
Plane, Ray, and Point: Enabling Precise Spatial
Manipulations with Shape Constraints

Devamardeep
Hayatpur1

Seongkook Heo1 Haijun Xia1 Wolfgang
Stuerzlinger2

Daniel Wigdor1

1University of Toronto
{hayatpur|seongkook|haijunxia|daniel}@dgp.toronto.edu

2SIAT, Simon Fraser University
w.s@sfu.ca

Figure 1. A user can create shape constraints such as Plane (left) or Ray (right) through gestures with their non-dominant hand.
The same gestures can be used by the dominant hand to control the manipulation degrees of freedom (middle, right).

ABSTRACT
We present Plane, Ray, and Point, a set of interaction
techniques that utilizes shape constraints to enable quick
and precise object alignment and manipulation in virtual
reality. Users create the three types of shape constraints,
Plane, Ray, and Point, by using symbolic gestures. The
shape constraints are used like scaffoldings and limit and
guide the movement of virtual objects that collide or
intersect with them. The same set of gestures can be
performed with the other hand, which allow users to further
control the degrees of freedom for precise and constrained
manipulation. The combination of shape constraints and
bimanual gestures yield a rich set of interaction techniques
to support object transformation. An exploratory study
conducted with 3D design experts and novice users found
the techniques to be useful in 3D scene design workflows
and easy to learn and use.

Author Keywords
3D object manipulation, precise object manipulation,
constraints separation, shape gestures.

CSS Concepts
• Human-centered computing~Gestural input; Virtual
Reality; User studies.

INTRODUCTION
Commercial implementations of Virtual Reality (VR)
systems typically provide rich and immersive visual
experiences in 3D environments controlled with 6 degrees
of freedom (DOF) (3 position and 3 orientation) input
devices, also known as controllers. Many content creation
applications, such as those used for 3D modeling [5], game
development [38], automotive design [39] and film
production [37], are created to take advantage of the rich
representation of the virtual world and 6-DOF control. 6-
DOF input enables direct object manipulation to quickly
and easily grab, move, and rotate objects [20, 32].

In typical HCI, precise manipulations tasks, such as object
alignment, benefit from allowing users to manipulate a
reduced set of the degrees of freedom, such as 1-D resize
handles in generic window managers. The same is true in
tasks suited to VR, where a 3D scene designer may wish to
rotate a spotlight about a single axis or add a door to a
scene by aligning it against a door frame and then rotating it
‘open’. Similarly, a designer may wish to scale an object
along a single axis, such as making a tree taller, while not
moving or rotating it. For such tasks, isolating the available
degrees of freedom using visual widgets can make object
manipulation more precise [11, 20, 21]. However, visual
widgets are slower at completing complex tasks [20].

To address this, we present a set of VR-based interaction
techniques termed Plane, Ray, and Point, which use shape
manipulation constraints to enable varying levels of DOF
separation and object alignment (Figure 1). The shapes are
created using expressive hand gestures. As an example, a
user can constrain the translation or rotation of an object to
1-DOF using a Ray shape, which is created by stretching
her index finger or thumb out, and then manipulating the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. Copyrights for components of this work owned by others
than ACM must be honored. Abstracting with credit is permitted. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
UIST’19, October 20–23, 2019, New Orleans, LA, USA.
© 2019 Association of Computing Machinery.
ACM ISBN 978-1-4503-6816-2/19/10...$15.00.
DOI: http://dx.doi.org/10.1145/3332165.3347916

object using her other hand. By extending both the thumb
and the index finger at the same time, the user creates a
Plane. Just like with a physical plane, it prevents objects
from passing through. If the user is not stretching their
index or thumb out, i.e., their hand is closed, they can create
a Point; which acts as a pivot, allowing them to change the
distance between an object and the Point, as well as rotate
the object around that Point. In addition, these shape
constraints offer different manipulations for objects that are
intersecting with them. For instance, if an object is
intersecting with the Plane, then the user can stretch the
object out of the Plane for 1D scaling.

This work describes the design and implementation of
Plane, Ray, and Point. We report the results of a user
evaluation where we interviewed six expert users as well as
three novices. This work thus contributes the following: (1)
a novel interface for DOF separation and object alignment
and manipulation; (2) a qualitative exploratory study with
six expert users and three novices which shows that the
interactions are easy to activate and learn and are also
applicable for real world use.

REALATED WORK
Many interaction techniques have been developed to enable
more efficient object manipulation. In a recent survey,
Mendes et. al. provided an extensive summary of 3D object
manipulation techniques [19]. Here, we review the body of
literature that has studied direct object manipulation and
precise object manipulation using DOF separation.

Direct Object Manipulation
Direct manipulation using the hands enables one to interact
with virtual objects similar to the way one interacts with
real objects in the world. This affords benefits such as an
increased ease of learning and use, and the ability to
simultaneously perform complex modifications in a single
operation [20, 32].

Extensive work has explored the benefits and novel
interaction techniques afforded by direct bimanual
manipulation. Buxton and Myers found that the use of
bimanual interaction enable parallel execution of sub-tasks,
which significantly outperforms one-handed interaction in
navigation as well as content selection and manipulation
[6]. Song et al. proposed an interaction technique for 3D
object manipulation that uses a handlebar metaphor [28].
With this technique, the user can manipulate objects by
holding a handlebar that pierces the objects between the
two hands and perform 7-DOF operations (i.e., translation +
rotation + 1D scale) in a fast and precise manner.

Built upon Guiard’s finding of the asymmetric roles of the
hands [15], Stoakley et al. proposed the World in Miniature
object, which can be held by the non-dominant hand as
reference [29] and manipulated with the dominant hand to
quickly navigate a virtual environment. Similarly,
WritLarge, designed for wall-size touch display, allows
users to frame a portion of canvas as selection with the non-
dominant hand and simultaneously invoke actions on the

selection with the dominant hand [35]. Hinckley et al.
further divide the labor based on the input modalities of
different hands – pen writes and touch manipulates [16].

While these techniques demonstrate the promise of direct
physical manipulation for intuitive interactions, as well as
rapid and simultaneous adjustments of multiple degrees of
freedom, they do not afford the precise object manipulation
required for any design tasks, due to the inability to
separate degrees of freedom [20] and constant C/D gain
[12]. A common approach, therefore, is to fall back on
traditional graphical widgets for object translation, rotation,
and scaling. However, using such widgets serializes the
users’ interaction, resulting in tedious operations. We seek
to preserve bimanual physical manipulation for its
directness and high throughput and provide precise object
manipulation by allowing users to easily separate degrees of
freedom and adjust the C/D gain.

Alignment and Constraint Support Tools
Much research has explored the use of snapping, alignment,
distribution, and constraint support tools in 2D
environments. While snapping, alignment, and distribution
are typically implemented as transient commands,
constraints typically persist within an environment. For
example, snap-dragging automatically created transient
alignment objects from drawing elements [3]. Briar
integrated snap-dragging with constraints in 2D drawings
[13]. Wybrow et al. evaluated the usability of multi-way
constraints and found that they were beneficial for object
alignment tasks during diagram editing [34]. Xu et al.’s
beautification approach [36] inferred object relationships
and used them for alignment, which enabled objects to be
aligned in a balanced way. The Beyond Snapping approach
[9] explored persistent alignment and distribution guides
that could be directly manipulated and tweaked. All this
work focused on 2D drawing contexts.

Little work, however, has generalized such methods to 3D
environments. One of the challenges of applying such tools
to 3D is that there are many more options for alignment
and/or constraints in 3D and the additional visual
complexity of a perspective view makes graphics-heavy
mechanisms inadvisable.

Bier, for example, generalized snap-dragging into 3D [2],
while others have explored the benefits of pre-defined
constraints for 3D manipulation [4, 26, 27]. A related
approach by Oh et. al. derived plane constraints from an
object’s contact with the environment [23], which implicitly
reduced the degrees of freedom available for manipulation
and aligns the position of objects with the environment.
Recent work extended this approach to enable users to
perform context-sensitive 3D positioning tasks even if they
are not in contact [30]. Yet, all this work focused on
desktop environments, i.e., applications that are used with a
mouse and keyboard, and does not immediately generalize
to VR scenarios.

Interaction Separating Degree of Freedom
Previous literature has shown that separating the degrees of
freedom for desktop and touch based interactions is
beneficial for precise object manipulation [20, 31], and
many techniques have been developed to support DOF
separation via virtual widgets and multi-touch gestures.
Using a virtual widget with orthogonally placed controls is
the most common way to provide isolated DOF
manipulation and is widely available in 3D design and
modeling software, such as Autodesk Maya and Blender.
The implementation is often a variant of Brookshire et al.’s
3D widgets [11] that uses visual controls aligned to the
local x, y, z axes of the object to translate, rotate, or scale.
Although 3D widgets [11] was originally designed for a
mouse, Mendes et al. found that the method is also useful
for precise object manipulations in VR [20].

Other forms of degree-separating virtual widgets have also
been studied. Houde developed Handlebox [18], a bounding
box with handle-shaped controls used for isolated 1-DOF
rotation or 2-DOF translation. Its user study showed that the
handle-shaped controls could inform users what operations
they could perform with the controls. Several studies
investigated the use of high-DOF single hand widgets that
support DOF separation, finding that such techniques
outperformed bimanual manipulation techniques without
DOF separation [7, 8]. Instead of using a widget with
orthogonally placed handles, 7-Handle [22] uses seven
point handles attached to an object. Each point can be
locked in space to constrain the rotation as well as position.
Work by Au et al. [1], and tBox [10] utilized the expanded
gesture vocabulary afforded by multi-touch touch screens
and enabled faster object manipulation along isolated axes.
Schmidt et al. [24] presented a gesture interface that can
create a transient widget for manipulating objects, which is
aligned with the stroke the user made to create said widget.

While the use of these virtual widgets enables precise
object manipulation, using these DOF-separation widgets
often requires multiple steps to activate and manipulate
them, resulting in a slower performance compared to direct
manipulation methods [20].

Grossman et al. demonstrated DOF-separation via hand
gestures, but their set was relatively small, and
manipulations could only be performed in isolation [14].
Though also in 3D, our techniques are more similar to Rock
& Rails, which employed shape gestures performed with
the non-dominant hand to constraint free-form object
transformations controlled by the dominant hand [33].
While designed only for 2D manipulation, this allowed
users to quickly change the C/D gain, create constraints,
isolate manipulation DOF, and preserve direct manipulation
with the dominant hand. Our new Plane, Ray, and Point
techniques employ the concept of shape gestures to enable
the user to create constraints for DOF separation, allows
variable C/D gain, and extends the idea into 3D
environments, which required a new set of different

gestures, graphical controls, and interaction methods. As
our gesture-invoked constraints are lightweight and allow
for rapid adaption to different contexts, they help users to
quickly align and place objects in the virtual environment.

PLANE, RAY, & POINT INTERACTION
The goal of our interaction is to enable users to quickly and
easily align and manipulate objects. To achieve this goal, the
user must be able to access varying levels of DOF isolation
and, for alignment, be able to perform such manipulations
relative to other objects in the scene. We propose three shape
constraints, Plane, Ray, and Point, each of which
characterizes a canonical feature of a 3D object (face, edge,
and vertex) and which further provides a corresponding level
of DOF control. As such, we can afford a flexible range of
techniques that isolate the DOF with respect to relevant
features in the scene. Similar to Rock & Rails [33], we use a
series of gesture-invoked, physically-mimicking constraints,
enabling transform isolation and easy alignment.

Shape Gesture Vocabulary
A user can create a Plane by simultaneously pointing
forward with her index finger and up with her thumb
(Figure 2d). Alternatively, she can point forward with her
index finger to create a forward Ray (Figure 2c) or point up
with her thumb to create an upward Ray (Figure 2b). When
her index finger and thumb are not extended, the user is
able to create a Point (Figure 2a). Note that a Point will
only be created if user is not grabbing an object. Planes,
Rays, and Points disappear whenever the user is not
performing the associated gestures, i.e., they are
kinesthetically held quasimodes [25].

Figure 2. Hand gestures for creating a Point (a), creating an
upward Ray (b), creating a forward Ray (c), and creating a
Plane (d). The same hand gestures are also used on the
dominant hand to further specify the DOF (e).

After creating a Plane, Ray, or Point, the user can squeeze
her hand to activate that constraint. For our prototype, we
use the grip trigger to detect if the user is squeezing her
hand. When active, the constraint is locked in space and
cannot move; users then do not need to maintain the shape
gesture while the constraint is activated.

From our exploration of different gesture sets during the
initial phases of the work reported here, we picked the ones
above since they (1) adequately symbolize the respective
shapes and (2) provide directionality, which is used to
further specify the manipulation DOF (Figure 2e).

Grasping Objects
To facilitate the accurate grasping of objects, each hand has
a cursor (Figure 3a) located at the place where the fingers
would naturally come together to grasp an object (Figure
3b). To grasp an object, the user simply positions the cursor
inside the object, and then squeezes her hand.

Figure 3. A white cursor located near the virtual hand (left)
indicates where the hand will grasp an object (middle). If the
cursor is inside the object, then the user can grab it (right).

Tethering Objects
To specify that an object should be actively constrained, the
user must tether the object to a constraint. This can be done
by clicking (i.e., temporarily grabbing) the object (Figure 4).
Note, an object that is intersecting with the constraint is
automatically tethered to it. To un-tether an object, the user
must click the tethered object again.

Figure 4. Tethering an object to a Ray by clicking on it.

Manipulation Hand Gesture Vocabulary
To constrain an object, the user activates the desired shape
constraint (Plane, Ray, or Point) with one hand, and grasps
the object with her other hand (which we refer to as the
manipulation hand). Each shape constraint offers several
different DOFs it can isolate. For example, a Ray can
isolate to 1-DOF translation but also to 1-DOF rotation
separately. To distinguish which DOFs to isolate, we use
two techniques.

Hand Gestures with Manipulation Hand
With the manipulation hand, a user can point with either her
index finger or her thumb in the direction of the DOF to
isolate. For example, pointing parallel to the Ray will
translate, while pointing “around” the Ray will lock it to
rotation. Using this method, a user can switch the direction
she is pointing to change the type of DOF isolation on the fly.
Moreover, by explicitly pointing in multiple directions or
only a single direction, a user can lock or unlock DOFs to
offer a high number of possible constrained movements. In
our implementation, a user begins a constrained manipulation
of an object after she has pointed, with either index or thumb,
in a direction for at least 0.5s (to prevent accidental
manipulations when adjusting hand posture). When she
changes her hand posture by opening or closing a finger, then
the system recomputes and updates the direction. As such, a
user does not need to always keep pointing in the exact
direction with her finger, and at the same time, can rapidly

switch between different types manipulations by ‘opening’ or
‘closing’ DOFs with her fingers.

Initial Movement of Object
While hand gestures offer flexible changes in a sequence of
actions, we observed that for simple one-off actions, user
tend to grab the object and move it in the desired direction.
To minimize the overhead of performing the shape gesture
for such quick actions, we also support the use of initial
movement of the object to specify the direction to isolate.
For instance, if the user starts moving an object along an
activated Ray, then the object movement is locked to 1-DOF
translation along that Ray. Similarly, if she initially moves
her hand around the activated Ray, then the object is locked
to 1-DOF rotation around the Ray. Should the user want to
switch manipulation directions without re-grabbing the
object, she can employ the hand gestures described earlier.

Plane Constraint
A Plane, when activated, mimics the behavior of a physical
plane: it passively constraints all objects to allow for
collision against it (Figure 5a).

Figure 5. Interactions with an active Plane. (a) Objects collide
against the Plane and move on it. (b) When an object was left
on the Plane, re-grasping and moving the object scales it
relative to the Plane. Tethered objects can (c) move along one
of Plane’s directional axes or (d) move parallel to the Plane.

Interactions with Tethered Objects
For tethered objects, the Plane generally offers the following
constrained manipulations: (i) move the object parallel to the
Plane (Figure 5d) and (ii) move the object along the Plane’s
normal. Using hand gestures for manipulation, as opposed to
initial movement, one can also isolate to 1D translation
along the Plane’s directional vectors (Figure 5c).

Interactions with Intersecting Objects
As mentioned earlier, all intersecting objects are considered
tethered. Beyond this, intersecting objects offer an
additional constrained manipulation method. If an object is
intersecting with the Plane, then instead of moving closer or
further from the Plane, the object will 1D scale relative to
the Plane (Figure 5b), with the metaphor being that when it
is stuck to the Plane, the object stretches when pulled away.

Ray Constraint
An activated Ray is like a physical rail. When objects start
intersecting with the Ray, they align against it and can be
slid along it.

Figure 6. Tethered objects can (a) move along the Ray, (b) rotate
around the Ray, (c) move away from the Ray. Intersecting
objects can also (d) 2D uniform scale out from the Ray.

Interactions with Tethered Objects
The Ray offers three general manipulations: (i) move objects
along the Ray (Figure 6a), (ii) rotate objects around the Ray
(Figure 6b), and (iii) move objects closer or further away
from the Ray (Figure 6c). Like before, hand gestures can be
used to combine different manipulations, for example, one
can point up to move an object along the Ray, and at the
same time point forward to move it along the Ray as well.

Interactions with Intersecting Objects
Analogous to the Plane, if an object is intersecting a Ray, it
2D scales when motioned away from the Ray (Figure 6e).

Point Constraint
An active Point does not impose any restrictions on an
object unless the object is explicitly tethered to it. It
behaves like a pivot, with objects being able to move closer
or further to it, as well as rotate around the Point.

Figure 7. An object that is (a) changing its distance from the
Point, (b) rotating around the Point, and (c) rotating around a
concentric circle using hand gestures

Interactions with Tethered Objects
Tethered objects can be constrained in the following ways:
they can (1) move objects closer or further away from the
Point (Figure 7a) or (2) rotate objects around the Point
(Figure 7b). A user can also use hand gestures to rotate the
object on a concentric circle around the point (Figure 7c).

A Point does not offer any additional manipulations to
objects that intersect with it.

Constraint Snapping
Snapping is used to enable constraints to be placed faster
and more accurately. All thresholds were empirically
determined based on observations during pilot tests.

A Plane can snap to the faces of an object’s bounding box
to help align objects along the surface of an object and
enable the Plane to stretch along the local axis of the object.
The Plane snaps to a face if the angle between the Plane and
face is less than 10 degrees, the orthogonal distance from
the Plane to the face is less than 1 cm, and the Euclidian
distance between the hand and the closest point on the face
is less than 30 cm. Analogously, the Ray can snap to the
edges of an object’s bounding box. It snaps to an edge if the
angle between them is less than 10 degrees and the
Euclidean distance from the Ray to the edge is less than 1
cm. We found that the above-mentioned values work best
for the scale of the objects used in the study.

Multi-Object Manipulation
As mentioned previously, when a constraint is activated, the
user can tether multiple objects to it. Normally, the user
would grasp a tethered or intersecting object to begin her
manipulations, however, if she grasps at the air instead, she
can manipulate all tethered objects simultaneously.
Persistent Constraints and Grouping
A user can also create permanent constraints in the world.
When a constraint is activated, elastic bands connect the
constraint and the hand. As the hand moves away from the
constraint, the elastic begins to stretch. After the hand has
moved 15 cm away from the constraint, the elastic breaks
and the constraint persists in the environment (Figure 8).
These persistent constraints are like normal objects except
they can be re-activated to become a constraint again.

Figure 8. Elastic bands stretch as the hand moves further
away from the constraint, until eventually breaking and
leaving the constraint permanently in the world.

A persistent constraint also maintains its tethers; however,
it is inactive by default and as such, does not constrain any
objects. To re-activate a constraint, the user must move her
hand over the constraint and then squeeze the controller.
Once re-activated, the constraint behaves as it did before
the elastic was broken.

Being able to leave constraints in the environment and
come back to them at a later time removes the (tedious)
repetition in re-creating the same constraint. For example, a
designer may want to create a Plane as a floor and have

objects that are constrained to it. Instead of creating this
constraint and repeatedly tethering the objects, the designer
can make the constraint persistent and leave it in the
environment. Then, to re-activate it, she can squeeze the
controller as needed.

Figure 9. A Point acts as a natural metaphor for grouping
objects, with a persistent Point that has objects tethered to it
(a), the user can grasp the Point with her index (b) to move all
tethered objects around like a group.

Alternatively, if the user moves her hand over a constraint
and holds down on the index trigger, then she can move the
constraint around and treat it as an object. As she
manipulates the constraint, all objects tethered to it are also
manipulated. As such, one can group objects together by
connecting them to the same constraint and then can
manipulate the constraint as a whole. A Point serves as a
natural shape constraint for grouping objects together
(Figure 9).

Multi-Constraint Manipulation
There are many instances where a user may need to activate
multiple constraints at the same time. For instance, if a
designer needed to place a bookcase against a wall, she
would need both a ground Plane constraint as well as a wall
Plane constraint to be activated simultaneously. In such
cases, the user can first create and activate a Point. Then,
she tethers the constraints she wishes to activate to that
Point. While the Point is active, the tethered constraints also
remain active. As a proof of concept, multiple Plane
constraints can be activated simultaneously to define more
complex collision surfaces such as corners (Figure 10).

Figure 10. To create and use a corner, we first activate each of
the associated walls using a Point (a), and then can grab any
object to place it against the corner (b).

IMPLEMENTATION
To evaluate the Plane, Ray, and Point interactions, we
developed a system using an Oculus Rift HMD and two
Oculus Touch controllers. The HMD and the controllers
were tracked by four Oculus sensors. The software was
implemented in C# using the Unity game engine and
Oculus SDK and ran on a desktop computer with Intel i7-
4770 processor and a NVidia GTX1050Ti graphics card.

As Oculus Touch controllers have capacitive sensors in the
index finger trigger and thumb buttons, they can detect if
the finger or the thumb is resting on the controller. During
initial testing, the finger posture detection that was built
into the controller was not reliable enough to detect the
finger stretch gestures used for the Plane, Ray, and Point.
To overcome this limitation, two gesture detection gloves
were designed (Figure 11).

Figure 11. Gesture glove for detecting the gestures, while
holding the controller in hand.

Each glove had two 114 mm long flex sensors running
along the index finger and thumb. An Adafruit Huzzah32
board with an ESP32 microprocessor sampled the sensor
values at 60 Hz and relayed the values to a PC via
Bluetooth connection. Each glove was powered by a
1000mAh Lithium Polymer battery. To accommodate
different hand sizes and finger angles, the system initially
requires the user to comfortably rest her index finger and
thumb on the controller and extend them while holding the
controller in hand. The system then measures the flex
sensor value range for the index finger and thumb and also
monitors it when the users are closing their fingers during
calibration. To prevent jitter, the threshold to detect an
extended finger was set at 80% of the range (100% being
the maximum stretch) and to cancel the stretch at 60%, but
the thresholds were adjusted by the experimenter to tailor
them to individual differences.

USER STUDY
We seek to understand whether the proposed techniques can
work as a whole to support existing workflows for
composing 3D scenes. We conducted an expert evaluation
to gain feedback on the utility and usability of Plane, Ray,
and Point, where we encouraged them to compare it with
the user interfaces of software they regularly use. We also
received feedback from novice users to evaluate the ease of
learning and using our new user interface.
Participants
We recruited nine participants: six (E1-E6) were expert
users (1 female; µ = 32 years, range = 27 to 41 years) with
3D modelling tools (average 12 years of experience). The
other three were novices (N1-N3) with minimal experience
using 3D modelling tools (2 females; µ = 20 years, range =

19 to 22 years). Out of the six experts, two (E1, E6) were
also experts in VR development (average 2.5 years of
experience). No participant had notable experience with
modeling within VR; indeed, we believe that the population
of such users is de minimis. It is our hope that by
supporting expert users from these populations we can
provide useful and usable tools which can in part help to
enable such a user group to form.

Apparatus
The study was conducted in a room with a working area of
180 x 180 cm. Participants were encouraged to move
around so that they could see various objects from a
viewpoint where they could understand the 3D locations
of the objects.

Procedure
The study consisted of the following phases.

Greeting and Introduction (5 minutes)
The participant filled out the consent form as well as a
demographic questionnaire. Then, the purpose of the study
and the basic concepts of Plane, Ray and Point were
explained.

Tutorial (20 minutes)
After being given brief instructions on the use of Plane,
Ray, and Point, participants wore the Oculus headset and
proceeded through a guided tutorial using the techniques.
The tutorial covered creating each of the shape constraints,
grabbing objects, tethering objects, performing different
types of manipulations with the constraints using both the
initial movement and the hand gesture, and performing
multi-object manipulations with the constraints. As the
participants were learning and being introduced to these
techniques, they were encouraged to speak out loud and
provide thoughts on the interactions.

Guided Scenarios (20 minutes)
Once the participant completed the tutorial, they were
guided through four scenarios which covered the main
features – creating various appropriate shape constraints
and using them to precisely manipulate objects. They
included the creation and manipulation of different
persistent constraints, and interaction with multiple
constraints and objects simultaneously. In all four
scenarios, the scene was populated with a variety of objects
and participants were encouraged to explore and deviate
from the script after finishing the required task, as well as to
provide us their thoughts on the interaction.

Interview (20 minutes)
After the guided scenarios, participants were asked to
evaluate each of the features in Plane, Ray, and Point with
regards to their (i) ease of use and learning and (ii)
advantages and disadvantages of the techniques over
previous techniques they had used in desktop software and
VR tools (if they were expert users). They were also asked
to evaluate the gestures used in each interaction.

Results
The results from the novice and expert users revealed many
interesting recommendations and opportunities for Plane,
Ray, and Point. We start with the overall usefulness of our
techniques in comparison to traditional workflows, and then
detail specific usability features.
Comparison to Traditional Workflows
All experts agreed that the Plane, Ray, and Point
interactions, along with the affordances of VR, could speed
up their design workflows. E2, an architect, believed that
these tools would be most helpful in a schematic design
phase involving operations to easily define and use the Ray
as an axis rotation for direction lights (like the Sun) as well
as to enable the quick alignment of objects against one
another (using Planes). E4 also commented that while these
interactions and others in VR would work on a small scale
to design rooms, for example, in the current state, none
would be usable for modelling on a large scale, where exact
distances, quick grouping, and multiple viewpoints are
required.

When asked about the usefulness of the interactions
compared to traditional tools, E3 also noted that they are
“interested in creating it [Plane] at a weird angle because
that is actually tough to do in current software”, indicating
novel use-cases that are not easily supported by traditional
tools.

Shape Gesture Language
Most participants (i.e., E1,3-5, N1-3) were able to
comfortably create all different shape gestures. Only E6
noted that extending their thumb was uncomfortable. E2
also had difficulty maintaining the gesture for the Plane
when pressing down on the grip trigger to activate it. They
described that it was hard to keep the index and thumb open
while closing their middle finger. E4, E2, and E6 also had
concerns that the gestures could get tiring over time, mainly
because they were trying to balance the controller in their
hand while performing them.

Plane Constraint Interactions
Being able to place objects against the Plane was quickly
picked up by all participants and was unanimously cited as
easy to use and helpful when quickly aligning objects.

As for the 1-DOF scaling of objects using the Plane, all
participants were able to easily learn and perform the
interaction but were divided on whether this was a useful
feature. E1, E3, and E5 stated that 1-DOF scaling will be
useful in their workflows but E2 did not see a significant
number of use cases for 1-DOF scaling. E2 argued that one
would usually want uniform scaling for non-primitive
objects. E4 was neutral. They could see it being useful in
certain stages of their design process, for example, when
they may need to quickly scaffold walls or floors out of
primitive objects. However, when populating a scene, they
usually used objects that were already correctly scaled, so
1-DOF scaling was undesirable.

Ray Constraint Interactions
Generally, participants did not experience issues with Ray;
most participants noted that it had fewer use-cases than the
Plane but could be very helpful in the right situation. E2
raised similar concerns for 2D scaling as for the 1D scaling
with the Plane, in that, uniform scaling was usually the
most desirable type of scaling and 2D would not be used
often. E5 would “find the Ray more useful if it snapped to
normal of Planes or surfaces”.

Point Constraints Gesture
All participants found Point to be easy to make and
activate. Only E6 found it hard to use. They thought of
Point as more of a marker or reference rather than a
constraint, and as such expected different interactions. E2
mentioned that it does not constrain the objects enough for
it be useful in scene or architecture design. They suggested
it would be better suited to more freeform scenarios such as
character modelling. All participants except E6 agreed that
the point provides a natural metaphor for grouping objects
together. E6 thought of the Point as only applicable to apply
constraints to objects so using it for grouping would not be
intuitive. They suggested being able to click or double click
on objects to select them, independent of creating any
constraints. E3 was also concerned that with multiple
groups, it would be hard to differentiate between each
group and which point one should grab.

Multi-object Manipulation
All participants agreed that the gesture used to grab the air
to move all objects was easy to learn and use. E3 “would
definitely use this for 1D or 2D scaling objects all at the
same time”, for scenarios such as making all the walls in a
room taller, where each wall would need to be scaled by the
same amount.
Persistent vs Temporary Constraints
The gesture for making a constraint persistent was easy to
perform and participants easily recognized it from the visual
feedback provided. Many participants, however, accidently
triggered it and inadvertently broke the elastic when trying
to rest their hand. Two experts, E2 and E5, would have liked
to always create a persistent constraint by default, e.g., when
they activated the Plane and then released the grip trigger,
they would have liked the Plane to be left in the world and
an additional gesture be used to temporarily create a Plane.
E5 mentioned that the constraint left in the world should
always be activated by default, because otherwise if they
“parent a bunch of objects to this constraint, the fact that I
have to go back and activate the constraint to manipulate
those objects will take some getting used to”.

Multiple Active Constraints
All participants found the gesture for activating multiple
constraints to be intuitive, but E2 and E5 did not find it
ideal. E5 commented that the gesture serialized selection
and wished that by default constraints would remain active
when left in world. They wanted to place a bunch of Planes
in the environment and start placing objects against them.

Initial Movement and Manipulation Hand Gestures
After creating a constraint, users have the option to either
use their initial movement (less powerful, but potentially
easier to use), or a hand gesture (more robust, but
potentially harder to use) in order to manipulate objects. We
found that all participants were able to quickly use initial
movements to choose the constraint type and found it
intuitive to use. All participants excluding E6 were able to
effectively use hand gestures with their non-dominant hand.
However, initial movement was used much more frequently
than the hand gestures. All experts except E6 agreed that
they would have to get used to the hand gestures, but after
learning them, agreed they would use them a lot more due
to the benefits over initial movements. E6 did not find it
easy to make the gestures, and because one would need to
maintain them when using the manipulation hand gestures,
it would be straining for them.
Miscellaneous
Most participants experienced difficulties with grabbing
persistent constraints because they were sometimes too
small (Point) or too thin (Ray, Plane). E2, E5, E6 would
have liked there to be a way to remove constraints.

The two experts (E1,E6) who were also experienced in VR
development learned our techniques much faster than
others, but all experts were equally capable of using our
techniques after the tutorial.

DISCUSSION
The study revealed that our techniques were easy to learn
for novices and can be very useful in scene design
workflows. The gestures were found to be fast to perform,
easy to remember and use, and afforded direct, efficient
manipulation of objects in VR. The asymmetric use of the
two hands and the adoption of naïve physics [13] might be
two of the main reasons that make the techniques so easy to
use. The gestures are also similar to gestures already used
in the real world to describe common physical constraints.
The fact that constraints can be both transient and persistent
in our method made it also easy for users to adapt their
usage to the current context.

The biggest benefit of Plane, Ray, and Point is that the
techniques make it very easy to avoid one of the biggest
drawbacks of current VR systems: namely that objects
cannot be (easily) aligned with other objects, which leads to
objects being posed at slightly odd angles, interpenetrating
slightly, or floating a bit in the air. With Plane, Ray, and
Point objects can be placed more accurately, which enables
users to convey the intent of their virtual designs better.

The presented techniques are (mostly) orthogonal to current
interaction schemes in VR systems. This makes it easy to
add them to other applications that currently do not yet
support constraints.

While the results are promising, potential usability issues
and limitations of the techniques do need to be addressed.
From an ergonomic viewpoint, the main usability concern

would be fatigue, potentially caused by performing the
required gesture(s) while simultaneously holding and
balancing the controller(s). An alternative would be to use a
controller that is fixated to the hand [17] so it does need to
be balanced; this should reduce strain and ensure that the
gestures are even more comfortable to perform.

Alternatively, the design of Plane, Ray and Point is such
that it could be easily adapted to freehand gestural input,
removing the need for controllers. Of course, this would
introduce its own set of learnability and usability concerns
that would need to be considered and designed for.

There are some limits to the types of scenes supported by
our technique. First, our techniques may not work well if
there are very dense clutters of snapping targets (such as
multiple surfaces stacked close to each other), since the
constraints could snap to any one of a set of unintended
objects. Second, as pointed out by E4, our techniques can
encounter limits when manipulating large-scale scenes with
deeply nested hierarchical structures.

Our study also demonstrated that there were a few usability
issues with the persistent constraints. First, the need to
maintain the hand position in space to keep them active did
not permit the user to drop their hand to waist-level, as
dropping the hand implies moving one’s hand away from
the constraint, thus breaking the elastic bands. A more
explicit action may be better suited for keeping a constraint
active, e.g., a simple press of a button on the controller.
Having said that, typical manipulation episodes do not last
long enough for this to be a major concern. Another issue
was that using a Point to activate multiple persistent
constraints simultaneously required the user to first create
the Point and then select each constraint the user wanted to
activate. This interaction can get tedious, and for some
users, the Point may not be a natural metaphor for such an
interaction. Toggling constraint activation as needed
through a button on the controller would again fix this.
Lastly, we did not support deletion of persistent constraints,
but this could again be mapped to pressing or holding a
button. As this was not a contribution of Plane, Ray, and
Point as presented above, it was not included in the original
system.
CONCLUSION AND FUTURE WORK
In this work, we presented new interactions to quickly and
easily align and constrain the manipulation of objects in
VR. Our new interaction technique, Plane, Ray and Point,
uses shape gestures to constrain different DOFs. Due to its
use of physical metaphors and direct manipulation, the
technique was easily learned and used by novices and
experts alike.

There are several interesting directions that future work
should explore. First, this work only considered straight
Rays and flat Planes. A natural extension may be to extract
more information from the shape of a virtual object and
create curved constraints that lie along the surfaces of

objects, such as a sphere or rolling hills. Such curved
constraints could enable quick and easy object alignment
with round or irregular-shaped objects. Future work could
also investigate adapting our new interactions to hands-free
interfaces. This would, however, require new methods to
switch modes to activate constraints, because trigger or
controller buttons cannot be used in such a system.

REFERENCES
[1] Oscar Kin-Chung Au, Chiew-Lan Tai, and Hongbo Fu.

2012. Multitouch Gestures for Constrained
Transformation of 3D Objects. Computer Graphics
Forum 31, 2pt3 (2012), 651–660.
http://dx.doi.org/10.1111/j.1467-8659.2012.03044.x

[2] Eric A. Bier. 1990. Snap-dragging in Three
Dimensions. In Proceedings of the 1990 Symposium on
Interactive 3D Graphics (I3D ’90). ACM, New York,
NY, USA, 193–204.
http://dx.doi.org/10.1145/91385.91446

[3] Eric A. Bier and Maureen C. Stone. 1986. Snap-
dragging. In Proceedings of the 13th Annual
Conference on Computer Graphics and Interactive
Techniques (SIGGRAPH ’86). ACM, New York, NY,
USA, 233–240. http://dx.doi.org/10.1145/15922.15912

[4] Richard W. Bukowski and Carlo H. Séquin. 1995.
Object Associations: A Simple and Practical Approach
to Virtual 3D Manipulation. In Proceedings of the 1995
Symposium on Interactive 3D Graphics (I3D ’95).
ACM, New York, NY, USA, 131–ff.
http://dx.doi.org/10.1145/199404.199427

[5] Jeff Butterworth, Andrew Davidson, Stephen Hench,
and Marc. T. Olano. 1992. 3DM: A Three Dimensional
Modeler Using a Head-mounted Display. In
Proceedings of the 1992 Symposium on Interactive 3D
Graphics (I3D ’92). ACM, New York, NY, USA, 135–
138. http://dx.doi.org/10.1145/147156.147182

[6] W. Buxton and B. Myers. 1986. A Study in Two-
handed Input. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems
(CHI ’86). ACM, New York, NY, USA, 321–326.
http://dx.doi.org/10.1145/22627.22390

[7] Fabio M. Caputo, Marco Emporio, and Andrea
Giachetti. 2018. The Smart Pin: An effective tool for
object manipulation in immersive virtual reality
environments. Computers & Graphics 74: 225–233.
https://doi.org/10.1016/j.cag.2018.05.019

[8] Fabio Marco Caputo, Marco Emporio, and Andrea
Giachetti. 2017. Single-Handed vs. Two Handed
Manipulation in Virtual Reality: A Novel Metaphor
and Experimental Comparisons. The Eurographics
Association. https://doi.org/10.2312/stag.20171225

http://dx.doi.org/10.1111/j.1467-8659.2012.03044.x
http://dx.doi.org/10.1145/91385.91446
http://dx.doi.org/10.1145/15922.15912
http://dx.doi.org/10.1145/199404.199427
http://dx.doi.org/10.1145/147156.147182
http://dx.doi.org/10.1145/22627.22390
https://doi.org/10.1016/j.cag.2018.05.019
https://doi.org/10.2312/stag.20171225

[9] Marianela Ciolfi Felice, Nolwenn Maudet, Wendy E.
Mackay, and Michel Beaudouin-Lafon. 2016. Beyond
Snapping: Persistent, Tweakable Alignment and
Distribution with StickyLines. In Proceedings of the
29th Annual Symposium on User Interface Software
and Technology (UIST ’16). ACM, New York, NY,
USA, 133–144.
http://dx.doi.org/10.1145/2984511.2984577

[10] Aurélie Cohé, Fabrice Dècle, and Martin Hachet. 2011.
tBox: A 3D Transformation Widget Designed for
Touch-screens. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems
(CHI ’11). ACM, New York, NY, USA, 3005–3008.
http://dx.doi.org/10.1145/1978942.1979387

[11] Brookshire D. Conner, Scott S. Snibbe, Kenneth P.
Herndon, Daniel C. Robbins, Robert C. Zeleznik, and
Andries van Dam. 1992. Three-dimensional Widgets.
In Proceedings of the 1992 Symposium on Interactive
3D Graphics (I3D ’92). ACM, New York, NY, USA,
183–188. http://dx.doi.org/10.1145/147156.147199

[12] Scott Frees, G. Drew Kessler, and Edwin Kay. 2007.
PRISM Interaction for Enhancing Control in
Immersive Virtual Environments. ACM Trans.
Comput.-Hum. Interact. 14, 1, Article 2 (May 2007).
http://dx.doi.org/10.1145/1229855.1229857

[13] Michael Gleicher. 1992. Briar: A Constraint-based
Drawing Program. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems
(CHI ’92). ACM, New York, NY, USA, 661–662.
http://dx.doi.org/10.1145/142750.143074

[14] Tovi Grossman, Daniel Wigdor, and Ravin
Balakrishnan. 2004. Multi-finger Gestural Interaction
with 3D Volumetric Displays. In Proceedings of the
17th Annual ACM Symposium on User Interface
Software and Technology (UIST ’04). ACM, New
York, NY, USA, 61–70.
http://dx.doi.org/10.1145/1029632.1029644

[15] Yves Guiard. 1987. Asymmetric division of labor in
human skilled bimanual action: The kinematic chain as
a model. Journal of motor behavior 19, 4 (1987), 486–
517.

[16] Ken Hinckley, Koji Yatani, Michel Pahud, Nicole
Coddington, Jenny Rodenhouse, Andy Wilson, Hrvoje
Benko, and Bill Buxton. 2010. Pen + Touch = New
Tools. In Proceedings of the 23nd Annual ACM
Symposium on User Interface Software and
Technology (UIST ’10). ACM, New York, NY, USA,
27–36. http://dx.doi.org/10.1145/1866029.1866036

[17] Sean Hollister. 2018a. Valve’s Knuckles EV2
controller will let you squeeze objects in games. (Jun
2018). https://www.cnet.com/news/valves-new-
knuckles-vr-controller-knows-where-your-fingers-are/

[18] Stephanie Houde. 1992. Iterative Design of an
Interface for Easy 3-D Direct Manipulation. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI ’92). ACM, New
York, NY, USA, 135–142.
http://dx.doi.org/10.1145/142750.142772

[19] D. Mendes, F. M. Caputo, A. Giachetti, A. Ferreira,
and J. Jorge. 2019. A Survey on 3D Virtual Object
Manipulation: From the Desktop to Immersive Virtual
Environments. Computer Graphics Forum 38, 1
(2019), 21–45. http://dx.doi.org/10.1111/cgf.13390

[20] Daniel Mendes, Filipe Relvas, Alfredo Ferreira, and
Joaquim Jorge. 2016. The Benefits of DOF Separation
in Mid-air 3D Object Manipulation. In Proceedings of
the 22nd ACM Conference on Virtual Reality Software
and Technology (VRST ’16). ACM, New York, NY,
USA, 261–268.
http://dx.doi.org/10.1145/2993369.2993396

[21] Daniel Mendes, Maurício Sousa, Rodrigo Lorena,
Alfredo Ferreira, and Joaquim Jorge. 2017. Using
Custom Transformation Axes for Mid-air Manipulation
of 3D Virtual Objects. In Proceedings of the 23rd ACM
Symposium on Virtual Reality Software and
Technology (VRST ’17). ACM, New York, NY, USA,
Article 27, 8 pages.
http://dx.doi.org/10.1145/3139131.3139157

[22] Thi-Thuong Huyen Nguyen, Thierry Duval, and
Charles Pontonnier. 2014. A New Direct Manipulation
Technique for Immersive 3D Virtual Environments. In
Proceedings of the 24th International Conference on
Artificial Reality and Telexistence and the 19th
Eurographics Symposium on Virtual Environments
(ICAT - EGVE ’14). Eurographics Association, Aire-la-
Ville, Switzerland, Switzerland, 67–74.
http://dx.doi.org/10.2312/ve.20141367

[23] Ji-Young Oh and Wolfgang Stuerzlinger. 2005.
Moving Objects with 2D Input Devices in CAD
Systems and Desktop Virtual Environments. In
Proceedings of Graphics Interface 2005 (GI ’05).
Canadian Human-Computer Communications Society,
School of Computer Science, University of Waterloo,
Waterloo, Ontario, Canada, 195–202.
http://dl.acm.org/citation.cfm?id=1089508.1089541

[24] Ryan Schmidt, Karan Singh, and Ravin Balakrishnan.
2008. Sketching and Composing Widgets for 3D
Manipulation. Computer Graphics Forum 27, 2 (2008),
301–310.
 http://dx.doi.org/10.1111/j.1467-8659.2008.01127.x

[25] Abigail J. Sellen, Gordon P. Kurtenbach, and William
A. S. Buxton. 1992. The Prevention of Mode Errors
Through Sensory Feedback. Hum.-Comput. Interact. 7,
2 (1992), 141–164.
https://doi.org/10.1207/s15327051hci0702_1

http://dx.doi.org/10.1145/2984511.2984577
http://dx.doi.org/10.1145/1978942.1979387
http://dx.doi.org/10.1145/147156.147199
http://dx.doi.org/10.1145/1229855.1229857
http://dx.doi.org/10.1145/142750.143074
http://dx.doi.org/10.1145/1029632.1029644
http://dx.doi.org/10.1145/1866029.1866036
https://www.cnet.com/news/valves-new-knuckles-vr-controller-knows-where-your-fingers-are/
https://www.cnet.com/news/valves-new-knuckles-vr-controller-knows-where-your-fingers-are/
http://dx.doi.org/10.1145/142750.142772
http://dx.doi.org/10.1111/cgf.13390
http://dx.doi.org/10.1145/2993369.2993396
http://dx.doi.org/10.1145/3139131.3139157
http://dx.doi.org/10.2312/ve.20141367
http://dl.acm.org/citation.cfm?id=1089508.1089541
http://dx.doi.org/10.1111/j.1467-8659.2008.01127.x
https://doi.org/10.1207/s15327051hci0702_1

[26] Graham Smith, Tim Salzman, and Wolfgang
Stuerzlinger. 2001. 3D Scene Manipulation with 2D
Devices and Constraints. In Proceedings of Graphics
Interface 2001 (GI ’01). Canadian Information
Processing Society, Toronto, Ont., Canada, Canada,
135–142.
http://dl.acm.org/citation.cfm?id=780986.781003

[27] Graham Smith and Wolfgang Stuerzlinger. 2001.
Integration of Constraints into a VR Environment.

[28] Peng Song, Wooi Boon Goh, William Hutama, Chi-
Wing Fu, and Xiaopei Liu. 2012. A Handle Bar
Metaphor for Virtual Object Manipulation with Mid-air
Interaction. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems (CHI ’12).
ACM, New York, NY, USA, 1297–1306.
http://dx.doi.org/10.1145/2207676.2208585

[29] Richard Stoakley, Matthew J. Conway, and Randy
Pausch. 1995. Virtual Reality on a WIM: Interactive
Worlds in Miniature. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems
(CHI ’95). ACM Press/Addison-Wesley Publishing
Co., New York, NY, USA, 265–272.
http://dx.doi.org/10.1145/223904.223938

[30] Junwei Sun, Wolfgang Stuerzlinger, and Dmitri
Shuralyov. 2016. Shift-Sliding and Depth-Pop for 3D
Positioning. In Proceedings of the 2016 Symposium on
Spatial User Interaction (SUI ’16). ACM, New York,
NY, USA, 165–165.
http://dx.doi.org/10.1145/2983310.2991067

[31] Manuel Veit, Antonio Capobianco, and Dominique
Bechmann. 2009. Influence of Degrees of Freedom’s
Manipulation on Performances During Orientation
Tasks in Virtual Reality Environments. In Proceedings
of the 16th ACM Symposium on Virtual Reality
Software and Technology (VRST ’09). ACM, New
York, NY, USA, 51–58.
http://dx.doi.org/10.1145/1643928.1643942

[32] Yanqing Wang, Christine L. MacKenzie, Valerie A.
Summers, and Kellogg S. Booth. 1998. The Structure
of Object Transportation and Orientation in Human-
computer Interaction. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems
(CHI ’98). ACM Press/Addison-Wesley Publishing
Co., New York, NY, USA, 312–319.
http://dx.doi.org/10.1145/274644.274688

[33] Daniel Wigdor, Hrvoje Benko, John Pella, Jarrod
Lombardo, and Sarah Williams. 2011. Rock & Rails:
Extending Multi-touch Interactions with Shape
Gestures to Enable Precise Spatial Manipulations. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI ’11). ACM, New
York, NY, USA, 1581–1590.
http://dx.doi.org/10.1145/1978942.1979173

[34] Michael Wybrow, Kim Marriott, Linda Mciver, and
Peter J. Stuckey. 2008. Comparing Usability of One-
way and Multi-way Constraints for Diagram Editing.
ACM Trans. Comput.-Hum. Interact. 14, 4, Article 19
(Jan. 2008), 38 pages.
http://dx.doi.org/10.1145/1314683.1314687

[35] Haijun Xia, Ken Hinckley, Michel Pahud, Xiao Tu,
and Bill Buxton. 2017. WritLarge: Ink Unleashed by
Unified Scope, Action, & Zoom. In Proceedings of the
2017 CHI Conference on Human Factors in
Computing Systems (CHI ’17). ACM, New York, NY,
USA, 3227–3240.
http://dx.doi.org/10.1145/3025453.3025664

[36] Pengfei Xu, Hongbo Fu, Takeo Igarashi, and Chiew-
Lan Tai. 2014. Global Beautification of Layouts with
Interactive Ambiguity Resolution. In Proceedings of
the 27th Annual ACM Symposium on User Interface
Software and Technology (UIST ’14). ACM, New
York, NY, USA, 243–252.
http://dx.doi.org/10.1145/2642918.2647398

[37] 2018. See How Steven Spielberg Used Real VR
Headsets to Make “Ready Player One.” Film.
Retrieved August 16, 2018 from
https://www.slashfilm.com/ready-player-one-vr-
featurette/

[38] Unreal Engine VR Mode. Retrieved August 16, 2018
from https://docs.unrealengine.com/en-
us/Engine/Editor/VR

[39] 3D Visualization Software | VRED | Autodesk.
Retrieved August 17, 2018 from
https://www.autodesk.com/products/vred/overview

http://dl.acm.org/citation.cfm?id=780986.781003
http://dl.acm.org/citation.cfm?id=780986.781003
http://dx.doi.org/10.1145/2207676.2208585
http://dx.doi.org/10.1145/2207676.2208585
http://dx.doi.org/10.1145/223904.223938
http://dx.doi.org/10.1145/223904.223938
http://dx.doi.org/10.1145/2983310.2991067
http://dx.doi.org/10.1145/2983310.2991067
http://dx.doi.org/10.1145/1643928.1643942
http://dx.doi.org/10.1145/1643928.1643942
http://dx.doi.org/10.1145/274644.274688
http://dx.doi.org/10.1145/274644.274688
http://dx.doi.org/10.1145/1978942.1979173
http://dx.doi.org/10.1145/1978942.1979173
http://dx.doi.org/10.1145/1314683.1314687
http://dx.doi.org/10.1145/1314683.1314687
http://dx.doi.org/10.1145/3025453.3025664
http://dx.doi.org/10.1145/3025453.3025664
http://dx.doi.org/10.1145/2642918.2647398
http://dx.doi.org/10.1145/2642918.2647398
https://www.slashfilm.com/ready-player-one-vr-featurette/
https://www.slashfilm.com/ready-player-one-vr-featurette/
https://www.slashfilm.com/ready-player-one-vr-featurette/
https://www.slashfilm.com/ready-player-one-vr-featurette/
https://docs.unrealengine.com/en-us/Engine/Editor/VR
https://docs.unrealengine.com/en-us/Engine/Editor/VR
https://docs.unrealengine.com/en-us/Engine/Editor/VR
https://docs.unrealengine.com/en-us/Engine/Editor/VR
https://www.autodesk.com/products/vred/overview
https://www.autodesk.com/products/vred/overview

	Plane, Ray, and Point: Enabling Precise Spatial Manipulations with Shape Constraints
	ABSTRACT
	Author Keywords

	CSS Concepts
	INTRODUCTION
	Realated Work
	Direct Object Manipulation
	Alignment and Constraint Support Tools
	Interaction Separating Degree of Freedom
	Interaction Separating Degree of Freedom

	Plane, Ray, & Point Interaction
	Shape Gesture Vocabulary
	Grasping Objects
	Grasping Objects
	Tethering Objects
	Manipulation Hand Gesture Vocabulary
	Hand Gestures with Manipulation Hand
	Initial Movement of Object

	Plane Constraint
	Interactions with Tethered Objects
	Interactions with Intersecting Objects

	Ray Constraint
	Ray Constraint
	Interactions with Tethered Objects
	Interactions with Intersecting Objects
	Point Constraint
	Interactions with Tethered Objects

	Constraint Snapping
	Multi-Object Manipulation
	Persistent Constraints and Grouping
	Multi-Constraint Manipulation

	Implementation
	User Study
	Participants
	Apparatus
	Procedure
	Greeting and Introduction (5 minutes)
	Tutorial (20 minutes)
	Guided Scenarios (20 minutes)
	Interview (20 minutes)

	Results
	Comparison to Traditional Workflows
	Shape Gesture Language
	Plane Constraint Interactions
	Ray Constraint Interactions
	Ray Constraint Interactions
	Point Constraints Gesture
	Multi-object Manipulation
	Persistent vs Temporary Constraints
	Multiple Active Constraints
	Initial Movement and Manipulation Hand Gestures
	Miscellaneous

	Discussion
	Conclusion and Future Work
	REFERENCES

