. If the scale and level of detail of the environ-
ment is known a priori, then the maximum and minimum speed can be set accordingly.
Freitag et al. [9] identify locations that maximize scene visibility, based on predefined
region importance scores and real-time tracking of the exploration status of scene re-
gions.

Mackinlay [13] first observed that the current distance to a target point is an appro-
priate way to control viewer speed. Ware and Fleet [22] investigated this further and
found that in most situations, the minimum distance to any visible point generally works
best, but noted also that average distances were competitive.

An improved version of Ware and Fleet’s interface [22] is the approach proposed by
McCrae et al. [16], which uses a six-sided distance map, the cubemap, which encodes
the distance to all visible parts of the surroundings of the user through six depth maps
from the camera viewpoint. These depth maps are generated by rendering six images
in the six main axial directions, each one corresponding to a side of the cube. Every
time the camera viewpoint changes, the cubemap is updated in real time. Based on the
cubemap, McCrae et al.’s method then computes a vector that displaces the camera in

4

a way that adjusts both speed and direction, similar to the distance-dependent speed
control presented by Ware and Fleet [22]. Through the weighting by distance, the di-
rection of the vector adjusts the travel direction to avoid collisions.

Trindade et al. [21] improved McCrae’s et al.’s approach to facilitate travel in a
MSVEs. In their flying technique, they also include collision avoidance and automatic
navigation speed adjustment with respect to the scale of the environment. They identi-
fied that when flying close to geometry, speed control via the global minimum can
unnecessarily slow the user down. For example, when the user is flying through a tunnel
that has no geometry straight ahead, the nearby walls reduce the speed (too) much, and
therefore the user would fly very slowly. Their solution is to use the distance along a
ray in the view direction to detect situations where the viewer could speed up. Using an
exponentially weighted average between the distance along the view direction and the
global minimum distance, they smooth out the resulting rough speed changes. Despite
this weighted average approach, a speed computed for a distance of infinity or equiva-
lent will overwhelm any other terms. This can cause the user to move at huge speeds
very close to geometry, which is undesirable. Moreover, the discrete nature of using a
sampling ray can cause abrupt speed changes, if said ray falls on/off geometry. Another
variation of the cubemap was used by Duan et al. [6] to control a flying vehicle model.

Argelaguet [2] proposes a new method of speed control that aims to keep optical
flow constant. Yet, they found that there is no strong difference between distance-based
speed control and a method that keeps optical flow constant. In contrast, Freitag et al.
[8] adjust the travel speed automatically based on the informative quality of the view-
point. When the viewpoint has a high visual quality, the navigation speed is decreased
and vice versa.

1.2 Contributions

Our contributions are:

• A new, efficient, and robust way to automatically adapt the user’s speed depending
on the camera’s direction and the surrounding environment by smoothly attenuating
the effect of geometry in the view direction different from the surround.

• A user study evaluating our new automatic speed control method relative to two
other methods from previous work.

2 Automatic Speed Control for 3D Travel

In this chapter, we first explain the technical details of our automatic speed control
technique. Our speed control method applies to all 3D travel interfaces where the user
controls their motion through specifying a direction and then flying or traveling in (or
reversing based on) said direction. Similar to McCrae et al. [16], we compute the dis-
tances to all objects around the viewer by generating a cube map of all objects. Instead
of using a world space aligned cube map we use a view aligned cube map, as suggested
by Trindade et al. [21]. After all, a world space aligned cube does not encode directly

5

where geometry is relative to the viewer and their view direction. This makes it (a bit)
harder to tell where an object is relative to the viewer.

We propose an improvement to the equation for computing the displacement vector
proposed by McCrae et al. [16], by scaling it with a smoothing function. We first com-
pute the average displacement vector from the cubemap over all its pixels:

𝑑𝚤𝑠𝑝%%%%%%%%⃑ =
1

6𝑁+𝑁,
-𝑤/𝑑𝑖𝑠𝑡(𝑥, 𝑦, 𝑖)7 ∙ 𝑛𝑜𝑟𝑚(𝑝𝑜𝑠%%%%%%%⃑ (𝑥, 𝑦, 𝑖) − 𝑒𝑦𝑒%%%%%%%⃑)
+,,,?

In the above equation 𝑖 is an integer value between 1 and 6 and represents one side
of the cube map. The horizontal and vertical resolutions are represented by 𝑁+ and 𝑁,.
While the sum appears to involve only 2 dimensions, there are 3D vectors involved and
the final result is also a vector. To give a larger weight to geometry closer to the viewer,
McCrae et al. used an exponential soft penalty function. To reduce computational ef-
fort, we present here a simpler option for the weighting function that uses a smooth-
step or an improved version of the smooth-step function with zero 1st and 2nd order
derivatives at t=0 and t=1 to determine how nearby geometry influences the viewer:

𝑠𝑚𝑜𝑜𝑡ℎ𝑠𝑡𝑒𝑝(𝑡) = 6𝑡A − 15𝑡C + 10𝑡F

𝑤G(𝑑𝑖𝑠𝑡) = 	I
1,																	𝑖𝑓 K

min	(𝑑𝑖𝑠𝑡, 𝛿)
𝛿 < 𝛼R , 𝑒𝑙𝑠𝑒

1 − 𝑠𝑚𝑜𝑜𝑡ℎ𝑠𝑡𝑒𝑝 K2	
min	(𝑑𝑖𝑠𝑡, 𝛿)

𝛿 − 1R

Where 𝛿 represents the bound radius within which objects should affect the user and
𝛼 is a dynamic penalty control variable within [0, 1]. As 𝛿 is constant across samples,
the viewer’s collision boundary is then a sphere with radius 𝛿. The bound radius 𝛿 can
be modulated by a scale estimate, which is the minimum distance from the cubemap.
In our work, we choose 0.5 for the dynamic penalty control variable 𝛼. McCrae et al.’s
technique then uses the minimum distance across the cubemap to control the speed and
applies the displacement vector to the viewer position to avoid collisions.

As mentioned above in the review of previous work, this computed speed may be
too low in long narrow passages [21]. To address this issue in a better way than Trin-
dade et al.’s ray-based solution [21], we propose to add a second weighting term
w2(dist) to the sum, which increases the weight of the contribution of geometry close
to the view direction with a smooth fall off for geometry orthogonal or behind the
viewer. Based on pilot experiments, we use the 16th power of the cosine of the angle
relative to the view direction and redefine the weighting function accordingly.

𝑤U(𝑑𝑖𝑠𝑡) = max(cosG[(𝜃), 0)
𝑤(𝑑𝑖𝑠𝑡) = 𝑤G(𝑑𝑖𝑠𝑡)𝑤U(𝑑𝑖𝑠𝑡)

Without the weighing term, all directions have equal influence. As shown in Fig. 1,
applying the second weighting term w2(dist) reduces the influence of geometry that is
not in front of the viewer on the final result. To compute the final speed, we scale the
length of the final displacement vector so that the user can never collide with objects.

6

Fig. 1. Illustration of depth buffer without and with a second weighting term.

3 Evaluation

To evaluate our proposed automatic speed control and to compare it with the speed
control via the global minimum described by McCrae et al. [16] as well as the automatic
speed adjustment developed by Trindade et al. [21] we performed a user study.

We chose to evaluate our new technique with the mouse as input device, as we
wanted to investigate one-handed operation (which frees the second hand for other op-
erations). This keeps our navigation method open for other devices, such as touch
screens and VR-style controllers. Similar to many games, any mouse movement with-
out a button held down controls the user’s view direction in our control scheme, while
holding the left mouse button down will move the viewer forward, with mouse move-
ments mapped to steering. The right mouse button is mapped to backward movement.
We used only two buttons, to keep the user interface as simple as possible and to leave
other buttons free for other purposes, such as object selection and manipulation.

3.1 Participants

We recruited 14 participants (11 male, 3 female) for this study, aged from 23 to 45
(mean age 31.8 years, SD 8.35). In the practice session, one participant found the task
too difficult and declined to continue and another seemed to experience strong motion
sickness symptoms and needed to be excluded. All remaining 12 participants had used
VEs before, played FPS games, or 3D race car games.

3.2 Setup

The experiments were conducted on a generic PC with a nVidia GeForce GTX 970 on
a 24” wide screen monitor (HP ZR24w) at 1920x1200, with a Microsoft IntelliMouse
mouse as the input device. We did not use stereoscopic display.

To evaluate our new navigation technique, we were inspired by Argelaguet’s exper-
imental design and the VE they used [2]. Thus, our VE also includes a maze-like and a
geometry-filled section, repeated across three different scales (1:1, 1:2 and 1:10).

To guide users we painted arrows on the maze walls to show the direction of the path
to be followed. This helps if a user gets disoriented. We used textured walls (brick,
stone) to enhance depth cues within the environment. To encourage all users to follow
the same path we added rotating red cubes that users had to pick-up (see Fig. 3). Once
the user collided with such a cube it was removed from the environment and the pick-

7

up event was convoyed by a positive acoustic sound. Within the second geometry sec-
tion of the VE these pick-up cubes were connected through thin rays, so that partici-
pants could always easily tell where to go next. The (previous) thin ray was always
removed whenever the user reached a cube (see Fig. 3).

Fig. 2. VE used for the travel task. The VE is composed of 2 different sections replicated across

three different levels of scale (1:1, 1:2 and 1:10).

Fig. 3. (Left) First section of the environment, the maze, with directional arrows pointing to-
wards pick-up objects and textured walls. (Right) Second section of the environment with ge-

ometry objects showing pick-up objects connected through thin rays.

3.3 Procedure

First, each participant was given a brief questionnaire about their background. The
questionnaire recorded gender, age, and previous experience with 3D VEs. Then, the
participant was instructed to use the UI and encouraged to practice until they felt com-
fortable. The mouse was the only means to navigate the environment. The left mouse
button was mapped to forward movement, while the right mouse button initiated back-
ward movement. With no button pressed the users could orient their view in the VE.

The order of the speed control techniques was counterbalanced with a Latin square
design across all participants to minimize learning effects. The order of the sections
(Maze, Geometry) and the scale factors was fixed due to the design of the VE (see
Fig. 1). We did not counterbalance the sections, as the maze was easier to navigate.

8

And, the smaller mazes might be more difficult to navigate. All three techniques shared
settings for the collision radius, smoothing term, and near and far plane distances.

Once the participants were comfortable with the VE, they were instructed to traverse
the VE following the path marked by the pick-up cubes. Each participant was instructed
to hit these target cubes as quickly and accurately as possible but not to be overly con-
cerned if any given pick-up was not successful. To encourage participants to follow the
path, we introduced a somewhat unpleasant audio cue for any missed pick-up.

At the end of the experiment, we gave participants a short questionnaire on their
perceptions on the ease of use and navigation smoothness for all three techniques using
5-point Likert scales. Overall, the study took about half an hour per participant.

3.4 Results

Data was first filtered for clear participant errors, such as deviating from the sequence
of cubes to pick up or pausing in the middle of the navigation sequence. We removed
such errors by eliminating results with more than three standard deviations from the
mean as outliers. This amounted to less than 3% of the total data.

3.5 Task Completion Time

The data for task completion time was not normally distributed. Levene’s test for ho-
mogeneity revealed that the data did not have equal variances. We used the Aligned
Rank Transform for nonparametric factorial data analysis [23] and then performed a
repeated measures parametric ANOVA on the transformed data.

Fig. 4. (Left) Graph depicting the average task completion time for each technique, with stand-

ard deviations. (Right) Graph depicting the task completion time (s) for each VE scale.

There was a significant effect of completion time on technique (F2,22 = 8.14, p < .01).
See Fig. 4 for task completion times for across all scales. A Tukey-Kramer post-hoc
test revealed that our technique had a smaller completion time than both other tech-
niques. Fig. 4 also shows task completion times for each scale of the environment.

An ANOVA test on group effect was not significant (F5,6 = 0.652), which confirmed
that the counterbalancing cancelled out any potential learning effects. Further, we de-
tected no significant learning effects across participants.

52.04
50.01

47.70

40

44

48

52

56

McCrae Trindade OursAv
g.

 T
as

k
C

om
pl

et
io

n
Ti

m
e

(s
)

Technique

40
42
44
46
48
50
52
54
56

1xVE 2xVE 10xVE

Ta
sk

 C
om

pl
et

io
n

Ti
m

e
(s

)

Virtual Environment with levels of scale
(1x, 2x, 10x)

McCrae

Trindad
e

9

3.6 Average Speed

To analyze the average speed across all three scales, we multiplied the speeds from the
half-scale environment by two and the speeds from the 1:10 scale by ten. After this
adjustment the data was normally distributed.

The one-way ANOVA of technique versus speed showed a main effect on technique
(F2,22 = 3.39, p < .05). See Fig. 5 for the average speeds.

Fig. 5. (Left) Mean speed across all scales, with standard deviations. (Right) Average speed in

m/s for each scale and technique.

A Tukey-Kramer test showed that the mean speed for our new technique was signif-
icantly higher than for Trindade’s version, which in turn was higher than for McCrae’s.
Fig. 5 also shows that the ordering was consistent across techniques and scales.

Fig. 6. (Left) Graph showing average user feedback for ease-of-use for each technique (higher

is better), with standard deviations. (Right) Graph showing user feedback regarding the
smoothness of speed changes for each technique (lower is better), with standard deviations.

From our observations of the participants and their comments during the experiment,
we were able to identify that our new technique was perceived to be the best option.
The data from the user questionnaire on the ease of use and the smoothness of the speed
changes corroborates this insights. The outcomes confirm our observations (see Fig. 6).
None of our 12 main participants reported discomfort or simulator sickness symptoms.

11.62 12.01 12.45

0
2
4
6
8

10
12
14
16

McCrae Trindade Ours

Av
er

ga
ge

 S
pe

ed
 (m

/s
)

Technique

0
2
4
6
8

10
12
14
16

1xVE 2xVE 10xVE

Av
er

ag
e

Sp
ee

d
(m

/s
)

Virtual Environment with levels of scale
(1x, 2x, 10x)

McCrae
Trindade
Ours

4.33 4.83
5.08

1

2

3

4

5

6

McCrae Trindade Ours

Ea
sy

 o
f u

se

Technique

4.33

3.50 3.25

1

2

3

4

5

McCrae Trindade Ours

Sm
oo

th
ne

ss

Technique

10

4 Discussion

The overall conclusion from this study is that our implementation allowed for smooth
navigation with a performance improvement over the state-of-the-art travel speed con-
trol approaches. In comparison to two previously presented methods that are directly
comparable, our method demonstrated a reduced completion time and improved speed,
allowing the users to achieve the navigation goal in less time.

In general, our new solution seems to better address the issue that excessive slow-
downs can occur with previous methods for automatic speed control, e.g., when the
viewer slides along walls or navigates through tunnels. Our automatic speed control
method takes the geometry that is in front of the viewer more strongly into account,
instead of the whole surroundings (such as McCrae et al. [16]). In contrast to Trindade
et al.’s work [21], we use an average over an area in front of the viewer, which elimi-
nates the downsides of using only a single point. Our approach weights the influence
of geometry behind or beside the viewer less than that of geometry directly ahead, with
a smooth interpolation to guarantee smooth transitions. In essence, this allows the user
to navigate parallel to an existing plane at a higher speed than would be achievable if
navigating perpendicular towards the plane. By combining the influence of the surround
geometry in a more robust way with the forward one, the navigation speed is adequate
when navigating away from geometry, but still results in a smooth “takeoff” behavior.

The system presented here also generalizes to navigation on touchscreen systems
used with a single hand, where a single finger touch/drag controls the look direction,
while a 2-finger touch-and-hold will move the user forward based on the current user’s
view for the duration of the hold. Steering is then achieved by dragging both fingers in
the desired direction. Backward movement can be mapped to a 3-finger touch event.
Because the navigation techniques require only 2D input, our new method can also be
easily used on other input devices, such as with a pen or a VR style controller.

We did not record sufficient data to analyze the participant’s motion trails for signs
of temporary disorientation. Yet, the lack of corresponding observations by the exper-
imenter make it unlikely that this was a notable issue. Moreover, we observed only very
few episodes with overshooting and subsequent backwards movements, or participants
turning around. We believe that the root cause of this lack of overshoot is that the au-
tomatic speed control methods already reduce the speed of the participants sufficiently
far in advance to enable them to adjust their path before they run into problems.

4.1 Limitations

As mentioned above, the computations result in a single displacement vector that
pushes the user away from the nearest geometry. As mentioned by McCrae et al. [16]
this will move the viewer towards the center of any cavity and can push the user out of
rooms with openings. As the environment scale decreases, the magnitude of this vector
increases and will start moving the user stronger away from nearby geometry, which
can lead to surprising results and frustrating situations, e.g., when the viewer is ex-
tremely close to a surface while looking parallel to it. Then McCrae’s algorithm will
create a local “drift”, even though the path in front of the user is clear, which could be

11

addressed through a threshold that depends on the scale or another dynamically calcu-
lated value adapted to the desired use case.

Considering the size of the world relative to the smallest detail and the three different
scales, we only explored up to a range of 5,000:1 in our experiment, with the speed
decreasing at most by a factor of ten compared with the 1:1 scene. Initial experiments
with larger scenes at approximately 1,000,000:1, revealed implementation-specific is-
sues. The vector computations of McCrae et al.’s main equation [16] suffered quickly
from lack of floating-point precision, which caused undesirable “jitter” effects. If we
scale the environment up even further, i.e., explore scale differences of (say) 1 billion:1,
a speed based on the minimum distance would in theory still adjust itself, but will likely
also run into depth value precision issues.

The overall computing overhead of our (not fully optimized) shader-based imple-
mentation of our new automatic speed control method per frame was small: 2.88 ms
compared to 2.52 ms for McCrae’s and Trindade’s versions, an increase of 12%.

5 Conclusion

In summary, the main contribution of this work is a method for automatic speed control
for 3D travel in multi-scale virtual environments. We proposed a new and efficient way
to automatically adapt a user’s speed. This new method derives its benefit by taking the
geometry that is in in front of the user better into account. By using shaders, this tech-
nique has also low overhead relative to CPU-based techniques. Future work will focus
on applying the ideas behind our technique to navigation in vast empty spaces, such as
a star system. Specifically, we will look at situations where the distance between objects
is (far) beyond what can be represented on graphics hardware with floating-point num-
ber precision. We will also explore optimizations through clipping planes at the bound-
ing radius.

References

1. Anthes, Christoph, Paul Heinzlreiter, Gerhard Kurka, Jens Volkert. "Navigation models for
a flexible, multi-mode VR navigation framework." Virtual Reality continuum and its appli-
cations in industry, pp. 476-479. 2004.

2. Argelaguet-Sanz, Ferran. "Adaptive Navigation for Virtual Environments." Symposium on
3D User Interfaces 2014, pp. 91-94.

3. Bowman, Doug A., David Koller, Larry Hodges (1998). A Methodology for the Evaluation
of Travel Techniques for Immersive Virtual Environments. Virtual Reality: Research, De-
velopment, and Applications 3: 120–131.

4. Butterworth, Jeff, Andrew Davidson, Stephen Hench, Marc T. Olano. "3DM: A three di-
mensional modeler using a head-mounted display." Symposium on Interactive 3D graphics,
pp. 135-138. 1992.

5. Chung, James C. "A comparison of head-tracked and non-head-tracked steering modes in
the targeting of radiotherapy treatment beams." Symposium on Interactive 3D Graphics
1992, pp. 193-196.

12

6. Duan, Qishen, Jianhua Gong, Wenhang Li, Shen Shen, and Rong Li. "Improved Cubemap
model for 3D navigation in geo-virtual reality." International Journal of Digital Earth 8, no.
11 (2015): 877-900.

7. Fitzmaurice, George, Justin Matejka, Igor Mordatch, Azam Khan, and Gordon Kurtenbach.
"Safe 3D navigation." Symposium on Interactive 3D Graphics, 2008, pp. 7-15.

8. Freitag, Sebastian, Benjamin Weyers, and Torsten W. Kuhlen. "Automatic speed adjustment
for travel through immersive virtual environments based on viewpoint quality." Symposium
on 3D User Interfaces (3DUI), pp. 67-70. 2016.

9. Freitag, Sebastian, Benjamin Weyers, and Torsten W. Kuhlen. "Interactive Exploration As-
sistance for Immersive Virtual Environments Based on Object Visibility and Viewpoint
Quality." IEEE Virtual Reality Conference, pp. 355-362. IEEE, 2018.

10. Galyean, Tinsley A. "Guided navigation of virtual environments." Symposium on Interac-
tive 3D Graphics, pp. 103-104. 1995.

11. Kemeny, Andras, Paul George, Frédéric Merienne, and Florent Colombet. "New VR Navi-
gation Techniques to Reduce Cybersickness." In The Engineering Reality of Virtual Reality,
pp. 48-53. 2017.

12. Kopper, Regis, Tao Ni, Doug A. Bowman, Marcio Pinho. "Design and evaluation of navi-
gation techniques for multiscale virtual environments." IEEE Virtual Reality Conference,
pp. 175-182. 2006.

13. Mackinlay, Jock D, Stuart K Card, George G Robertson. "Rapid controlled movement
through a virtual 3D workspace." SIGGRAPH 1990. pp. 171-176.

14. Mapes, Daniel P., J. Moshell. "A two-handed interface for object manipulation in virtual
environments." Presence: Teleoperators & Virtual Environments 4(4), 1995, pp. 403-416.

15. Mercurio, Philip J., Thomas Erickson, D. Diaper, D. Gilmore, G. Cockton, B. Shackel. "In-
teractive scientific visualization: An assessment of a virtual reality system." INTERACT,
pp. 741-745. 1990.

16. McCrae, James, Igor Mordatch, Michael Glueck, Azam Khan. "Multiscale 3D navigation."
Symposium on Interactive 3D Graphics, pp. 7-14. 2009.

17. Mine, Mark. "Virtual environment interaction techniques." UNC Chapel Hill computer sci-
ence technical report, TR95-018 (1995).

18. Mine, Mark R., Frederick P. Brooks Jr, Carlo H. Sequin. "Moving objects in space: exploit-
ing proprioception in virtual-environment interaction." SIGGRAPH 1997, pp. 19-26.

19. Robinett, Warren, Richard Holloway. "Implementation of flying, scaling and grabbing in
virtual worlds." Symposium on Interactive 3D Graphics. 1992, pp. 189-192.

20. Stuerzlinger, Wolfgang, Chadwick A. Wingrave. The value of constraints for 3D user inter-
faces. Virtual Realities: Dagstuhl Seminar 2008, Springer, 2011, pp. 203-224.

21. Trindade, Daniel R, Alberto B Raposo. "Improving 3D navigation in multiscale environ-
ments using cubemap-based techniques." Symposium on Applied Computing 2011, pp.
1215-1221.

22. Ware, Colin Daniel Fleet. "Context sensitive flying interface." Symposium on Interactive
3D Graphics, 1997, pp. 127-130.

23. Wobbrock, Jacob O., Leah Findlater, Darren Gergle, James J. Higgins. "The aligned rank
transform for nonparametric factorial analyses using only anova procedures." ACM CHI
Conference, pp. 143-146. 2011.

