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ABSTRACT
For mobile phones, previous research has created models
that can be used to predict expert performance. However,
one important factor that influences the success of new
interaction techniques is the users’ initial experience with
them. In this work, we present a new model to predict text
entry speed on 12-button mobile phone keypads for
novices. The model is based on Fitts’ law, letter digraph
probabilities, and a model of the mental processing time
before key presses.
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INTRODUCTION
Widespread use of mobile devices during the last several
years has renewed interest in efficient text entry
techniques. However, designing new text entry methods
for computing systems is usually labour intensive: one
typically needs to build a prototype device and to conduct
extensive user studies. Thus, a model that predicts the
performance of a new method as closely as possible
without the need to do either of those time-consuming
tasks is valuable.

Existing models for text entry
As of time of writing, two models for text entry on a 12-
button keypad are known. Both of them were designed to
predict expert (or peak) text entry rates for various text
entry methods.
Model 1. The first model – a keystroke level model – was
presented by Card et al. [1]. The model accounts for key
press times, mouse movements etc; and it includes a
“mental preparation time” before operations. This model
does not rely on Fitts’ law and assumes that all key presses
take an equal amount of time. We adapted this model to
phone text entry; and the predictions appear in Table 1.
Model 2. The second model was developed by Silfverberg
et al. [5]. It contains two parts: a movement model based
on Fitts’ law and a linguistic model for the distribution of
key digraphs in a given corpus. We recomputed the
numbers, as we are using a timeout of 1000 ms instead of
1500 ms, and the revised predictions appear in Table 1.
Note that the two models give fairly different predictions,
especially for T9. Note further, that few people ever reach
expert/peak performance, as the average number of text
messages sent over phones tends to be rather small.

NEW MODEL FOR TEXT ENTRY ON PHONE KEYPADS
The new model presented here can be viewed as an
extension of the model by Silfverberg et al. [5]. In
particular, the new model is applicable to non-expert
users. This is a very useful extension, since, as stated
above, few people ever reach the expert level.

Observed time for various key presses
Figure 1 shows times for the keystrokes of different types
– single, double, triple, quadruple etc. The data is based
on logs from previous experiments [4] and are obtained
mainly from novice users.
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Figure 1 Time needed for multiple key presses (for non-
expert users)

While the times for double through octuple presses can be
fit very well by a line, the difference between single and
double keystrokes is visibly larger. Also, note that the
times are much greater than one would expect from Fitts’
law.

Key repeat time
It has been doubted for some time and, in fact,
experiments have proven that, Fitts’ law does not apply
when index of difficulty values are small [6]. As an
independent verification, we measured the key repeat time
on a Nokia 5190 to be 225 ms (σ = 21) (this value is later
referred to as Trepeat). The number is an average computed
over 10 people. Compare it to 176 ms as the a coefficient
in the Fitts’ law obtained in previous studies [5].

Mental overhead
From the key log data and our observations we tried to
identify important events in text entry, other than making
key presses:
1. Re-reading the phrase to be entered (most people

prefer not to memorize the phrase they have to enter).

2. Figuring out which letter of which word has to be
entered next (spelling out the word).

3. Determining which button should be pressed and how
many times.



4. Deciding if a second key press is required.

5. For multiple presses, counting the number of presses.

6. Verifying the result.

All these operations could produce the difference between
observed values and predictions by models that consider
only human motor limitations and letter distributions.
Based on the data collected for Multitap and Less-Tap [4],
each initial keystroke is preceded by 906 ms (σ = 258) of
cognitive delay (Dinit), computed as the average observed
movement time minus the average time predicted by Fitts’
law. The first keystroke that falls onto the same key as the
previous one is preceded by a 323 ms (σ = 131) cognitive
delay (Drepeat), and each key press after that by 125 ms
(σ = 143) (Dcount).

Time to enter a character (Movement Model)
From the above, we can derive the times required to enter a
character using different text entry systems.
Multi-press Input Methods. Methods based on repeated key
pressed include Multitap and Less-Tap (see e.g. [4]). For
such methods, the time to enter a character is modeled as:

Tchar = Dinit + TFitts + N1 · (Drepeat + Trepeat) +
N2 · (Dcount +Trepeat) + [Ttimeout]

TFitts is the time needed to move the finger from the
preceding key to the current key, as predicted by Fitts’ law.
N1 is the number of “second” presses (present – one or
absent – zero). N2 is the number of key presses after the
second. Ttimeout is time that the user would have to wait for if
current character is located on the same button as the
previous one.
Obviously, the coefficients decrease in magnitude with
practice. We used the results for Multitap of MacKenzie et
al. where Multitap and LetterWise were analyzed in a
longitudinal study [3]. Figure 2 demonstrates our estimate
of the value for Dinit and a power-law extrapolation for more
sessions. Note that the delay is is still 200 ms at the 30th

session! By varying the coefficient values the model can be
adapted to model performance of users of various levels of
expertise.
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Figure 2 Coefficient Dinit as a function of time

Predictive Input Methods. Predictive Input Methods include
T9, iTap and several others. For simplicity, we assume that
disambiguation is perfect (as presses of the ‘next’ key
amount to less than 1% of the total) and that the verification
time is included in the time to prepare for the next key press
(Dinit). Both simplifications cause the model to
overestimate, but we believe that the factor is small.
For predictive methods , the model is:

Tchar = Dinit + TFitts

We did not find as much experimental data on predictive
methods, but we find it reasonable to expect that the
keystrokes in those systems be preceded by roughly the
same amount of cognitive delay as in multi-press methods.

Linguistic Model
A linguistic model contains information about the frequency
of different letter-pairs (digraphs). Here, it is based on the
letter-pair data from the British National corpus. The model
is represented by a matrix (26 English letters plus SPACE).
Each cell pij  in the 27×27 the matrix is the probability of the
corresponding letter pair in the corpus. See e.g. [5].

Combining the Models
Combining all the above, we obtain a new model to predict
the average time to enter a character in the corpus for a text
entry system and a language:

Tchar_in_corpus = ΣΣ (pij · Tchar ij)
This number can easily be converted to the common
measure of words per minute.

VERIFYING THE MODEL
Model’s prediction of entry speed in words per minute for
various text entry methods is shown in Table 1. That table
contains also a comparison with previous models. Fitts’ law
coefficients from [5] were used, since [4] uses the same
telephone handset.

Technique NEW
Model

Model
[1].

Model
[5]

[2]
Novices

[4]

Multitap 6.97 18.35 22.3 7.98 7.15

Less-Tap 8.01 23.47 26.8 7.82

T9 10.07 24.97 40.6 9.09

Table 1 Model predictions and experimental results

Note that the new model, in its prediction, comes much
closer to values observed in experiments with novices.

DISCUSSION
We presented a model to text entry speed on 12-button
telephone keypads, which through inclusion of factors for
mental overhead quite accurately predicts the performance
for non-expert users. The values computed by the model are
reasonably consistent with those experimentally observed.
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