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Models of lassoing time to select multiple square icons exist, but realistic lasso tasks also typically involve
encircling non-rectangular objects. Thus, it is unclear if we can apply existing models to such conditions
where, e.g., the width of the path that users want to steer through changes dynamically or step-wise. In this
work, we conducted two experiments where the objects were non-rectangular, with path widths that narrowed
or widened, smoothly or step-wise. The results showed that the baseline models for pen-steering movements
(the steering and crossing law models) fitted the timing data well, but also that segmenting width-changing
areas led to significant improvements. Our work enables the modeling of novel UIs requiring continuous
strokes, e.g., for grouping icons.
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1 INTRODUCTION
1.1 Background
Graphical user interfaces (GUIs) typically support several methods to select multiple objects. Most
systems support drawing a rectangle area by crossing the intended objects group diagonally or
clicking on several objects while keeping a modifier key pressed, e.g., ctrl. Some illustration
software, presentation tools, and photo managers also provide lasso selection, which involves
performing a continuous encircling stroke around the intended objects. Researchers also have
examined lasso variants to improve user performance. Examples include automatically connecting
the start and end points [23] and considering the likelihood of objects belonging to the same group
[12].

When researchers develop a novel technique for GUI operations, it is beneficial to do this based
on a good theoretical understanding of the new method, aided by human performance models
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a bExperiment 1: Fully constrained paths including
smooth narrowing and widening segments

Experiment 2: Paths including step-wise narrowing and 
widening segments with practically unconstrained areas

Fig. 1. The two lassoing tasks tested in this study. Starting at the blue area, the participants had to circle all
orange objects by passing through the white empty regions. As we counted touching orange or green objects
as an error, they had to move the stylus carefully in narrow path areas, while they could accelerate in wider
area to shorten the movement time.

such as Fitts’ law [14]. However, for lassoing tasks, established models predict limited conditions,
specifically only square icons in a grid and only a constant path width throughout the task [10, 45].
This type of arrangements is a special case for lassoing, e.g., in group selection in file or photo
managers. In illustration software or note-taking tools, objects are not limited to squares, and
object positions are often not aligned to a grid. Thus, it is unclear whether lassoing times can be
accurately modeled by existing models.

1.2 Hypothesis and Contribution
Some previous studies on lasso-time models [45, 47] segmented a given path to be steered into a
number of portions so that existing pen-based movement time (MT ) prediction models could be ap-
plied, including Fitts’ law [14], the steering law [1], and the crossing law models [4]. Although these
studies showed that this approach could predict the MTs more accurately than no-segmentation
methods, i.e., interpreting a lasso task as a single path-steering motion, these studies used only
equally sized icons that created constant-width paths. Thus the applicability of this approach
to more realistic situations such as lassoing tasks where path varies in width is questionable. If
the approach of path segmentation [45, 47] is effective for more complicated path shapes, we
hypothesize as follows.

• Hypothesis: With width-varying lasso paths, the MTs can be predicted more accurately by
segmenting the path compared to using the global steering law model.

To test this hypothesis, we conducted two experiments where the lasso path varies in width, either
smoothly or abruptly, while still being experimentally controlled (Figure 1). By integrating the
findings across the results of the two experiments, we found that, even for complex lasso paths, the
MTs can be predicted by carefully segmenting the lasso path into smaller elements, each of which
can be modeled with existing human performance models. Thus our contribution of this study is to
address limitation of previous work: the path-segmentation approach can generalize lasso-time
predictions to tasks that involve non-rectangular objects in note-taking tools or illustration software.
As previous work had only demonstrated that modeling MTs by path-segmentation is effective
only for equally sized square objects arranged in a grid, i.e., severely constrained task conditions, it
is (at best) unclear if that approach generalizes to more complex lasso paths.

1.3 Scope of the Present Study
The scope of our work presented here does not include a unified model that can be generalized
to all lasso tasks – this is still a major challenge, which involves too many factors that may need
to be considered, such as curved paths, the potential effects of object colors or object features at
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I’d like to select
these objects

Let’s start from
this position

This path can circle
the desired objects

a b c

Fig. 2. In realistic scenarios, users have to go through several steps to accomplish a lasso task, such as (a)
deciding which objects to select, (b) determining an appropriate path to select them, and (c) pointing to the
position to start the lasso operation (i.e., a Fitts’ law task). As we aim to model the time required for the main
lassoing motions, the time (and cognitive load) required for all the preparatory steps in this figure are out of
scope for the work presented here. Thus, the desired objects are highlighted in orange, the direction to be
steered is fixed to be clockwise, and the starting position is given.

a b c

Fig. 3. Example tasks having partially or fully unconstrained areas to be stroked, whose time prediction
models have been examined in previous studies. Thus, we do not test such scenarios in this work. (a) Sloppy
selection technique in which a user wants to select only the numerator in a note-taking tool [21]. (b) Lassoing
a group of icons that involves both constrained and unconstrained areas [45]. (c) A lasso operation where
users do not have to pay attention to distractors [15, 38].

different scales. To progress towards the goal of a general model for lasso times and building on
the state-of-the art [45], we identify how one needs to account for critical factors, such as path
shape, to predict lasso times more accurately. As we designed the task conditions for each of the
experiments presented here to examine specific, but different task factors, we expect that the best
model for each experiment (and thus type of path segment) naturally has a different formulation.
As our overarching goal for this work is to investigate the strategy of path segmentation, this is an
expected and acceptable outcome.
In realistic tasks, however, several steps are needed to plan and execute a lasso motion. Some

users may determine which objects in the forward direction are to be selected while moving the
stylus, while other users may decide the desired objects a priori and then execute the lasso operation
as a whole. For modeling the first case, various cognitive factors potentially affect user performance,
including the potential similarity and proximity of objects (cf. the Gestalt laws), or locations where
users have to make decisions on which path to follow. Such factors make prediction hard and thus
we consider such tasks to be outside of the scope of our current work. Therefore, we also do not
investigate the time taken by the user before beginning a stroke, such as the processes shown in
Figure 2. To focus on modeling human motor performance in predetermined lassoing tasks, we
designed our experimental tasks so that the objects to be selected and non-target ones are shown
in two easily distinguishable colors.

As our focus is on the baseline performance of lasso operations, we did not use supporting lasso
techniques, such as auto-closing the stroke. Another type of lasso tool, typically used for segmenting
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(c) Steering through a path

xW (x)

Fig. 4. Illustration of the three elemental operations that form the basis for our models. (a) Pointing to targets
and (b) crossing goals are both modeled by Fitts’ law. (c) Steering through a constrained path is modeled by
the steering law.

an area from a photo, based on edge detection, e.g., in GrabCut [29], is also out of scope of our work.
Also, models for lasso tasks which include partially or fully unconstrained areas (see Figure 3) have
been presented in previous work. Thus, we focus in our first experiment on conditions where the
pen-tip movements are constrained throughout the lasso motion. In our experiment 2 we then
expand our investigation to include very wide path segments that are effectively unconstrained.

2 RELATEDWORK
2.1 Measurement of Task Completion Times for Lassoing Tasks
Basic lassoing performance has been evaluated in the past, often in comparisons with novel
techniques [10, 12, 23, 41]. To predict baseline user performance, Bjerre et al. proposed a model
linear in the number of lassoed icons [10]. At best, it is unclear if such a simplistic model can handle
different icon shapes or free areas, when one considers, e.g., that their model predicts the same
time for two tiny icons and a huge and a tiny ones. Yamanaka and Stuerzlinger conducted two
experiments with square icons arranged in a grid, where some path segments optionally involved
free space [45]. For the fully constrained condition, the lasso task was reasonably modeled by a
steering motion, but a segmented model with successive steering motions showed an even better
fit. For the partially constrained condition, the crossing model [4] further improved time prediction
accuracy for entering an constrained area from an unconstrained one.

2.2 Performance Models for GUI Operations
2.2.1 Pointing and Crossing Models. MacKenzie’s formulation [22] of Fitts’ law [14] is widely used
in HCI to predict the MT of pointing tasks:

𝑀𝑇 = 𝑎𝑝 + 𝑏𝑝 IDp, IDp = log2 (𝐴/𝑊 + 1) (1)

where 𝐴 is the distance to the target,𝑊 is the target size, and 𝑎𝑝 and 𝑏𝑝 are empirical constants for
pointing (see Figure 4a). The logarithmic term is called the index of difficulty of pointing (IDp).
Crossing a goal line is also modeled by Fitts’ law [4]. Given a goal length𝑊 and a distance 𝐴,

the time is predicted as:𝑀𝑇 = 𝑎𝑐 + 𝑏𝑐 IDc , where IDc = log2 (𝐴/𝑊 + 1) and 𝑎𝑐 and 𝑏𝑐 are crossing
regression constants (see Figure 4b). Yamanaka et al. used the crossing model to predict the time
to enter a “gate” between obstacles from wider to narrower path segments [46] and between
unconstrained and constrained areas [45, 47].

2.2.2 Steering Model. Models for steering through a given path have been proposed several times
[1, 13, 28]. Accot and Zhai [1] proposed a global steering law model to pass through a path (or
tunnel) 𝑇 :

𝑀𝑇 = 𝑎𝑠 + 𝑏𝑠 IDs, IDs =

∫
𝑇

𝑑𝑥

𝑊 (𝑥) (2)
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where 𝑥 is the cursor position in the path,𝑊 (𝑥) is the path width at 𝑥 , and 𝑎𝑠 and 𝑏𝑠 are steering
constants (see Figure 4c). The integral term is called the steering index of difficulty IDs . If the width
𝑊 is constant throughout the path, the model simplifies to𝑀𝑇 = 𝑎𝑠 +𝑏𝑠 (𝐴/𝑊 ), where𝐴 is the path
length. This model holds for various devices [2] and movement angles [35, 36], and thus applies to
lassoing tasks with various steering directions [45].

For a narrowing straight path, the𝑀𝑇 prediction model can be derived from Equation 2:

𝑀𝑇 = 𝑎𝑠 + 𝑏𝑠 IDs, IDs =
𝐴

𝑊2 −𝑊1
ln
𝑊2

𝑊1
(3)

where𝑊1 and𝑊2 are the widths at the start and end of the path. The same model is also valid for a
widening straight path, but with different 𝑎𝑠 and 𝑏𝑠 constants [42, 43].

Based on the mentioned models, given the results for a specific condition, and within reasonable
limits, it is possible to predict the performance for any type of task mentioned in Sections 2.1 and 2.2.
This is particularly relevant if researcherswant to identify the𝑀𝑇 s for a new task condition, e.g., how
does the𝑀𝑇 change if𝑊 increases from 5 mm to 10 mm?. One feature of the performance models
we work on is that researchers can then accurately predict the average𝑀𝑇 when a group of users
encounters a new condition. Hence, the resulting models are reusable without performing additional
user studies, which is beneficial for researchers designing novel lasso interaction techniques.

2.3 Object Inclusion Criterion for Lassoing
Often, objects inside of the loop or those crossed by the stroke are selected, as in Illustrator. Another
common criterion selects only objects inside the lasso loop that are not touched by the stroke, as in
OneNote. A third criterion uses only object center points [23]. With different criteria, only the path
width between icons changes and thus the 𝑀𝑇 s might differ. This difference results in different
model coefficients, but the steering law model holds overall internally across these three criteria
[37]. Participants normally get familiar with a given criterion after sufficient practice.
Consistent with previous work [1, 45, 47], we match here the visual appearance of the path to

the task tolerance requirement, i.e., participants cannot touch any objects, which eliminates the
corresponding ambiguity for users. If other criteria such as the center-point rule [23] are used,
the path width and length only need to be recalculated to take the corresponding variation into
account.

3 EXPERIMENT 1: PATHS INCLUDING SMOOTH NARROWING ANDWIDENING
SEGMENTS

In this Experiment 1, the lasso path included two width-varying segments: called seg2 and seg6 in
Figure 5. The Shape of these areas were either Constant, Narrowing, and Widening. As the effect of
the number of corners had been already investigated [45], we fixed the overall lasso path to be a
rectangle consisting of four straight path segments. Based on previous work for single segments
[42, 43], we hypothesize that the Shape of the path and the corresponding changes of path width
would significantly affect𝑀𝑇 and error rate.

3.1 Participants and Apparatus
Twelve participants were recruited from a local university (3 female, 9 male; 𝑀 = 22.1 and 𝑆𝐷 =
1.26 years). All were right-handed. Each participant received the equivalent of 46 USD.

We used an Apple MacBook Pro laptop (2.8 GHz i5-4308U; 8 GB; macOS Sierra). The input
device and display was a Wacom Cintiq 27QHD DTK-2700/K0 (27”, 597.7×336.2 mm, at 2560 ×
1440 pixels, 60 Hz refresh). This system reads and processes input about 100 times per second. The
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Fig. 5. Path parameter definitions in Experiment 1. With the exception of the width-varying segments (i.e.,
seg2 and seg6), all other segments had constant width.

tablet was positioned on a table in “stand” mode (20◦ tilt). The display rejected finger touches. The
experimental system was implemented with JavaScript and used in full-screen mode.

3.2 Task
Starting from a blue start area, the task involved making a stroke around all orange objects, see
Figure 5a. Participants were asked to perform a quick stroke as long as they did not “touch” any
objects, which emphasized accuracy over speed. They were also asked to pass only through the
white path. When the pen tip crossed the stroke itself and all orange objects were included in the
loop, we played a bell sound to signal success. If participants touched objects or lifted the pen, we
played a beep sound and they had to immediately redo the trial with the same path configuration.

To simulate a collection of non-rectangular objects, we created a background image by randomly
arranging PowerPoint shapes. Then, we overlaid a white lasso path consisting of eight segments as
shown in Figure 5b and c. The lengths of offsets between objects were always shorter than 5𝑊 ;
thus participants had to use a continuous path-steering motion [30, 47]. Movement direction was
always clockwise.

To compensate for any effect due to hand occlusion on the path, we used the same path shapes
for both halves in a task. Thus, within the first four path segments (seg1 to seg4 in Figure 5), the
width-change always occurred in seg2. For seg5 to seg8, we used the same path parameter setting
as for the first half. We defined 𝐴 and𝑊 for each path segment as shown in Figure 5.

3.3 Design and Procedure
For Narrowing, if𝑊 (𝑊1 or𝑊2) was too small, the steering times for the seg3, seg4, seg7 and seg8
would be too long. Thus, even if the path shape affected the time in the width-changing areas, the
effect would hardly appear in the total𝑀𝑇 for the entire loop. On the other hand, if the𝑊 was too
large, users would not have to pay attention to the path boundaries and the steering time would
not be affected by𝑊 [1, 17, 35]. This did not match our goal for the current experiment and thus
we chose the following three levels for𝑊 : 7, 12, and 20 mm. The values for𝑊1 and𝑊2 were chosen
independent of these values. Thus, if𝑊1 = 𝑊2, the Shape condition was defined as Constant. If
𝑊1 >𝑊2, it was Narrowing, and if𝑊1 <𝑊2, Widening. In other words, the Shape condition was
defined a posteriori.
We fixed 𝐴1 to 150 mm, the 𝐴2’s to 30, 90, and 150 mm, the 𝐴3’s to 2𝑊2 and 8𝑊2, and 𝐴4 to 30

mm. If𝐴3 is too short, users effectively cannot accelerate forWidening, because users might need to
pre-plan for the corner between seg3 and seg4 while steering through seg2. To test this assumption,
we included two ratios relative to𝑊2 for 𝐴3.

The combinations yielded 3𝐴2 × 2𝐴3 × 3𝑊1 × 3𝑊2 = 54 different path configurations. One block
consisted of the 54 configurations, which appeared in a random order. After 10 randomly selected
configurations for practice trials, each participant performed five data-collection blocks. In total,
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we recorded 54configurations × 5blocks × 12participants = 3240 data points. Experiment 1 took about 40
min per participant.

3.4 Results
3.4.1 Error Rate and MT. After removing 12 invalid trials due to pen lifting, we were left with data
for 3498 trials, including 259 error trials (7.40%). One trial was not recorded due to a system issue.
We observed no selection errors where participants did not include orange objects or included
green objects. Steering error rates for Constant, Narrowing, andWidening were 6.67, 7.97, and 9.35%,
respectively. The mean𝑀𝑇 s were 4467, 4390, and 5458 msec, respectively.
It is likely thatWidening was the most difficult condition. However, for example, when𝑊1 = 7

mm and𝑊2 = 20mm, participants had to keep a low speed in seg1, and the high speed in seg3 could
only be maintained for a short time. As shown by this example,𝑊1 and𝑊2 thus affected the total
difficulty of the path in addition to the width-varying areas. Thus, analyzing statistically significant
differences for error rate and𝑀𝑇 by using an ANOVA with four independent variables (𝐴2, 𝐴3,𝑊1,
and𝑊2) or using Shape is not meaningful for our purpose. Consequently, we only noted the mean
values of them and this decision does not affect our overall goal of comparing model fitness.

3.4.2 Candidate Models. First, the global steering model considers a lassoing task to be a single
steering motion. For constant-width path segments, we used IDs = 𝐴/𝑊 , and for narrowing or
widening segments, we used Equation 3. The steering constants (𝑎𝑠 and 𝑏𝑠 ) are consistent regardless
of the Shape. Thus, we obtain:

𝑀𝑇 = [𝑎𝑠 + 𝑏𝑠 (IDs of seg1)] + [𝑎𝑠 + 𝑏𝑠 (IDs of seg2)] + · · · + [𝑎𝑠 + 𝑏𝑠 (IDs of seg8)] = 𝑎′𝑠 + 𝑏𝑠 (sum of eight ID𝑠 values) (4)

where 𝑎′𝑠 = 8𝑎𝑠 , but these are constants and thus no distinction is needed. Hence, as the baseline
Model #1, the global steering law model uses only a single explanatory variable, IDs , which is the
sum of IDs for path segments seg1 to 8.

𝑀𝑇 = 𝑎𝑠 + 𝑏𝑠 (IDs), Model #1 (5)

Next, we test a segmented version of the steering law model that uses different intercepts and
slopes to each path segment. Path segmentation has two possible approaches: using different slopes
for each path Shape condition or using different intercepts. The idea of using different slopes or
intercepts follows from Yamanaka and Miyashita’s work: the𝑀𝑇 s for steering through narrowing
and widening segments are different [42, 43].

For Model #2, the steering difficulty IDs is thus split for each path shape; we use subscript sc for
“Steering through Constant-width path segment”, so the IDsc is the sum of IDs of constant-width
path segments and 𝑏sc is its slope. In the same manner, the IDsn and IDsw are the sum of IDs values
of narrowing and widening path segments, respectively, and 𝑏sn and 𝑏sw are their slopes.

𝑀𝑇 = 𝑎𝑠 + 𝑏sc (IDsc) + 𝑏sn (IDsn) + 𝑏sw (IDsw), Model #2 (6)

For example, in the Shape = Constant condition, IDsn = IDsw = 0. With Shape = Narrowing, the IDs
for seg2 and seg6 are replaced with IDsn, as computed by Equation 3. This model used the same
intercepts for different Shape conditions (𝑎𝑠 ).

Model #3 uses different intercepts for each Shape. In this method, the numbers of path segments
for the three Shapes matter. We note the number of constant, narrowing, and widening path
segments as #𝑠𝑐 , #𝑠𝑛, and #𝑠𝑤 , respectively, needing only a single steering slope, 𝑏𝑠 :

𝑀𝑇 = 𝑎sc (#𝑠𝑐) + 𝑎sn (#𝑠𝑛) + 𝑎sw (#𝑠𝑤) + 𝑏𝑠 (IDs), Model #3 (7)

Accounting for both different intercepts and slopes, we obtain:

𝑀𝑇 = 𝑎sc (#𝑠𝑐) + 𝑏sc (IDsc) + 𝑎sn (#𝑠𝑛) + 𝑏sn (IDsn) + 𝑎sw (#𝑠𝑤) + 𝑏sw (IDsw), Model #4 (8)
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For the Constant condition, #𝑠𝑐 is 4, because seg1–3 merge into a single constant-width path, and
so do seg5–7. For Narrowing, #𝑠𝑐 is 6 and #𝑠𝑛 is 2 and conversely forWidening, #𝑠𝑐 is 6 and #𝑠𝑤 is 2.

Finally, we generate four additional models from Models #1–4 by taking cornering motions into
account. Turning a corner in a path is a kind of pointing task and thus modeled by Fitts’ law [26].
For example, when turning the corner after seg3 for Narrowing (see Figure 5b), the pointing MT
is computed as 𝑀𝑇 = 𝑎𝑝 + 𝑏𝑝 log2 (𝐴3/𝑊2 + 1). No pointing motion is required for the final path
segment.
However, two modifications are needed. Because the number of cornering motions is always

three, i.e., constant, we do not need to consider the number of pointing motions “#𝑝” or an intercept
of pointing 𝑎𝑝 , which are merged by other intercepts. Hence, the final form of Model #5, the
“Steering (global model) + Fitts” version of Model #1 is:

𝑀𝑇 = 𝑎 + 𝑏𝑠 (ID𝑠 ) + 𝑏𝑝 (IDp), Model #5 (9)

where 𝑎 means the sum of 𝑎𝑠 + 𝑎𝑝 , and IDp is the sum of three pointing difficulty values. Similarly,
adding Fitts term to Models #2–4 results in Models #6–8:

𝑀𝑇 = 𝑎 + 𝑏sc (IDsc) + 𝑏sn (IDsn) + 𝑏sw (IDsw) + 𝑏𝑝 (IDp), Model #6 (10)
𝑀𝑇 = 𝑎 + 𝑎sn (#𝑠𝑛) + 𝑎sw (#𝑠𝑤) + 𝑏𝑠 (IDs) + 𝑏𝑝 (IDp), Model #7 (11)
𝑀𝑇 = 𝑎 + 𝑏sc (IDsc) + 𝑎sn (#𝑠𝑛) + 𝑏sn (IDsn) + 𝑎sw (#𝑠𝑤) + 𝑏sw (IDsw) + 𝑏𝑝 (IDp), Model #8 (12)

3.4.3 Statistical Comparison of the Models. To compare the fitness of candidate models, we use
adjusted 𝑅2. The adjusted 𝑅2 metric, however, does not give us a clear criterion to judge which
model is statistically better than others. To address this, we also compare models through the
Akaike Information Criterion AIC [5], the AIC with small sample size correction (AICc) [33], and
the Bayesian Information Criterion BIC [18]:

AIC = −2𝑀 + 2𝐾 (13)
AICc = AIC + 2𝐾 (𝐾 + 1)/(𝑁 − 𝐾 − 1) (14)
BIC = −2𝑀 + 𝐾 ln (𝑁 ) (15)

where𝑀 is the maximum log likelihood value of the model, 𝐾 is the number of free parameters,
and 𝑁 is the number of data points to be regressed (i.e., the number of path configurations; 54 in
Experiment 1).
These statistical methods balance the number of coefficients and the fitness to identify a com-

paratively best model. A model with a lower AIC value is a better one and one with AIC ≥
(𝐴𝐼𝐶minimum + 10) can be safely rejected [5]. The same decision criteria are also applicable to AICc.
BIC differences of 0–2 are not significant, 2–6 positive, 6–10 strong, and >10 are very strong [18].
Models with larger adjusted 𝑅2 and smaller AIC, AICc, and BIC values are better. The AIC and AICc
penalize using additional free parameters less, while the BIC penalizes this the most.

Table 1 lists the results of model fitting. As demonstrated by the results, using different intercepts
or slopes for each Shape improves the fitness (Models #2 and #3). Model #3 showed the best fit
with all fitness indicators (adjusted 𝑅2, AIC, AICc, and BIC). Yet, combining both ideas (Model
#4) did not significantly improve the fitness in terms of AIC, AICc, and BIC, nor did adding the
cornering difficulty IDp. Moreover, models with less variables are easier to use and require less
work to identify coefficients. Thus, we believe there is no benefit to adding the Fitts term.

3.5 Discussion of Experiment 1
The results show that considering the path shape significantly improved model fitness. The global
steering law model (Model #1) showed adjusted 𝑅2 = 0.944, and individual Shape conditions showed
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Table 1. Model fitting results with 95% CIs [lower, upper] and 𝑡 values for the coefficients in Experiment 1.
Significance values for the coefficients are annotated as *** 𝑝 < 0.001, ** 𝑝 < 0.01, and * 𝑝 < 0.05.

Model Eq. Coefficients adj. 𝑅2 𝐴𝐼𝐶 𝐴𝐼𝐶𝑐 𝐵𝐼𝐶

(#1) Steering 5
𝑎𝑠 : 698 𝑏𝑠 : 67.6

0.944 782 782 786(global model) [411, 986] [63.1, 72.2]
𝑡 = 4.88*** 𝑡 = 30.0***

(#2) Steering 6
𝑎𝑠 : 100 𝑏sc : 67.9 𝑏sn: 72.3 𝑏sw : 66.4

0.977 760 761 770(diff. slopes) [70.7, 130] [65.0, 70.8] [61.7, 83.0] [56.4, 76.3]
𝑡 = 6.81*** 𝑡 = 47.5*** 𝑡 = 13.6*** 𝑡 = 13.4***

(#3) Steering 7
𝑎sc : 79.2 𝑎sn: 189 𝑎sw : 80.2 𝑏𝑠 : 69.2

(diff. intercepts) [16.3, 142] [60.6, 318] [-32.9, 193] [65.5, 72.9] 0.978 753 754 761
𝑡 = 1.23* 𝑡 = 2.95** 𝑡 = 1.42 𝑡 = 37.6***

(#4) Steering 8
𝑎sc : 78.5 𝑏sc : 69.3 𝑎sn: 244 𝑏sn: 62.2 𝑎sw : 35.1 𝑏sw : 75.4

(segmented) [7.53, 149] [65.0, 73.6] [53.0, 435] [49.0, 75.4] [-134, 205] [62.1, 88.6] 0.977 755 757 767
𝑡 = 2.22* 𝑡 = 32.4*** 𝑡 = 2.57* 𝑡 = 9.46*** 𝑡 = 0.416 𝑡 = 11.4***

(#5 Steering 9
𝑎: 867 𝑏𝑠 : 71.8 𝑏𝑝 : -131

(global)+Fitts [609, 1125] [67.5, 76.1] [-190, -72.0] 0.959 766 767 772
𝑡 = 6.75*** 𝑡 = 33.4*** 𝑡 = −4.45***

(#6) Steering 10
𝑎: 820 𝑏sc : 69.5 𝑏sn: 76.2 𝑏sw : 75.8 𝑏𝑝 : -93.5

0.958 769 770 779(diff. slopes) + Fitts [518, 1122] [63.1, 76.0] [63.6, 88.7] [65.4, 86.1] [-194, 6.88]
𝑡 = 5.46*** 𝑡 = 21.7*** 𝑡 = 12.2*** 𝑡 = 14.7*** 𝑡 = −1.87

(#7) Steering 11
𝑎: 60.3 𝑎sn: 379 𝑎sw : 227 𝑏𝑠 : 67.4 𝑏𝑝 : 77.5

0.969 753 755 763(diff. intercepts) + Fitts [-386, 507] [198, 560] [97.8, 356] [62.9, 71.9] [-34.4, 189]
𝑡 = 0.271 𝑡 = 4.22*** 𝑡 = 3.53*** 𝑡 = 30.0*** 𝑡 = 1.39

(#8) Steering 12
𝑎: 49.3 𝑏sc : 66.3 𝑎sn: 426 𝑏sn: 62.8 𝑎sw : 168 𝑏sw : 76.4 𝑏𝑝 : 93.8

0.969 755 757 768(segmented) + Fitts [-397, 495] [60.5, 72.1] [230, 621] [49.7, 75.9] [19.8, 317] [63.2, 89.5] [-29.3, 217]
𝑡 = 0.223 𝑡 = 23.1*** 𝑡 = 4.38*** 𝑡 = 9.67*** 𝑡 = 2.28* 𝑡 = 11.7*** 𝑡 = 1.53
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Fig. 6. Model fitness for the entire𝑀𝑇 using the global steering law model in Experiment 1.

the 𝑅2 values 0.991, 0.923, and 0.966 for Constant, Narrowing, and Widening, respectively (Figure 6).
Because the global steering law model takes width changes of the path into account [1], this is not
unexpected.

The same tendency also holds for the width-changing area (seg2 and seg6). As an example, if we
only analyze seg2, the model fitness using Equation 2 is good for Constant (𝑅2 = 0.998), Narrowing
(𝑅2 = 0.945), and Widening (𝑅2 = 0.999), see Figure 7. This poses the question if participants’
steering motions were consistent in all Shape conditions? To better understand their behaviors,
we analyzed the speed profiles from the start to the first corner (seg1–3), as shown in Figure 8. As
the raw data were very noisy, we re-sampled the pen-tip trajectory every 5 mm. Also, to better
compare the speed differences in the width-changing area, we align the start and end positions of
seg2 on the x-axis in Figure 8.

Figure 8a shows that the participants used appropriate speeds for the given path width, i.e., the
speed increased as the path width increased. Then, anticipating the corner after seg3, they already
began to decelerate in seg2.

Figure 8b shows that, at the end of seg2, the two speed profiles for𝑊2 = 7 mm (orange and blue)
match. It is interesting that, although the𝑊1’s for the green and orange conditions are equal (both
20 mm), the speeds at the beginning of seg2 are different, as indicated by the red rectangle. It seems
that participants began adjusting to a speed appropriate for the end width𝑊2 at (or even before)
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Fig. 8. Speed profiles in seg1–3 in Experiment 1. 𝐴2 is fixed to 150 mm. Black vertical bars show the start and
end positions of seg2. Due to the width differences in the preceding seg8, the speed in the first re-sampled
points is not aligned.

the start of seg2. This behavior, i.e., deceleration in anticipation of the future path, has been also
observed in previous work [42, 43, 46].
Figure 8c supports our decision to use two ratios for 𝐴3, i.e., 2𝑊2 or 8𝑊2. That is, when 𝐴3 is

long, the participants could effectively accelerate in the widening path (orange), as observed in
previous work [42, 43, 46]. In contrast, if 𝐴3 is short, they had to start decelerating earlier in seg2
(blue), see the red rectangle.

In summary, participant behaviors were quite different depending on the path width (Figure 8a),
the degree of the change of width (b), the length of the future path (c), and path Shape (a–c). Hence,
although a single dependent variable IDs achieved adjusted 𝑅2 = 0.944, this results does not mean
that the participants behaved the same with the three path Shapes. In spite of these behavioral
differences, the global steering law model still adequately captured the entire 𝑀𝑇 s with somewhat
limited accuracy. Still, in accordance with the AIC, AICc, and BIC criteria for our results, we can
confirm that path segmentation significantly improved the prediction accuracy of MT , which
supports our hypothesis.

4 EXPERIMENT 2: PATHS INCLUDING STEP-WISE NARROWING ANDWIDENING
SEGMENTS

In this experiment, the lasso path included two (practically) unconstrained areas as shown in
Figure 9. As steering through successive constrained and unconstrained areas had been investigated
in previous work [47], we investigate the effect of another path element on the whole lasso time:
the transition between constrained and unconstrained areas.

Previous studies focused on whether it is appropriate to use the steering or crossing law models
for a given path segment [45, 47]. Typically, the crossing lawmodel predicted entering a constrained
area from an unconstrained one better, while the steering law model was more appropriate for
passing through a long constrained area. Yet, it is still unclear how the widths and lengths of
transition areas affect model fitness. Hence, our goal in Experiment 2 was to investigate the speed
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Fig. 9. Path parameter definitions for Experiment 2.

change around transition areas, and thus we focused our experimental design on exploring path
parameters for such transitions.

4.1 Participants and Apparatus
Twelve participants (including seven new students) were recruited from a local university (2 female,
10 male; 𝑀 = 22.2 and 𝑆𝐷 = 1.72 years). All were right-handed. Each participant received the
equivalent of 46 USD for their time. We used the same apparatus as in Experiment 1.

4.2 Task, Design, and Procedure
The task was very similar to that in Experiment 1, but without the Constant conditions. For
Narrowing, seg2 and seg7 were unconstrained areas (seg3 and seg8 forWidening), and seg3 and
seg8 transition areas (respectively, seg2 and seg7).
We fixed 𝐴1 to 40 mm and𝑊1 to 7 mm. For Narrowing, in seg2, we set 𝐴2 to 140 mm and𝑊2 to

120 mm. In seg3, we set𝐴3 to 17, 35, 70, and 140 mm, and𝑊3 to 12, 17, 22, and 27 mm. ForWidening,
we swapped the values of 𝐴2 and 𝐴3 as well as𝑊2 and𝑊3. 𝐴4 and𝑊4 were the same as 𝐴1 and𝑊1,
respectively. 𝐴5 was 150 mm and𝑊5 was 20 mm.
We also identified during the experimental design process that the length 𝐴 of transition areas

must vary sufficiently to be able to investigate the effect of such areas. As a rule of thumb, when a
steering path’s distance is shorter than 5𝑊 , closed-loop motions are not required [31, 35]. Hence,
in a Narrowing scenario, if 𝐴3 < 5𝑊3, we assume that the operation in seg3 is not steering, but a
crossing motion to enter seg4. Otherwise, i.e., 𝐴3 ≥ 5𝑊3, a steering movement is needed in seg3.
Therefore, 𝐴3 needs to range from less than (5 ×𝑊3min =) 60 mm to longer than (5 ×𝑊3max =) 135
mm.
In total, each of the two Shape conditions consisted of four 𝐴s and four𝑊 s in the respective

transition areas. Exploring all combinations, one block included 32 different configurations (2Shapes×
4𝐴 × 4𝑊 ) appearing in random order. Each participant trained until they successfully executed
ten practice trials, followed by six data collection blocks. We recorded 32configurations × 6blocks ×
12participants = 2304 data points. Experiment 2 took about 30 min per participant.

4.3 Results
After removing 12 invalid trials that involved lifting the stylus, we identified 226 steering errors
(8.93%). The steering error rates for Narrowing and Widening were 8.13 and 9.72%, respectively. We
observed no errors where participants did not include orange objects or included green objects. The
mean𝑀𝑇 s for Narrowing and Widening were 5466 and 5367 msec, respectively. As mentioned for
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Experiment 1, analyzing statistically significant differences for error rate and𝑀𝑇 is not meaningful
for our purpose, and thus we list only mean values.
For model derivation, the number of corners was again fixed to 3. In addition, and as the

corresponding length and width were fixed, the sum of cornering difficulties was always the same
among the 32 task configurations. Therefore, we did not use variables #𝑝 and IDp in this experiment.
We arrived at the following four models:

𝑀𝑇 = 𝑎𝑠 + 𝑏𝑠 (ID𝑠 ), Model #1 (16)
𝑀𝑇 = 𝑎 + 𝑏𝑠 (ID𝑠 ) + 𝑏𝑐 (ID𝑐 ), Model #2 (17)
𝑀𝑇 = 𝑎𝑠 (#𝑠) + 𝑏𝑠 (IDs) + 𝑎𝑐 (#𝑐) + 𝑏𝑐 (ID𝑐 ), Model #3 (18)
𝑀𝑇 = 𝑎 + 𝑏sc (IDsc) + 𝑏𝑐 (ID𝑐 ) + 𝑎sn (#𝑠𝑛) + 𝑏sn (IDsn) + 𝑎sw (#𝑠𝑤) + 𝑏sw (IDsw), Model #4 (19)

Table 2 lists the results for Models #1 to #4. First, for the global steering law model, Model #1,
we applied the actual width 𝐴/𝑊 = 140/120 for IDs in unconstrained areas. As such a wide width
does not limit steering speed, the steering law model does not hold [1, 13, 17] and we can replace
the width with infinity, which results in IDs = 0. Yet, due to the fixed 𝐴 and𝑊 for these areas, the
intercept and slope balance each other and result in the same model fitness.

Second, for Model #2, after segmenting the path into seg1–10, we apply the crossing law model
for entering from an unconstrained area into a constrained one. For Narrowing, the movement
amplitude is 𝐴2, and the width to be crossed is𝑊3, thus ID𝑐 = log2 (𝐴2/𝑊3 + 1). Similarly, for
Widening, ID𝑐 = log2 (𝐴3/𝑊4 + 1). Because the #𝑠 and #𝑐 are fixed, 𝑎𝑠 and 𝑎𝑐 are absorbed by the
general intercept 𝑎.
Third, we consider the 𝐴 and𝑊 of transition areas. If those areas are narrow and long, they

require a steering motion, as shown in Figure 10a and c. Then, the task difficulty for the entire
task is defined by Model #3. Yet, if they are short, for Narrowing (Figure 10b), the participants
perform a crossing motion from the unconstrained area to seg4. Then, the task difficulty for seg2–3
is ID𝑐 = log2 ((𝐴2 +𝐴3)/𝑊4 + 1). Similarly, if the transition for Widening is short, (Figure 10d), the
participants performed a crossing motion from seg2. We again adopt a threshold based on the 5𝑊
criterion [31, 35]; with segments with 𝐴 < 5𝑊 being short and not requiring a steering motion.
Finally, in Model #4, if the transition area is short, we approximate the motion in that area as

a narrowing/widening path. The crossing law model was originally applied to a motion where
users cross a goal line, without a constraint after the goal [1, 4, 7]. Yet, in our present task, the
participants also had to pay attention to the path boundaries after the crossing motion, as depicted
in Figure 10. Therefore, if the transition area is short (𝐴 < 5𝑊 ), we use the steering law model for
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Table 2. Model fitting results with 95% CIs [lower, upper] and 𝑡 values for the coefficients in Experiment 2.
Significance values for the coefficients are annotated as *** 𝑝 < 0.001, ** 𝑝 < 0.01, and * 𝑝 < 0.05.

Model Eq. Coefficients adj. 𝑅2 𝐴𝐼𝐶 𝐴𝐼𝐶𝑐 𝐵𝐼𝐶

(#1) Steering (global) 16
𝑎𝑠 : 1604 𝑏𝑠 : 80.2

[1072, 2135] [69.1, 91.3] 0.875 426 427 429
𝑡 = 6.16*** 𝑡 = 14.8***

(#2) Crossing for 17
𝑎: 2108 𝑏𝑠 : 81.4 𝑏𝑐 : -49.5

0.890 423 424 427unconstrained areas [1555, 2661] [70.9, 91.8] [-93.9, -5.097]
𝑡 = 7.79*** 𝑡 = 15.9*** 𝑡 = −2.28

(#3) Continuous crossing
18

𝑎𝑠 : 449 𝑏𝑠 : 31.8 𝑎𝑐 : -13.3 𝑏𝑐 : 119
0.786 444 446 450for transition areas [226, 672] [-0.573, 64.1] [-136, 109] [68.2, 169]

if it is short 𝑡 = 4.23*** 𝑡 = 2.01 𝑡 = −0.223 𝑡 = 4.82***
(#4) Approximate

19
𝑎: 3649 𝑏𝑠𝑐 : 50.4 𝑏𝑐 : -34.3 𝑎𝑠𝑛 : -295 𝑏𝑠𝑛 : 63.1 𝑎𝑠𝑤 : -262 𝑏𝑠𝑤 : 55.4

narrowing or widening [2625, 4673] [31.8, 69.1] [-91.7, 23.2] [-454, -137] [39.2, 87.0] [-438, -85.7] [30.9, 79.8] 0.937 409 413 419
shapes for transitions 𝑡 = 7.34*** 𝑡 = 5.57*** 𝑡 = −1.23 𝑡 = −3.85*** 𝑡 = 5.43*** 𝑡 = −3.06** 𝑡 = 4.67***

narrowing/widening path shapes (Equation 3). Because the number of crossing motions is fixed to
2, and #𝑠𝑐 is fixed to 8 − (#𝑠𝑛) − (#𝑠𝑤 ), we do not include them and only use a general intercept 𝑎.
In contrast to the results for Experiment 1, the global steering law model did not show a good

fit (Model #1). Although we attempted to use the crossing law model for unconstrained areas
(Model #2), the fitness did not improve significantly over Model #1, which contradicts results from
a previous study on gird-icon lassoing [45]. We initially believed that Model #3 could more closely
model user behaviors in the transition areas, but we found that it degraded the fitness even more.
The significantly best model according to the AIC, AICc, and BIC measures was Model #4. Thus, we
can say that closely approximating the motion within transition areas resulted in a more desirable
𝑀𝑇 prediction accuracy.

To illustrate how well Model #4 outperforms the other candidates, we show the regression graphs
in Figure 11. For obtaining 2D graphs from regressions with two or more explanatory variables, we
aggregated the coefficients and variables. For example, for Model #2, we converted the obtained
coefficients as follows.

MT = 2108 + 81.4 · ID𝑠 − 49.5 · ID𝑐 = 2108 + 81.4(ID𝑠 − 0.608 · ID𝑐 ), Model #2 (20)

Similarly, Models #3 and #4 became as follows, respectively.

𝑀𝑇 = 449(#𝑠 + 0.0707 · IDs − 0.0297 · #𝑐 + 0.264 · ID𝑐 ), Model #3
(21)

𝑀𝑇 = 3649 + 50.4(IDsc − 0.680 · ID𝑐 − 5.86 · #𝑠𝑛 + 1.25 · IDsn − 5.19 · #𝑠𝑤 + 1.10 · IDsw), Model #4
(22)

We call the value inside the brackets IDcorrected, which is the x-axis value in the graphs. We can
see that most data points in Figure 11d (Model #4) are located close to the regression line. This
tendency also holds for Models #1 and #2, but some points are still away from their regression lines.

4.4 Discussion of Experiment 2
To analyze the user behaviors in the transition areas, we again re-sampled the pen tip trajectory
every 5 mm as shown in Figure 12. As expected, when the transition areas were long for Narrowing
(Figure 12a), the speeds in that area (seg3) were stable at first, and then began decelerating to enter
the narrow seg4. The initial speeds in seg3 were even lower with narrower𝑊3. The effect of𝑊3 can
also be seen in seg2 (unconstrained area); as𝑊3 decreases, the speeds decrease in advance of the
joint between seg2 and seg3. Also, in Figure 12b (Widening), the speeds in the long transition area
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the others.
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Fig. 12. Speed profiles for different widths (12–27 mm) with long vs. short transition areas in Experiment 2.

gradually increased, and then began decelerating before seg4. In sum, when the transition area was
long, the behavior in that area was similar to conventional steering with future-path anticipation.
In contrast, if the transition area was short, no effect of the width of the transition area was

observed on the speed in seg2 and seg3 (Figure 12c and d). This confirms that the users exhibited
different strategies for long (Figure 12a and b) and short transition areas (c and d). Hence, different
models are needed depending on the length of such areas, and Models #1 and #2 did not account
for this difference, resulting in lower fitness.
Model #3 replaces the steering difficulty in the short transition area with a crossing difficulty,

which assumes that no steering motion occurred in such areas. Yet, Model #3 showed the worst fit
among all candidates. We found that using a width-changing steering law model in such transition
areas is better (Model #4). Because the width-changing IDs is used only if the transition area
is short, it is difficult to see clearly if the speed profiles in those areas are similar to the actual
narrowing/widening path segments, as shown in Figure 8. Looking in the future, the high prediction
accuracy of Model #4 motivates us to consider further studies with, e.g., much longer and wider
transition areas.

5 GENERAL DISCUSSION
5.1 User Performance and Model Fitting
In Experiment 1, the path was constrained so that the participants had to always pay attention to
the path boundaries. In that situation, the global steering law model showed adjusted 𝑅2 = 0.944
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to the experimental data (Model #1 in Table 1). In addition, several augmented versions of the
model showed significantly better fits according to the AIC, AICc, and BIC measures. Thus, if the
users’ strategy and behavior is constrained through a specific path, the lassoing time was more
accurately predicted by the path segmentation. For Experiment 2, where unconstrained areas were
included, we reached the same conclusion that the path segmentation was effective; the prediction
accuracy of the global steering law (Model #1) showed adjusted 𝑅2 = 0.875 while the best-fit Model
#4 showed adjusted 𝑅2 = 0.937 with significantly better AIC, AICc, and BIC results (Table 2).

For the results of Experiment 2, there seems to remain more space to improve the model fitness
even further compared to Experiment 1. As the speed profiles of Experiment 2 showed (Figure 12),
behaviors in unconstrained and transition areas cannot be clearly explained as steering a constant-
width or a narrowing/widening path, nor as crossing a goal. Thus, determining an even more
accurate model for each path segment is a challenge for the future.
Although our discussion compares fits on the basis of three information-based criteria, Model

#1 (the global steering law model) might exhibit sufficiently good fits for some purposes. Thus,
the choice of models depends on the tradeoff between the simplicity of the formulation and how
much accuracy researchers need. As a model with less variables is easier to use, Model #1 may
suffice for researchers who would like to predict MTs with (say) adjusted 𝑅2 > 0.9. Still, the result
of Experiment 2 suggests that we should use Model #4 for the best prediction accuracy, even when
using the AICc criterion. Yet, we acknowledge that seven free parameters constitutes a complex
MT prediction model.
We see negative slopes for crossing (𝑏𝑐 ) in Models #2 and #4 in Experiment 2 (Table 2). This

seemed initially strange but we identified that the reason behind this is that we replaced the crossing
difficulty with a steering difficulty in our model. As increasing the ID𝑐 means that the steering
motion phase has to decrease – and thus also the overall𝑀𝑇 – this does not invalidate the model.

5.2 Implications
5.2.1 Prediction of MTs for Untested Task Conditions to Estimate the Efficiency of Lasso and Tar-
get/Command Selection Techniques. Based on our results, and in the same manner as other per-
formance models, we can predict how the 𝑀𝑇 changes with specific task conditions or novel
interaction techniques. Based on reflections what our outcomes mean, illustration software could,
once a user selects the lasso selection tool, automatically shrink all object sizes to widen the path
to make lassoing easier [46]. Another possibility to support lassoing operations is to automatically
trigger magnification for dense areas, similar to an approach proposed for target pointing [24].
Our models can predict the magnitude of such improvements, e.g., when the path is widened.

For example, in a Narrowing condition in Experiment 1, if we use the path parameters of 𝐴1 = 150,
𝐴2 = 150, 𝐴3 = 2𝑊2, 𝐴4 = 30,𝑊1 = 20, and𝑊2 = 7 mm, we can then predict the𝑀𝑇 based on the
best Model #3 in Table 1 as 4519 ms. When we widen𝑊2 to 15mm, we obtain𝑀𝑇 = 3734ms, which
corresponds to a reduction of 17%.
This application of our work also generalizes to target and command selection techniques that

involve stroking through the intended objects, such as Bubble Clusters [39], Pins ’n’ Touches [32],
CrossY [6], Attribute gates [34], Don’t click, paint! [9], and Crossets [27]. For example, in Bubble
Clusters and Pins ’n’ Touches, a user can group many icons by passing through desired ones with a
single continuous stroke. Touching non-target icons needs to be avoided because this then requires
subsequent operations (to undo or ungroup).

Although previous work has measured the MT for such operations experimentally with a fixed
icon size [39], and as we empirically showed above, their results should be affected by the geometry
of the stroke such as the width of the path to be steered. Based on our results, researchers can
compute, e.g., the potential increase in the MT if a path to be steered is narrowed from 30 to 20
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mm, without needing to run another experiment. Our work informs researchers who would like to
propose novel lasso techniques by enabling the prediction of the performance without conducting
(potentially costly) user studies.

5.2.2 Development of Novel Interaction Techniques and Modeling MTs. As we imposed no fun-
damental restrictions on the object shapes, the results of our work are also very likely to hold
for width-varying paths around groups of icons or other rectangular objects, which generalizes
previous work on lassoing for such objects. As one can approximate curved path boundaries
with polygons, we also believe that our approach might generalize to arbitrary object shapes. Yet,
such a theoretically possible generalization will need to be verified in the future, especially for
approximations that involve many small path segments.
Beyond lasso tasks, another potential application of our work is to model the MTs for making

strokes. For example, gesture-based menu navigation techniques [20], where, based on the steering
law, the authors identified that their new technique reduces the𝑀𝑇 .

Developing and evaluating other new UIs, e.g., for sketching in Virtual Reality environments [8],
also relies on existing performance models, e.g., a pen gesturing model [11], which is again based on
the steering law. Based on our outcomes, UI developers and researchers can predict 𝑀𝑇 s for novel
gesturing/stroking interaction techniques in tasks with width-changing paths and unconstrained
areas, tasks that were not covered by previous work.

5.2.3 Design Considerations for Novel Interaction Techniques. Previous studies on selecting multiple
objects with a single stroke sometimes conducted user experiments without controlling the target
size as mentioned above [6, 9, 27, 34]. Our results suggest that simply making each item larger
for a crossing-based technique reduces the task completion time. Although MTs in wider paths
for lasso-techniques are known to be shorter according to the steering law and its variations,
the investigated path configurations were limited to a fixed width with linear or circular shape
[1, 2, 30, 42, 45] or a width-changing but linear shape [42, 46]. Accordingly, researchers could
simply enlarge each item for object-selection techniques to effectively reduce MTs on the basis
of the steering law, yet our work is the first to empirically verify this assumption for whole lasso
motions.

Another promising technique to reduceMTs in lasso tasks is to shrink objects that are located in
the forward direction of the cursor’s movement (thus widening the path to be steered) so that users
have to pay less attention to hitting unwanted objects [46]. Yet, using this idea causes problems
when there is a corner immediately ahead after the shrunk objects. Then, and although the path
width of the current cursor position is wide, the speed cannot be increased, which was confirmed
by our speed-profile analysis results. From this point of view, it is (too) optimistic to assume that
the movement speed could be increased by expanding the path in the forward direction [46].

For techniques that enlarge targets to be crossed by the cursor [6, 9, 27, 34] or widen the path so
that the cursor more easily steers between unwanted targets [46], where the dynamic change in
size occurs depending on the cursor position or direction, users have to respond on-line, which in
turn carries the risk of lowering performance (see Gutwin’s study on fish-eye target resizing [16]).
For illustration software, there is also the concern that if content shrinks too much, users may not
be able to tell which image they wanted to select.

The issue of how humans respond on-line during deliberate stroke movements raises the question
at which distance from the current cursor position forward path segments (or objects) should change
so that the user can react in time. Our Experiment 1 used relatively tighter paths than Experiment
2, and Figure 8b suggests that the participants began to change the speed already more than 30 mm
before the width-changing point. In contrast, in Experiment 2, Figure 12a suggests that, even when
the cursor was in the unconstrained area, the participants began to decelerate already more than
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90 mm before entering the transition area. These results point out that users anticipated further
ahead for the higher speed. It would thus be interesting to determine how far ahead each object’s
size should be changed depending on the current speed. It is also possible to combine this idea with
Sloppy Selection [21], which determines the lasso-selection width based on the current speed.
Thus, simply changing each target’s size may not be a good idea for trajectory-based object

selection techniques, as fine-tuning several parameters would be needed to improve user perfor-
mance. One possible solution is to keep the visual size constant and to only change the motor
(collision) size. However, if the visual appearance is kept, users may not be able to effectively utilize
the motor space path-width change, and thus MTs may not become smaller. This issue needs to be
investigated in the future.

5.3 Limitations and Future Work
Our results are potentially limited by the experimental conditions, such as using fixed path lengths
in some segments and involving a constant number of corners. In addition, width-changing,
unconstrained, and transition areas appeared only during rightward and leftward movements to
control the possible effects of hand occlusion. In realistic lasso tasks, such areas would appear
at various positions and directions, and thus some modifications of the models might be needed.
One reason is that, for constant-width linear-path steering tasks, MTs can differ depending on the
movement directions; horizontal movements were significantly faster than vertical ones [35, 48].
Assuming that the MTs in width-changing path segments also differ depending on the direction
(horizontal or vertical), we would need to use different coefficients, such as using an intercept for
steering through a horizontal narrowing path segment (𝑎sn_h) and a vertical one (𝑎sn_v).

In our experimental conditions, all corners were right angled (90◦), but realistic lasso tasks may
involve more gradual and acute ones. There, existing performance models might be used, e.g.,
different steering law models for varying curvature radii [25, 44] and a velocity prediction model
based on the stroke curvature in unconstrained areas [15, 38].
Although our participants were all right-handed, we assume that the models examined in this

paper are applicable to left-handed users (potentially with different coefficient values), but speed
profiles might change from those illustrated in Figures 8 and 12. For example, because we fixed the
start position to the top-left of the path, left-handed users can see the whole first straight region
(seg1–3 in Experiment 1 and seg1–4 in Experiment 2), which would enable them to accelerate more
than right-handed users.
Several potentially necessary factors for modeling lasso times are listed below, with potential

solutions to improve the prediction accuracy in the future.
(1) Pen movement speeds and MTs depend on the movement direction 𝜃 in path steering tasks

[35]. This previous work found that theMTs changed symmetrically and thus proposed a refinement
model:𝑀𝑇 = 𝑎 + (𝑏 + 𝑐 · sin𝜃 ) (𝐴/𝑊 + 𝑑). Incorporating such a term might be particularly needed
for paths that have many twists and turns.

(2) In our experiments the horizontal movement parts were longer than the vertical ones. Thus,
the left- and rightward strokes involved (somewhat) larger arm movements. In this context, it is
known that the scale effect matters for path steering operations [3, 30]. That is, the𝑀𝑇 tends to be
short when the task can be accomplished within the “natural movement area for the hand”, while
too large or small movements become difficult for humans. Senanayake et al. [30] proposed the
following relationship between the slope of the steering law (“𝑏” in𝑀𝑇 = 𝑎 + 𝑏 · IDs) and the scale:
1/𝑏 = 𝑘0 · scale2 + 𝑘1 · scale + 𝑘2, where 𝑘0–𝑘2 are coefficients. According to this, it might be better
to use different steering coefficients depending on the segment length.

(3) Our participants changed the speed much in advance of the end of the current path segment.
For example, as shown in Figure 8b and c, when a corner was located after seg3 the user’s speed
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already changed even before they entered seg2 (Figure 8b) or in the middle of seg2 (c). While human
corrective reaction time is known, e.g., 190 to 260 msec [19], we know presently no method to
reliably predict the initial timing of such decelerations or accelerations.
These factors should affect (only) the prediction of MTs for each path segment, and previous

work proposed appropriate models for each condition as mentioned above. Thus, our overall
recommendation of segmenting the whole path and then modeling MTs for each segment still
holds.

Lastly, we focused on modelingMTs in this study in simplified tasks that do not involve the time
and cognitive cost to distinguish the targets to be selected, nor the time to point to the starting
position (see Section 1.3). Investigating lasso motions in a concrete application might enable
observation of more realistic user behaviors and would help to verify the models’ applicability,
and we are considering this for future work. While we believe that the additional aspects of lasso
movements needed for real applications can be well-predicted by existing models (e.g., visual search
time [40] and positioning time [14]), further experiments might be needed to confirm this.

6 CONCLUSION
We set out to predict lasso operation times for scenarios where the objects to be selected have
non-rectangular shapes and are arranged in non-grid positions, which requires dealing with more
general lasso paths. We identified in two experiments that paths with narrowing or widening path
segments, be it continuously or step-wise, are best modeled by segmenting the path into segments
and modeling each part individually. This result supports our hypothesis that path segmentation
is an appropriate approach for movement time prediction of lasso tasks. Based on our results,
researchers can more accurately estimate the performance of their novel lasso techniques for
specific target arrangements.
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