
Structuring Collaboration in Programming Through
Personal-Spaces

Devamardeep Hayatpur

University of California, San Diego

La Jolla, California, USA

dshayatpur@ucsd.edu

Tehilla Helfenbaum

University of Toronto

Toronto, Ontario, Canada

t.helfenbaum@mail.utoronto.ca

Haijun Xia

University of California, San Diego

La Jolla, California, USA

haijunxia@ucsd.edu

Wolfgang Stuerzlinger

Simon Fraser University

Vancouver, British Columbia, Canada

w.s@sfu.ca

Paul Gries

University of Toronto

Toronto, Ontario, Canada

pgries@cs.toronto.edu

Figure 1: Screenshot of our tool, annotated with cursor movements. We split a Parsons problem into two sub-spaces, assigning

one to each student. They must share fragments from the middle space to complete their assigned part.

ABSTRACT

The effectiveness of pair programming in pedagogy depends on

the frequency and quality of communication of the driver. We

explore an alternative collaboration paradigm that tackles this im-

balance through Parsons problems: students are given fragments

of code out of order and tasked with re-organizing them into the

correct order. We then create an interdependence between students

by assigning each to a different sub-problem in their own space,

termed Personal-spaces – they must engage in dialog to negoti-

ate, exchange, and share fragments. In an exploratory study with

nine pairs of undergraduate students, we find evidence pointing to

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

CHI EA ’23, April 23–28, 2023, Hamburg, Germany

© 2023 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9422-2/23/04.

https://doi.org/10.1145/3544549.3585630

affordances of different coordination conditions: Personal-spaces

promoted ownership and engagement, while Turn-taking (akin to

pair programming) helped maintain a consistent train of thought.

Our results provide considerations for design of appropriate prob-

lem sets and interfaces to structure collaborative learning.

CCS CONCEPTS

• Human-centered computing→ Synchronous editors; • Social

and professional topics→ Computer science education.

KEYWORDS

collaborative learning, pair programming, Parsons problems

ACM Reference Format:

Devamardeep Hayatpur, Tehilla Helfenbaum, Haijun Xia, Wolfgang Stuer-

zlinger, and Paul Gries. 2023. Structuring Collaboration in Programming

Through Personal-Spaces . In Extended Abstracts of the 2023 CHI Con-

ference on Human Factors in Computing Systems (CHI EA ’23), April 23–

28, 2023, Hamburg, Germany. ACM, New York, NY, USA, 7 pages. https:

//doi.org/10.1145/3544549.3585630

https://doi.org/10.1145/3544549.3585630
https://doi.org/10.1145/3544549.3585630
https://doi.org/10.1145/3544549.3585630

CHI EA ’23, April 23–28, 2023, Hamburg, Germany Hayatpur, et al.

1 INTRODUCTION

Collaborative learning has shown to be an effective and widely

adopted technique in computer science curricula for fostering learn-

ing and critical thinking skills [14, 27]. One form of collaborative

learning is pair programming, which designates one student to be

the driver, who writes code, and the other student to be the nav-

igator, who provides feedback and guidance to the driver. Many

studies of pair programming provide evidence for improved student

performance [20, 23], as well as long-term academic success [28].

However, pair programming is inherently asymmetric: the driver

can iterate on a solution independent of the navigator. Rodríguez

et al. found that the learning outcome of pair programming de-

pends on the frequency and quality of communication by the driver

[26]. Episodes in which the driver scarcely communicated have a

worse learning outcome for the pair. Meanwhile, effective collabo-

ration depends on shared ownership over the problem, which pair

programming exercises lack de facto [27].

In this work, we describe the design and evaluation of a novel

collaboration paradigm that aims to support shared ownership.

Our tool uses Parsons problems as the programming environment,

i.e., students re-arrange fragments of code to reach the correct

arrangement. We divide a Parsons problem into two dependent sub-

tasks, each of which are completed in their own space, termed a

Personal-space (Figure 1). Each Personal-space is assigned to a single

student, where their partner can view but not modify that space.

The two students must then share fragments of code from the same

pool to complete their individual problem in their Personal-space

and reach an overall solution.

To explore student perceptions of Personal-spaces, we com-

pared it to two other coordination conditions: (1) Shared-control,

where both students can modify both spaces; and (2) Turn-taking,

where only one of the students is able to modify both spaces at a

time, but participants can swap control to alternate the driver and

navigator roles, akin to pair programming. We find preliminary

evidence of unique affordances of each coordination condition. For

example, Turn-taking helped students converge towards a single,

shared solution. Meanwhile, Personal-spaces encouraged collabo-

rative dialog to negotiate for blocks and resolve conflicts, and led to

a sense of responsibility and ownership over their space. In sum, we

contribute (a) the design of a novel collaborative Parsons problem

interface, (b) an exploratory study shedding light on the perceived

strengths and limitations of these coordination conditions, and

(c) design considerations for equitable collaborative interfaces.

2 RELATEDWORK

We draw on prior work in cognitive accounts of collaboration and

computer science education.

2.1 Collaborative Learning in Computer Science

Collaborative learning occurs when two or more students work

together towards the same goal. It encourages students to external-

ize their mental models, develop shared knowledge, and consider

multiple perspectives which all help repair misunderstandings and

gaps in their own knowledge [3, 6, 30, 35]. Pair programming has

shown to be a successful strategy for conducting co-located synchro-

nous collaborative programming exercises [19, 20, 34]. It promotes

engagement [21], self-efficacy [24], increases persistence [2], and

reduces the gender gap in computer science courses [13, 33]. Pairs

are generally more likely to produce correct code and more likely

to succeed in the course [21]. The pedagogical benefits of paired

programming have shown to extend to remote environments as

well, where it is termed distributed pair programming [4, 11, 29].

The effectiveness of pair programming has shown to depend on

the synergy and social dynamics between the two students. In a

remote pair programming study, Rodríguez et al. found evidence

that effective collaboration, where the pairwise learning outcome

is higher, positively correlated with frequent communication from

the driver [26]. Although on average pair programming reduces the

gender gap between male and female computer science students,

Kuttal et al. identified that mixed-gender pairs tend not to be demo-

cratic, with one partner dictating the collaboration [16]. Lewis et al.

found that regardless of providing explicit instructions designed to

promote equity, some students focused on task completion rather

than group learning — marginalizing their partner’s learning [17].

2.2 Positive Interdependence

The limitations of pair programming in pedagogy stem from its

asymmetric interdependencies. The navigator is strongly dependent

on the driver to manipulate the code (and for the overall success of

the problem), but the driver has aweak dependency on the navigator.

A driver can control and dictate the session without communicating

or cooperating with the navigator [26]. Pair programming sessions

often encourage or make students swap roles frequently, so both

members practice being in a position of less dependency, and both

have an opportunity to learn. However, frequent switches can be

undesirable in shorter sessions. Best practices require a facilitator,

like a teaching assistant, to supervise learning [34], which is not

practical in many circumstances (e.g. in large classes).

To study effective collaboration in pedagogy, we adopt the un-

derpinnings of positive interdependence, i.e., the belief that “there

is value in working together with anyone in the group” and both

the outcome and the learning will be better if done collaboratively

[10, 27]. Positive interdependence is usually either reward-based,

i.e., a shared grade, or task-based, i.e., assigned roles or resources

[15, 27]. At the same time, an overly engineered interdependency

reduces student autonomy and intrinsic motivation, as well as dic-

tates their social interaction [7]. Each member should have enough

self-autonomy to feel that they are responsible for completing their

own work and contributed to the outcome of the group [1].

2.3 Parsons Problems

We will use Parsons problems: broken-up fragments of code that

must be rearranged into the correct order as the basis for our tool

[8]. Parsons problems have seen use as a successful learning and

evaluation tool [9, 25]. Student success in solving Parsons problems

has shown to correlate with success in writing code [9]. Parsons

problems lower extrinsic cognitive load, allowing students to work

constructively towards problems without needing to deal with the

exact semantics of syntax. Common variations of parsons problems

include specifying indentation, termed two-dimensional Parsons

problems [12], and including distractors, which are fragments that

are not part of the solution.

Structuring Collaboration in Programming Through Personal-Spaces CHI EA ’23, April 23–28, 2023, Hamburg, Germany

3 COLLABORATIVE PARSONS PROBLEMS

Our thesis is that collaborative programming interfaces can be de-

signed with more equal and organic (i.e. avoid over-structuring

their social interactions) learner dependency. To this end, we in-

form our design through two key guidelines following principles

of positive interdependence:

(1) Both students must equally communicate and depend on

one another to reach a solution.

(2) The interdependence mechanic must have enough ‘room to

maneuver’ for agency and self-expression.

3.1 Design Outcome

Based on these goals, we designed Personal-spaces, which split a

two-dimensional Parsons problem into two dependent sub-problems

and assign each sub-problem to one learner. Our design can be char-

acterized by two main attributes:

3.1.1 A personal and a shared space. The solutions to the two sub-

problems are each assembled in their own Personal-space, giving

each learner ownership and responsibility over a part of the so-

lution. Initially, a shared space in the middle is populated with

fragments of code. We pre-populate each individual space with

documentation to describe its purpose, but ensure that the per-

sonal spaces are otherwise empty at the start. We hypothesize that

learners will have the autonomy and opportunity to engage with

the problem in their personal space, and use the shared space to

resolve misunderstandings, communicate actions, and reach com-

mon ground. In addition, each person’s cursor is represented as a

colored dot which is synchronized with the color of the space they

are responsible for.

3.1.2 A shared pool of resources. Our key insight is that since both

learners must grab fragments from the same pool, they will need

to share fragments with each other, in turn stimulating dialog and

collaboration. And, since the two sub-problems depend on each

other, the learners are incentivized to communicate what the code

in their space does to reach a correct solution. Note that Parsons

problems themselves have interesting implications to collaborative

scenarios (versus writing code from scratch together). They provide

a smaller ‘space of actions’ between the two learners, which may

help establish common ground faster than typical synchronous

code-writing tasks.

3.2 Problem Set Design

To evaluate our approach, we produced a problem set containing

three introductory sorting algorithms: Bubble sort, Insertion sort,

and Selection sort. Anecdotally, we find these algorithms to be ap-

proachable by students in introductory programming classes yet

still non-trivial for experienced programmers. Since each sorting

algorithm has two loop-invariants, they can be split into a parent

and a helper function, each of which maintain the corresponding

invariant. We also add distractors containing common error types:

i.e., code with off-by-one errors in loop range or in list index, re-

versed assignments, reversed swaps, see, e.g., Figure 1. In early pilot

studies, we identified that without the ambiguity introduced by the

distractors, some participants trivially solved the problems solely

based on the syntax.

4 EXPLORATORY STUDY

To explore the effects of introducing a resource interdependence

to collaboration, we compare Personal-spaces against two other

coordination conditions: Turn-taking and Shared-control in a

within-subjects study.

In Turn-taking, only one person can move the code fragments,

while the other person observes and provides feedback. To avoid

any connotations associated with terms ’driver’ and ’navigator’, we

adopted Bigman et al.’s terminology of pilot (who can edit the code)

and co-pilot for the study [4]. To provide users with the option

of swapping control, either person can press a button to reverse

the roles at any time in this condition. In addition to our verbal

instructions, the interface also briefly describes each persons role,

e.g., “As the Co-pilot, you should help guide the Pilot. Ask clarifying

questions and help the Pilot think through the code.” In the Shared-

control condition, both participants can use both spaces.

While both Turn-taking and Shared-control techniques are

novel in the context of Parsons Problems, their general coordi-

nation strategies serve as proxies for existing collaborative tech-

niques: Turn-taking is a proxy for pair programming, and Shared-

control is a proxy for synchronous programming.

4.1 Participants

We recruited undergraduate students across two well-known North

American universities that had completed or were taking an intro-

ductory computer science course (N=18; 6 male; 11 female; 1 prefer

not to say; ages 18 to 23). Participants were paired solely based

on their availability. Participant pairs are referred to as P1–P9. We

refer to individual participants by sub denoting with an ‘a’ or ‘b’.

I.e., P1a and P1b refer to the two participants in pair 1. Each session

took under one hour, and participants were compensated $20 USD

for their participation. On average, participants had 2.6 years of

programming experience (range: 0–6 years, std. dev.: 1.95 years).

4.2 Study Procedure

The order of conditions and problems used were randomized across

pairs of participants. The first and second authors supervised and

directed the web session. The study was structured as follows:

(5 min) Tutorial. Participants were given a tutorial to familiarize

themselves with rearranging code fragments and having control

over spaces.

(2 min) Introduction to modules. Participants were provided a

brief introduction to the upcoming problem set. We emphasized

the 10-minute time limit was to ensure that participants are able to

view all collaboration conditions, but that there was no expectation

to complete each problem in 10 minutes. They were encouraged to

communicate and collaborate on each problem.

(10 min x 3) Tasks. Each task began with a brief description of

the current condition (Free-for-all, Personal-spaces, or Turn-

taking). At the start of the Turn-taking condition, participants

were instructed to swap control frequently to ensure that both

arrived at an understanding of the code. In the other two conditions,

participants were generally instructed to communicate, think out

loud, and work through the problem together.

(5 min) Post questionnaire. In the post-questionnaire, we collected

demographics information, previous experience in programming,

CHI EA ’23, April 23–28, 2023, Hamburg, Germany Hayatpur, et al.

and the participants’ perception of howmuch they and their partner

contributed in each condition, as well as a ranking of the most

effective conditions for collaboration.

(10 min) Post interview. We conducted an interview inquiring

about the participant’s perception of each condition using the

dimensions of engagement, frustration, conversation, and value-

added by the partner, as well as the effectiveness of Parsons prob-

lems compared to previous collaborative experiences (if applicable).

4.3 Implementation and Data Collection

We implemented a client-side web prototype through JavaScript,

which displays Python-based Parsons problems. Web sockets were

used to implement synchronous collaboration. A Node.js backend

server managed client connections and simulated code for evaluat-

ing solutions against test cases. All interactions with the web app,

such as mouse movement, grabbing of a code fragment, verifying

the solution, and swapping control were recorded. The study was

conducted remotely, with Zoom for voice communication.

4.4 Study Limitations

The problem difficulty, length, or the order in which the problems

were administered may have had an impact on the observed interac-

tion patterns. The task duration at 10 minutes per problem is likely

lower than typical collaboration episodes in real pair programming.

Moreover, the difficulty of each problem varied: bubble sort was

solved 8/9 times, insertion sort 4/9 times, and selection sort 6/9

times. Our chosen problem set was asymmetrical: the parent func-

tion was shorter than the helper function. The majority (12/18) of

participants had two or more years of programming experience, as

such these results may not generalize to early novices. Lastly, these

results are based on a small sample, and so provide at best anecdo-

tal evidence, which cannot be generalized to learning outcomes or

compared quantitatively to other collaboration paradigms.

5 RESULTS

Three our of our nine pairs were successful in solving all problems

(P1, P5, P9), three solved only two of the three problems (P2, P3,

P8), and another three were successful in solving only one of three

problems (P4, P6, P7). Overall, participants perceived collaboration

to be most effective in Shared-control (10/18) and least effective

in Turn-taking (9/18), with Personal-spaces perceived as mostly

neutral (12/18).

We conducted a thematic analysis of post-interview reflections

with a focus on comparing the coordination conditions. The first

author coded the transcript, deriving 52 codes (e.g., “Did not swap

control because they did not receive a request to”). These codes were

then used to synthesize eight primary themes, which were reviewed

and refined by the first and second authors. Below, we report the

results of the thematic analysis.

5.1 General Results

5.1.1 Emergence of new roles. Self-perception of roles plays a cru-

cial part in effective collaboration [5]. Across all conditions, partic-

ipants perceived themselves in roles that were not designated by

the task structure. Roles sometimes emerged via expertise, e.g., P4b

conceived of themselves as an “initiator” who got a task in motion

– a task more comfortable for their beginner-level programming

experience, and distinguished this role from the “leader” which

they attributed to their partner. Some other unexpected roles arose

through circumstance: P7b identified their testing-based role as

a result of the fact that “P7a had a bigger role because we started

with [them] having control first” (P7b). Some roles were socially

driven, e.g., P6b described themselves as the conversation-starter,

and began verbally walking through a concrete example in attempt

to “start the conversation, so that we can both try thinking out loud

together.”

5.1.2 Parsons problemsmay help to establish common ground. When

asked to compare their experience in this session to previous syn-

chronous collaborative sessions, multiple participants noted that

these puzzles help bridge the gap between different starting skill

levels “it’s sort of like both people are at the same baseline... it’s harder

for one person to realize ‘Oh that’s how we do it’ and just finish ev-

erything” (P3b). In addition, Parsons problems may help constrain

the space of possible solutions; both partners are working with

the same solution components, and so share a starting point (P6b).

Instead of an infinite number of lines of code for each participant

to try on their own, there are concrete pieces of potential code to

discuss and “you can’t like write whatever you want” (P5b).

5.2 Strategy Specific Results

5.2.1 Personal-spaces promote collaborative dialog. P7a explained

that Personal-spaces “force you to interact with the other person.

Because you absolutely can’t control their personal space... if you had

an idea, you had to communicate it in a way they would understand.”

P1b noted that the dependencies of the two methods gave rise to

conversation, “you could say ‘Okay my method does this. How does it

affect your method?’.” Some participants found this added friction to

task completion, P8b felt “bottlenecked by the other person. I would

ask like ‘What part of this code do you want?’... I would need to

wait for the other person to engage.” P5a was frustrated by being

unable to manipulate the other space “because I wasn’t able to drag

blocks into [their] section, so I kind of had to like tell [them] what

to do.” The requirement for dialogue also appeared to increase the

amount of agency participants had individually in forming the

solution, as even in cases where participants tried to micromanage

the spaces they could not access, they would still rely on the other

participant’s cooperation. Participants noted that this allowed them

to experience agency in the solutions since “[they’re] the one doing

it, and not [their partner] invading [their] space and doing it for

[them]” (P4b).

5.2.2 Personal-spaces work towards balanced engagement. P1b

noted that even though they were mostly learning from P1a, “I felt

like I did do my part with the Personal-spaces just because I can

focus on one small thing and digest it a little more.” Personal-spaces

also made learning more intentional compared to other conditions:

“sometimes, if you are not paying attention to what the other person

is doing, then you didn’t learn that part... when you have your own

little space, you’re forced to do that part, so you get to learn more”

(P2b). In addition, making participants engage in dialog discour-

aged one person from taking over, unlike in “Shared-control one

and the Turn-taking [which] were the least for communication and

Structuring Collaboration in Programming Through Personal-Spaces CHI EA ’23, April 23–28, 2023, Hamburg, Germany

Figure 2: Frequency of participant dialogue and tool use over time grouped by coordination condition. There were no significant

differences in the average time taken or in the length of verbal dialog between the conditions. Turn-taking sessions were by

far the least symmetric in terms of interactions with the tool with only P7 swapping control to give both partners an even

amount of control time. Note, for visibility purposes, tool use visual marks have added thickness, their size does not correspond

to the exact time taken.

collaboration. Just because it seems like one person can do most of the

heavy lifting.” (P4b). However, the push to involve each participant

towards engaging in their section highlighted imbalance in work-

load assigned due to the helper function being more difficult than

the parent function: “I felt like one method required only little code

while another method required a lot more code” (P1b).

5.2.3 Personal-spaces can fragment collaboration. Multiple partic-

ipants noted that Personal-spaces encouraged divide and conquer,

with communication occurring at the end to synthesize the results.

P7b noted that instead of actively collaborating, they “work[ed] on

the task that’s given to us [in our individual sections] and after a

while we come back together and talk about what we just did.” P4a

“just ignore[d] some details in helper function... that part [is] more

[their] responsibility, so I only need to take care of my part.” This

fragmentation of workload can also fragment the conversation, and

P6a noted that “as soon as we figure out what different roles [our

spaces] have, I’ll just start focusing on my own role. That’s why I tend

to talk a little bit less.”

5.2.4 Turn-taking encourages a single train of thought. Turn-

taking supported participants in synchronizing their approaches

and maintaining joint-attention. In Turn-taking, P3a felt like they

and their partner were on the “same page the whole time... in the

other two, I felt like I didn’t have the assurance because it felt like

[they were] looking at the other side.”. However, a downside of the

single train of thought is that it allows for a single participant to

take over, or conversely, become extremely passive e.g., P3b did not

actively engage with the problem because “I kind of forgot about

bubble sort, so I was in the role of observing”. Moreover, the condition

does not necessitate any dialogue in the event where the driver

chooses to solve the problem alone. P7b described this experience

as “both thinking in our heads instead of talking about it more.” (P7b)

5.2.5 Pairs rarely utilize the ability to swap control in order to bal-

ance involvement. Despite instructions to do so, participants rarely

swapped control (Figure 2) in the Turn-taking condition. When

asked how participants decided to swap, only one pair was con-

cerned with balance and thus swapped control “after five minutes,

just to give my partner another five minutes.” (P2a). Instead, swaps

were motivated by practical factors like if the other person has

an “idea, while I haven’t” (P4b). However, practical considerations

would not always result in a swap. As the Co-pilot, P7b was “too

scared to ask to swap control... [and so] just let the other person take

over”, and as a Pilot, P8b felt like they were “on a good train of

thought... [they] didn’t feel the need to swap control or receive a

request to swap control.”

5.2.6 Shared-control provides complete agency. Many partici-

pants expressed their preference for Shared-control since they

were able to execute their own ideas without being ‘held back’ by

their partner. P1a found Shared-control to be the most engaging

because it gave them “the freedom to do what [they thought] should

be done”. Some participants utilized this freedom vary their extent

of involvement. P5b shared that there was a give and take between

them and their partner as “there was parts that I wasn’t sure about

and then [they] help[ed] me with that and... I was able to figure out

parts that maybe [they weren’t] sure about and then explain it to

[them]”. P5a agreed that in the Shared-control condition “you

complete the parts that you’re sure about that I’m not sure about and

then contribute that way”.

CHI EA ’23, April 23–28, 2023, Hamburg, Germany Hayatpur, et al.

However, this independence came at the cost of disorganized

collaboration. Shared-control was “chaotic and you can acciden-

tally change something that your partner thinks you’re not going

to touch... it could break someone’s train of thought” (P1b). It was

difficult to repair conversations: e.g., “I think the least talking was

Shared-control, because we were like looking at the code and mov-

ing things, and then just the whole conversation thing kind of felt

like a mess” (P3a). Although some participants felt compelled to

describe their thought process to avoid “making the other one feel

that I’m doing things without involving them” (P6a), they did not feel

as if it was required: “[In Shared-control] I didn’t feel obligated to

explain because I could just move everything myself” (P7a).

6 DISCUSSION

Each coordination condition showed strengths and weaknesses

with regards to effective collaboration. Shared-control allowed

for more agency but can lead to one participant dominating and

disorganized communication. Turn-taking promoted a single train

of thought but lead to one participant taking the lead. Personal-

spaces encouraged both participants to contribute – as the lack of

ability to control the other participant’s space necessitates dialogue

to execute ideas in the other user’s space – but lead to division and

dominant participants still verbally micromanaged. Considering

the potential gains and losses discussed above, we believe that

Personal-spaces is a promising approach to allow both participants

to gain insight into the chosen problem. In Personal-spaces, both

participants will have interacted to some extent with the problem,

and will have more incentive to discuss the problem.

6.1 Design Considerations and Future Work

Our technique is inherently tied to the characteristics of Parsons

Problems (i.e., there being a shared and limited resource with code

blocks) and as such it would not directly translate to more general

coding environment. We still hope that our guiding design goals

and subsequent evaluation can serve as a promising start to investi-

gate how collaborative learning can be structured beyond Parsons

Problems. Through our work we have identified three key areas of

investigation for collaborative programming interfaces.

6.1.1 Problems should be divided evenly and non-trivially. We ob-

served instances where where participants integrated their solu-

tions at the end with Personal-spaces rather than actively engag-

ing with each other’s spaces, which is not ideal for collaborative

learning. Designing sub-problems that (1) have dependence, and

(2) have enough uncertainty that communication is required to

successfully implement them, is crucial to encourage cooperation.

Additionally, in the problem sets we constructed, there was a clear

imbalance of workload: the helper functions were more challenging

than the parent function. By attempting to fix the asymmetry in

Turn-taking by giving each participant their own tasks, there is

an obligation to keep these separate workloads (at least roughly)

balanced. One option to approach this would be to use less strictly

defined problems, which may encourage sharing of the workload

between finding and communicating requirements. Variations in

Parsons problems, such as faded Parsons problem, which add am-

biguity to the fragments [32], or sub-goals [22], which are at a

finer level of granularity than functions, can also enable new and

interesting designs of such divided problem sets.

6.1.2 Structuring the task structures the conversation. We found that

structuring the task, either with Turn-taking or with Personal-

spaces, helped structure the dialog between participants. Turn-

taking enabled pursuit of a more consistent ‘vision’ of the overall

solution while Personal-spaces emphasized negotiations over

egocentric solutions. However, this work has only investigated

participant perceptions of each condition. Future conversational

analysis is needed to shed light on the discourse between learners:

such as the kinds of dialog (e.g. handling conflicts, thinking-out-

loud, [31]), conversational turn-taking and synchronization that

occurred in each condition. While our analysis found no pair-wise

effects, observing participants’ conversations in-situ can illuminate

potential effects of interpersonal dynamics and learning styles (e.g.,

as follower or leader).

6.1.3 Remote collaboration tools can leverage new kinds of inter-

actions to help reach common ground. Participants organized and

re-organized the shared space to spatially reason together about

the problem. They frequently used their cursor to point out objects

and locations, as well as mimic their thought process through ges-

tures with their cursor. Adding expressivity, such as annotations,

to the tool may thus make it easier to repair gaps in understanding,

speaking, or hearing. Additionally, a visualization that helps direct

the conversation could also be a promising direction. For example,

visualizing how long each person was in control, or visualizing the

frequency of conversational turn-taking may help learners reflect

on and encourage more democratic collaboration [18].

7 CONCLUSION

We have presented the design of a novel collaboration technique,

Personal-spaces, which addresses the imbalance in pair program-

ming for collaborative learning by dividing the problem into two

parts and assigning each to one learner. We provide preliminary

evidence of the usefulness of this paradigm: Personal-spaceswere

unique in their insistence that both participants construct (parts

of) the solution. This level of interaction contributed to a sense and

responsibility and ownership over the solution and discouraged

dominant members from completely taking over the solution. How-

ever, in worse scenarios, participants would divide and conquer to

focus purely on their portion of the code, or become over-involved

in the other person’s space and instruct them how to complete

their solution. Our results highlight the need for structure in col-

laborative tools, use of balanced but ambiguous problem sets, and

provide promising leads for interaction design of future remote

collaboration systems.

REFERENCES

[1] Praveen Aggarwal and Connie L O’Brien. 2008. Social loafing on group projects.

J. Mark. Educ. 30, 3 (Dec. 2008), 255–264.

[2] Carolina Alves De Lima Salge and Nicholas Berente. 2016. Pair Programming

vs. Solo Programming: What Do We Know After 15 Years of Research?. In 2016

49th Hawaii International Conference on System Sciences (HICSS). 5398–5406.

https://doi.org/10.1109/HICSS.2016.667

[3] Brigid Barron. 2003. When Smart Groups Fail. The Journal of the Learning Sciences

12, 3 (2003), 307–359. http://www.jstor.org/stable/1466921

[4] Maxwell Bigman, Ethan Roy, Jorge Garcia, Miroslav Suzara, Kaili Wang, and Chris

Piech. 2021. PearProgram: A More Fruitful Approach to Pair Programming. In

https://doi.org/10.1109/HICSS.2016.667
http://www.jstor.org/stable/1466921

Structuring Collaboration in Programming Through Personal-Spaces CHI EA ’23, April 23–28, 2023, Hamburg, Germany

Proceedings of the 52nd ACM Technical Symposium on Computer Science Education

(Virtual Event, USA) (SIGCSE ’21). Association for Computing Machinery, New

York, NY, USA, 900–906. https://doi.org/10.1145/3408877.3432517

[5] Susan Brewer and James D. Klein. 2006. Type of Positive Interdependence and

Affiliation Motive in an Asynchronous, Collaborative Learning Environment.

Educational Technology Research and Development 54, 4 (2006), 331–354. http:

//www.jstor.org/stable/30220464

[6] Clark A. Chinn, Angela M. O’Donnell, and Theresa S. Jinks. 2000. The Structure

of Discourse in Collaborative Learning. The Journal of Experimental Education

69, 1 (2000), 77–97. http://www.jstor.org/stable/20152650

[7] Pierre Dillenbourg. 2002. Over-scripting CSCL: The risks of blending collaborative

learning with instructional design.

[8] Barbara J. Ericson, Paul Denny, James Prather, Rodrigo Duran, Arto Hellas, Juho

Leinonen, Craig S. Miller, Briana B. Morrison, Janice L. Pearce, and Susan H.

Rodger. 2022. Parsons Problems and Beyond: Systematic Literature Review

and Empirical Study Designs. In Proceedings of the 2022 Working Group Reports

on Innovation and Technology in Computer Science Education (Dublin, Ireland)

(ITiCSE-WGR ’22). Association for Computing Machinery, New York, NY, USA,

191–234. https://doi.org/10.1145/3571785.3574127

[9] Barbara J. Ericson, Lauren E. Margulieux, and Jochen Rick. 2017. Solving Parsons

Problems versus Fixing and Writing Code. In Proceedings of the 17th Koli Calling

International Conference on Computing Education Research (Koli, Finland) (Koli

Calling ’17). Association for Computing Machinery, New York, NY, USA, 20–29.

https://doi.org/10.1145/3141880.3141895

[10] Stanley M Gully, Kara A Incalcaterra, Aparna Joshi, and J Matthew Beauien. 2002.

A meta-analysis of team-efficacy, potency, and performance: interdependence

and level of analysis as moderators of observed relationships. J. Appl. Psychol.

87, 5 (Oct. 2002), 819–832.

[11] Brian Hanks. 2005. Student Performance in CS1 with Distributed Pair Program-

ming. SIGCSE Bull. 37, 3 (jun 2005), 316–320. https://doi.org/10.1145/1151954.

1067532

[12] Petri Ihantola and Ville Karavirta. 2011. Two-Dimensional Parson’s Puzzles:

The Concept, Tools, and First Observations. Journal of Information Technology

Education: Innovations in Practice 10 (01 2011), 1–14. https://doi.org/10.28945/1394

[13] Lindsay Jarratt, Nicholas A. Bowman, K.C. Culver, and Alberto Maria Segre.

2019. A Large-Scale Experimental Study of Gender and Pair Composition in

Pair Programming. In Proceedings of the 2019 ACM Conference on Innovation and

Technology in Computer Science Education (Aberdeen, Scotland Uk) (ITiCSE ’19).

Association for Computing Machinery, New York, NY, USA, 176–181. https:

//doi.org/10.1145/3304221.3319782

[14] David W. Johnson and Roger T. Johnson. 2009. An Educational Psychology Suc-

cess Story: Social Interdependence Theory and Cooperative Learning. Educational

Researcher 38, 5 (2009), 365–379. http://www.jstor.org/stable/20532563

[15] David W. Johnson, Roger T. Johnson, and Karl Smith. 2007. The State of Coopera-

tive Learning in Postsecondary and Professional Settings. Educational Psychology

Review 19, 1 (2007), 15–29. http://www.jstor.org/stable/23363866

[16] Sandeep Kaur Kuttal, Kevin Gerstner, and Alexandra Bejarano. 2019. Remote

Pair Programming in Online CS Education: Investigating through a Gender Lens.

In 2019 IEEE Symposium on Visual Languages and Human-Centric Computing

(VL/HCC). 75–85. https://doi.org/10.1109/VLHCC.2019.8818790

[17] Colleen M. Lewis and Niral Shah. 2015. How Equity and Inequity Can Emerge in

Pair Programming. In Proceedings of the Eleventh Annual International Conference

on International Computing Education Research (Omaha, Nebraska, USA) (ICER

’15). Association for Computing Machinery, New York, NY, USA, 41–50. https:

//doi.org/10.1145/2787622.2787716

[18] Jialang Victor Li, Max Kreminski, Sean M Fernandes, Anya Osborne, Joshua

McVeigh-Schultz, and Katherine Isbister. 2022. Conversation Balance: A Shared

VR Visualization to Support Turn-Taking in Meetings. In Extended Abstracts of

the 2022 CHI Conference on Human Factors in Computing Systems (New Orleans,

LA, USA) (CHI EA ’22). Association for Computing Machinery, New York, NY,

USA, Article 181, 4 pages. https://doi.org/10.1145/3491101.3519879

[19] Charlie McDowell, Linda Werner, Heather Bullock, and Julian Fernald. 2002. The

Effects of Pair-Programming on Performance in an Introductory Programming

Course. SIGCSE Bull. 34, 1 (feb 2002), 38–42. https://doi.org/10.1145/563517.

563353

[20] C. Mcdowell, L. Werner, H.E. Bullock, and J. Fernald. 2003. The impact of

pair programming on student performance, perception and persistence. In 25th

International Conference on Software Engineering, 2003. Proceedings. 602–607.

https://doi.org/10.1109/ICSE.2003.1201243

[21] Charlie McDowell, Linda Werner, Heather E. Bullock, and Julian Fernald. 2006.

Pair Programming Improves Student Retention, Confidence, and ProgramQuality.

Commun. ACM 49, 8 (aug 2006), 90–95. https://doi.org/10.1145/1145287.1145293

[22] Briana B. Morrison, Lauren E. Margulieux, Barbara Ericson, and Mark Guzdial.

2016. Subgoals Help Students Solve Parsons Problems. In Proceedings of the 47th

ACM Technical Symposium on Computing Science Education (Memphis, Tennessee,

USA) (SIGCSE ’16). Association for Computing Machinery, New York, NY, USA,

42–47. https://doi.org/10.1145/2839509.2844617

[23] Nachiappan Nagappan, Laurie Williams, Miriam Ferzli, Eric Wiebe, Kai Yang,

Carol Miller, and Suzanne Balik. 2003. Improving the CS1 Experience with

Pair Programming. In Proceedings of the 34th SIGCSE Technical Symposium on

Computer Science Education (Reno, Navada, USA) (SIGCSE ’03). Association for

Computing Machinery, New York, NY, USA, 359–362. https://doi.org/10.1145/

611892.612006

[24] John T. Nosek. 1998. The Case for Collaborative Programming. Commun. ACM

41, 3 (mar 1998), 105–108. https://doi.org/10.1145/272287.272333

[25] Dale Parsons and Patricia Haden. 2006. Parson’s Programming Puzzles: A Fun

and Effective Learning Tool for First Programming Courses. In Proceedings of

the 8th Australasian Conference on Computing Education - Volume 52 (Hobart,

Australia) (ACE ’06). Australian Computer Society, Inc., AUS, 157–163.

[26] Fernando J. Rodríguez, Kimberly Michelle Price, and Kristy Elizabeth Boyer.

2017. Exploring the Pair Programming Process: Characteristics of Effective

Collaboration. In Proceedings of the 2017 ACM SIGCSE Technical Symposium on

Computer Science Education (Seattle, Washington, USA) (SIGCSE ’17). Association

for Computing Machinery, New York, NY, USA, 507–512. https://doi.org/10.

1145/3017680.3017748

[27] Karin Scager, Johannes Boonstra, Ton Peeters, Jonne Vulperhorst, and Fred

Wiegant. 2016. Collaborative Learning in Higher Education: Evoking Positive

Interdependence. CBE—Life Sciences Education 15, 4 (2016), ar69. https://doi.

org/10.1187/cbe.16-07-0219 arXiv:https://doi.org/10.1187/cbe.16-07-0219 PMID:

27909019.

[28] Max O. Smith, Andrew Giugliano, and Andrew DeOrio. 2018. Long Term Effects

of Pair Programming. IEEE Transactions on Education 61, 3 (2018), 187–194.

https://doi.org/10.1109/TE.2017.2773024

[29] Despina Tsompanoudi, Maya Satratzemi, Stelios Xinogalos, and Leonidas Karami-

topoulos. 2019. An Empirical Study on Factors related to Distributed Pair Pro-

gramming. International Journal of Engineering Pedagogy (iJEP) 9 (04 2019), 61.

https://doi.org/10.3991/ijep.v9i2.9947

[30] Simon Veenman, Eddie Denessen, Anneriet van den Akker, and Janine van der

Rijt. 2005. Effects of a Cooperative Learning Program on the Elaborations of

Students during Help Seeking and Help Giving. American Educational Research

Journal 42, 1 (2005), 115–151. http://www.jstor.org/stable/3699457

[31] Astrid J S F Visschers-Pleijers, Diana H J M Dolmans, Bas A de Leng, In-

eke H A P Wolfhagen, and Cees P M van der Vleuten. 2006. Analysis

of verbal interactions in tutorial groups: a process study. Medical Educa-

tion 40, 2 (2006), 129–137. https://doi.org/10.1111/j.1365-2929.2005.02368.x

arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1365-2929.2005.02368.x

[32] Nathaniel Weinman, Armando Fox, and Marti A. Hearst. 2021. Improving In-

struction of Programming Patterns with Faded Parsons Problems. In Proceedings

of the 2021 CHI Conference on Human Factors in Computing Systems (Yokohama,

Japan) (CHI ’21). Association for Computing Machinery, New York, NY, USA,

Article 53, 4 pages. https://doi.org/10.1145/3411764.3445228

[33] Linda L. Werner, Brian Hanks, and Charlie McDowell. 2004. Pair-Programming

Helps Female Computer Science Students. J. Educ. Resour. Comput. 4, 1 (mar

2004), 4–es. https://doi.org/10.1145/1060071.1060075

[34] Laurie Williams, D. Scott McCrickard, Lucas Layman, and Khaled Hussein. 2008.

Eleven Guidelines for Implementing Pair Programming in the Classroom. In

Agile 2008 Conference. 445–452. https://doi.org/10.1109/Agile.2008.12

[35] Merlin C. Wittrock. 1989. Generative Processes of Comprehension. Educational

Psychologist 24, 4 (1989), 345–376. https://doi.org/10.1207/s15326985ep2404{_}2

arXiv:https://doi.org/10.1207/s15326985ep2404_2

https://doi.org/10.1145/3408877.3432517
http://www.jstor.org/stable/30220464
http://www.jstor.org/stable/30220464
http://www.jstor.org/stable/20152650
https://doi.org/10.1145/3571785.3574127
https://doi.org/10.1145/3141880.3141895
https://doi.org/10.1145/1151954.1067532
https://doi.org/10.1145/1151954.1067532
https://doi.org/10.28945/1394
https://doi.org/10.1145/3304221.3319782
https://doi.org/10.1145/3304221.3319782
http://www.jstor.org/stable/20532563
http://www.jstor.org/stable/23363866
https://doi.org/10.1109/VLHCC.2019.8818790
https://doi.org/10.1145/2787622.2787716
https://doi.org/10.1145/2787622.2787716
https://doi.org/10.1145/3491101.3519879
https://doi.org/10.1145/563517.563353
https://doi.org/10.1145/563517.563353
https://doi.org/10.1109/ICSE.2003.1201243
https://doi.org/10.1145/1145287.1145293
https://doi.org/10.1145/2839509.2844617
https://doi.org/10.1145/611892.612006
https://doi.org/10.1145/611892.612006
https://doi.org/10.1145/272287.272333
https://doi.org/10.1145/3017680.3017748
https://doi.org/10.1145/3017680.3017748
https://doi.org/10.1187/cbe.16-07-0219
https://doi.org/10.1187/cbe.16-07-0219
https://arxiv.org/abs/https://doi.org/10.1187/cbe.16-07-0219
https://doi.org/10.1109/TE.2017.2773024
https://doi.org/10.3991/ijep.v9i2.9947
http://www.jstor.org/stable/3699457
https://doi.org/10.1111/j.1365-2929.2005.02368.x
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1365-2929.2005.02368.x
https://doi.org/10.1145/3411764.3445228
https://doi.org/10.1145/1060071.1060075
https://doi.org/10.1109/Agile.2008.12
https://doi.org/10.1207/s15326985ep2404{_}2
https://arxiv.org/abs/https://doi.org/10.1207/s15326985ep2404{_}2

	Abstract
	1 Introduction
	2 Related Work
	2.1 Collaborative Learning in Computer Science
	2.2 Positive Interdependence
	2.3 Parsons Problems

	3 Collaborative Parsons Problems
	3.1 Design Outcome
	3.2 Problem Set Design

	4 Exploratory Study
	4.1 Participants
	4.2 Study Procedure
	4.3 Implementation and Data Collection
	4.4 Study Limitations

	5 Results
	5.1 General Results
	5.2 Strategy Specific Results

	6 Discussion
	6.1 Design Considerations and Future Work

	7 Conclusion
	References

