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Abstract
Fitts’ law is widely used as an evaluation tool for pointing or selec-
tion tasks, evolving into diverse applications, including 3D extended
reality (XR) environments like virtual, augmented, and mixed re-
ality. Despite standards like ISO 9241:411, the application of Fitts’
law varies significantly across studies, complicating comparisons
and undermining the reliability of findings in 3D XR research. To
address this, we conducted a systematic review of 119 publications,
focusing on 122 studies that used Fitts’ law in 3D XR user experi-
ments. Our analysis shows that over half of these studies referenced
Fitts’ law without thoroughly investigating throughput, movement
time, or error rate. We performed an in-depth meta-analysis to
examine how Fitts’ law is incorporated into research. By highlight-
ing trends and inconsistencies, and making recommendations this
review aims to guide researchers in designing and performing more
effective and consistent Fitts-based studies in 3D XR, enhancing
the quality and impact of future research.
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1 Introduction
Fitts’ law, introduced by Paul Fitts in 1954, provides a predictive
model for rapid aimed movements [52], specifically describing the
relationship between Movement Time (MT) and the difficulty of
a target acquisition task. This model originated in human motor
control studies, where it described how MT increases with both
larger target distance and smaller target size. Over the years, Fitts’
law has gained significant traction in Human-Computer Interaction
(HCI) research due to its usefulness as an evaluation tool, and
remarkable ability to reliably model pointing interactions [94].

In HCI, Fitts’ law was initially applied to 2D graphical user
interfaces to evaluate tasks like pointing, clicking, and dragging,
guiding the development of interaction techniques and devices such
as mice, touchpads, and styli [35, 97]. Over time, it has become a
key framework for evaluating various devices and interfaces, from
desktop computers to touchscreens, and for designing interaction
methods that improve user performance [1].

With steadily increasing research focus on Virtual Reality (VR),
Augmented Reality (AR), and Mixed Reality (MR) systems, collec-
tively referred to as Extended Reality (XR) systems, new aspects
of HCI have emerged. XR systems are increasingly used in various
aspects of people’s lives, from gaming and education to healthcare
and industrial applications [6, 69, 127, 147]. As XR technologies
continue to evolve, XR interaction design becomes increasingly
more complex, making Fitts’ law a valuable tool for assessing user
performance in these new environments [56]. Fitts’ law also serves
as an effective tool for designing interaction systems in this con-
text, and, as XR research advances, new extensions of the law are
being explored to accommodate the complex characteristics of XR,
expanding its applications and effectiveness.

While Fitts’ law was initially applied to 1D (one-dimensional)
pointing tasks, its application expanded to 2D, such as for the
mouse and touch screens, and into 3D, such as for virtual hand
and interaction spaces, which are common in XR environments [30,
143]. This expansion has led to a wide range of variations, with
adaptations and extensions of Fitts’ law developed to address the
unique complexities of XR interactions [134, 145]. As a result, a
variety of methodologies, experimental designs, and evaluation
metrics inspired by Fitts’ law have emerged for use in XR systems.

However, this diversity also presents challenges for 3D User
Interface research [81, 145]. While Fitts’ law serves as a common
framework for evaluating and comparing interaction techniques,
the numerous variations and adaptations for different studies make
it difficult—if not impossible—to directly compare results [53, 71].
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The lack of consistency in experimental setups, measurements,
and evaluation methods leads to a range of discrepancies between
results, which in turn makes it challenging to draw meaningful
conclusions for practical applications, as the results vary too much
to be able to tell how the results of a specific study match other
work. This creates a need for a more cohesive understanding of
how Fitts’ law is applied in XR and HCI research and what trends,
gaps, and inconsistencies exist.

This paper aims to identify trends and patterns in Fitts’ law
research within 3D XR, focusing on commonalities and variations
in user studies. We seek to assess the consistency among existing
studies and highlight sources of variability while identifying gaps
and opportunities for further research. We aim to advance the
understanding of Fitts’ law and its applications in 3D XR. We also
provide insights based on the current state of literature through an
actionable research framework, ultimately improving the quality
of research and moving towards standardization of future studies.

2 Related Work
Fitts’ law is a predictive model of rapid aimed movements and is
widely used in HCI for different purposes. Two main usages are
designing user interfaces [27] and evaluating new interaction meth-
ods [94]. Originally, Fitts proposed that there is a linear relationship
between movement time and the ratio of target width (W) to dis-
tance (typically A, for amplitude) in the reciprocal tapping task
(where a and b are linear regression coefficients):

𝑀𝑇 = 𝑎 + 𝑏 log2
(
2𝐴
𝑊

)
(1)

The logarithmic term is referred to as the Index of Difficulty (ID),
which indicates the overall difficulty of the task based on the dis-
tance to and size of the target (Equation 2 [52]). The Index of Per-
formance (IP), more commonly now referred to as throughput (TP),
is the information transmission rate and the primary tool of Fitts’
law to compare the performance of various input techniques or
devices [95] when evaluating a series of target selection tasks. TP
was originally proposed as the inverse of the slope (1/b) but to avoid
confusion with the more modern definition of TP (Equation 3 [94]),
we suggest calling the reciprocal of the slope consistently IP.

ID = log2

(
2𝐴
𝑊

)
[bits] (2)

TP = ID/𝑀𝑇 [bits/𝑠] (3)

Since then, there have been many refinements to the original
formulation. Welford’s [154] formulations (Equation 4), and Equa-
tion 5 by Meyer et al. [103] were the earliest variations of the law,
with the so-called Shannon formulation proposed by MacKenzie
[94] as likely the most commonly used today (Equation 6). Each
variant was devised to improve the correlation and accuracy of the
model by adjusting the ID.

𝑀𝑇 = 𝑎 + 𝑏 log2
(
𝐴

𝑊
+ 0.5

)
(4)

𝑀𝑇 = 𝑎 + 𝑏
√︂

𝐴

𝑊
(5)

𝑀𝑇 = 𝑎 + 𝑏 log2
(
𝐴

𝑊
+ 1

)
(6)

As extensions to Fitts’ law grew with the introduction of new
models, the concept of effective width (Equation 7 [41, 94]), became
a part of ISO 9241-9 [66] and later the ISO 9241-411 standards [67].
As it adjusts the Fitts’ law based on the selection noise [95] to
improve the accuracy aspect in the speed-accuracy tradeoff, this
refined version of the model gained substantial traction in HCI
research.

𝑊𝑒 = 4.133 · 𝑆𝐷𝑥 (7)
In Equation 7, 𝑆𝐷𝑥 is calculated as the standard deviation be-

tween the target center and a set of selection positions for the same
task, giving the “spread” of selection coordinate distances along
the task-axis, i.e., the line between subsequent targets [16, 98, 99].
Based on the ISO 9241:411 standard, this is multiplied by 4.133,
which corresponds to ±2.066 standard deviations of a normal dis-
tribution, which accounts for 96% of the values under the “bell”
curve [94]. This effective width measure (𝑊𝑒 ) post-experimentally
adjusts the size of targets such that 96% of the selections would
have hit the target - corresponding to an error rate of 4% [94]. This
adjustment facilitates the comparison of study outcomes with oth-
erwise varying error rates. The ISO standards [66, 67] recommend
the use of effective width in deriving an effective index of difficulty
(ID𝑒 ), and correspondingly using this to calculate throughput as
seen in Equation 8 [94] and Equation 9 [94].

ID𝑒 = log2 (
𝐴𝑒

𝑊𝑒
+ 1) (8)

TP =
ID𝑒

𝑀𝑇
(9)

Although there were attempts to revisit and standardize Fitts’
law in HCI studies (e.g., [95, 100, 132]), not having a single method
or standards for evaluating more complex interactions remains
controversial. Notably, in 3D XR, even a “simple” Fitts’ law study is
complicated by factors such as the definition of the (visual) depth of
the target placement (i.e., how far the targets are from the viewer),
the presence or absence of stereo viewing, unclear definitions of
what constitutes the selection coordinate (e.g., in consideration of
ray vs. hand-based selection, where rays usually consider the ob-
ject/ray intersection point as the selection coordinate, while virtual
hands usually use the actual 3D position of the hand/controller as
the selection coordinate), and various and non-standard selection
methods. There are numerous extensions (e.g., [12, 40, 108]), that in-
troduce new parts to the original model, focusing on 3D interaction,
such as Equation 10 by Machuca and Stuerzlinger, who introduced
CTD to take the combined effect of distance and size in 3D into
account [12].

𝑀𝑇 = 𝑎 + 𝑏 (ID) + 𝑐 (CTD) (10)
Two of the most widely used and standard interaction methods

in XR are virtual hand and ray casting [81, 116, 135, 149]. Virtual
hand selection is more similar to the original task that Fitts used
since it directly maps the "cursor" position to that of the hand.
Nevertheless, there are many variations of Fitts’ law for near-field
and distal target pointing and selection, and no single standard
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formulation exists [12, 16, 37, 40, 108]. Furthermore, with other
interaction methods like ray casting, new characteristics are added
to Fitts’ original selection. These interactions usually extend from
the input position and do not directly map the position of the hand.
For the adaption of Fitts’ law to these kinds of interactions, new
models have emerged, such as Kopper et al.’s variant [78] that
extend the original law to rotational movements (Equation 11),
making such versions a common choice for research on ray casting
(or similar input) methods, especially those incorporating angular
distances [16, 78].

𝑀𝑇 = 𝑎 + 𝑏 log2
(
𝛼

𝜔𝑘
+ 1

)
(11)

In Equation 11, 𝛼 and 𝜔 are the angular target distance and
angular target width, respectively. The 𝑘 term indicates the relative
weights of the target’s angular distance and width. In addition, the
definition of effective width is also applied in this equation for
the calculation of effective TP with angular measures, such as in
Batmaz et al.’s work [16].

Teather and Stuerzlinger’s paper, “Pointing at 3D Targets in a
Stereo Head-Tracked Virtual Environment” [143] is one of the ear-
liest applications of Fitts’ law in 3D XR, incorporating ISO 9241-9
in their user study. Since then, numerous studies have employed
similar methodologies to investigate pointing and selection in 3D
environments. Among the first reviews of selection techniques is
Hand’s survey of 3D interaction techniques [58]. He focused on
different interaction techniques designed for mouse and 3D input
devices. When mentioning Fitts’ law, Hand stated that “the HCI
community has little in the way of standard evaluation meth-
ods for 3D interaction short of adopting techniques such as
Fitts’ law”. A later study by Bowman et al. [31] classified 3D se-
lection techniques by different tasks. However, they did not focus
on or investigate Fitts’ law in their literature review. Dang also sur-
veyed and classified 3D selection techniques and how 2D selection
techniques applied to 3D user interfaces in 2007 [43].

In recent years, surveys on 3D interaction techniques mostly
focused on immersive environments and VR/AR/XR HMDs. In Are-
laguet and Andujar’s survey [9], along with 3D object selection
method classification and human models used for evaluation, the
authors examined the factors influencing user performance. They
investigated Fitts’ law as a methodology to model human move-
ment in 3D environments but did not investigate the details in
practice. Triantafyllidis and Li [145] reviewed extensions of Fitts’
law highlighting the application complexities in 3D environments,
especially for combined rotational and translational tasks, provid-
ing an understanding of the limitations of current 3D Fitts’ law
extensions. In Mendes et al.’s survey [102], the authors analyzed
different trends in interaction and object manipulation in virtual
environments but did not investigate Fitts’ law. Similarly, other
papers surveyed 3D interaction techniques, such as Subramanian
and IJsselsteijn [140] and Zhi et al. [162], but these papers did not
focus on Fitts’ law and how it is applied to 3D interaction in their
reviews. Here, we focus on recent practices around Fitts’ law in 3D
XR research.

3 Motivation and Objectives
XR research is rapidly advancing with new technologies and inter-
action methods. At the same time, Fitts’ law has become a crucial
component of designing and evaluating such interaction methods
through formal experiments. As seen in Figure 1a, the increasing
number of publications using Fitts’ law in user studies highlights
the growing role of Fitts’ law in the field. A similar explosion in XR
research is also evident (Figure 1b).

Figure 1: (a) Rise of Fitts’ law usage in publications during re-
cent years (2000-2023). (b) The rapid growth of XR (including
VR, AR, MR) during this period. (ACM digital library, IEEE
Xplore, Elsevier ScienceDirect, and SpringerLink)

Given the increasing use of Fitts’ law in XR research, a compre-
hensive literature review to summarize the many previous studies
and provide guidelines for future ones is warranted. In this pa-
per, we present a systematic literature review, aiming to synthesize
research methodologies using Fitts’ law and the corresponding find-
ings to address the emerging need to limit future inconsistencies
within XR Fitts’ law studies and point out gaps in the literature. To
address this, through an in-depth meta-analysis, we aim to accom-
plish several key objectives:

• Identify trends and patterns in the rapidly growing set of
Fitts’ law studies and extensions in the context of 3D XR,
identifying common ground.

• Provide a quantitative comparison and analysis of various
metrics, including MT, TP, and Error Rate (ER), across differ-
ent interaction techniques and XR displays.

• Investigate and assess the general consistency among exist-
ing studies while highlighting sources of variability.

• Identify gaps and opportunities in the current literature and
suggest areas for further investigation and study.

• Provide a framework to conduct higher-quality Fitts’ law
studies in 3D XR.

4 Methodology
In conducting our systematic literature review, we employed the
PRISMA-2020 guidelines [111]. PRISMA-2020 (Preferred Report-
ing Items for Systematic Reviews and Meta-Analyses) is a set of
guidelines designed to improve systematic literature reviews by
making their reporting more transparent and easy to understand.
Originally developed for medical research, PRISMA has since been
widely adopted across various fields, including Human-Computer
Interaction (HCI), and has shown to be successful in producing high-
quality literature reviews, e.g., those by Agha et al. [4], Leclercq et
al. [83], Panic et al. [114], and Stefanidi et al. [136].
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Our methodology followed the PRISMA framework to ensure
that our results are reliable and reproducible. By following the
PRISMA-2020 principles, we systemically uncovered, evaluated, and
assessed relevant studies, improving the validity and dependability
of our conclusions. The review was conducted in three main phases:

• Initial capture: We collected a wide range of papers that at
least mentioned Fitts’ law.

• Detailed analysis: In this phase, we performed an in-depth
analysis of all user studies from the initial set, focusing on
how Fitts’ methodology for selection tasks was applied and
what data was recorded by the researchers.

• General analysis: Papers not included in the detailed analysis
were categorized to identify trends and applications of Fitts’
law beyond the mentioned user studies in our context.

4.1 Information Sources
To gather the relevant literature on the applications of Fitts’ law
within 3D XR research, our search was conducted across four ma-
jor digital libraries—ACM Digital Library [3], IEEE Xplore [65],
SpringerLink [133], and Elsevier ScienceDirect [48], due to their
extensive collections of reliable, peer-reviewed studies and their
popularity within the field. We did not limit our sources to spe-
cific publications or dates, aiming for broad coverage of relevant
research, including interdisciplinary and high-quality papers that
used Fitts’ law in 3D.

4.2 Search Strategy, Selection Process, and
Eligibility Criteria

4.2.1 Identification. As illustrated in Figure 2, we began by retriev-
ing papers from multiple databases on July 31st, 2024. We used a
query that is broad enough to capture all Fitts’ law studies in XR.
Here is the list of queries used for finding related publications in
each database:

• ACM digital library: [All: "fitts law"] AND [[All:
"virtual reality"] OR [All: "3d"] OR [All: "augmented
reality"] OR [All: "mixed reality"] OR [All: "extended
reality"]].

• Elsevier ScienceDirect: "fitts law" AND ("virtual reality"
OR "augmented reality" OR "mixed reality" OR "extended
reality" OR "3d")

• IEEEXplore: (("Full Text & Metadata":"virtual reality")
OR ("Full Text & Metadata":"augmented reality")
OR ("Full Text & Metadata":"mixed reality") OR
("Full Text & Metadata":3D) OR ("Full Text &
Metadata":"extended reality")) AND ("Full Text &
Metadata":"fitts’ law")

• SpringerLink: "fitts law" AND ("virtual reality" OR
"augmented reality" OR "mixed reality" OR "extended
reality" OR "3d")

In total, these queries identified 1957 papers. Among these papers,
we excluded 491 papers based on language (12 papers) and content
type (479 papers), i.e., journal articles, conference papers, and book
chapters, to ensure the inclusion of complete and peer-reviewed
research. Shorter formats such as abstracts, posters, and workshop
papers were excluded due to, e.g., their lack of depth and peer

review. Nonarchival materials and other content that could later
be expanded into full articles were also excluded, as their results
might change. This refined set of papers was then subjected to a
manual screening process.

Figure 2: Study selection process flow-diagram used for this
study.

4.2.2 Screening. During the screening, we encountered access is-
sues for 40 papers due to licensing limitations. Yet, all these were
book chapters, and their titles and abstracts indicated they did not
include any user studies conducted by the authors. One author
manually screened the full text of the remaining 1426 papers to
filter those relevant to our focus on user studies in 3D XR. This
author also checked the papers to prevent misinterpretations, and
vetted selection tasks or tasks related to selection, like pointing, to
ensure comparability and because this task aligns with the original
Fitts’ task design [52]. The filtering process excluded 1022 papers
based on the context that matched the query but were irrelevant to
the study, such as papers that used the words “Fitts’ law” or “3D”
in their metadata, documents that did not contain user studies like
general survey papers, or those that were hit by the query but did
not incorporate a 3D perspective view.

4.2.3 Inclusion. Wealso evaluated the remaining 404 reports against
our eligibility criteria for inclusion. We excluded reports for five
main reasons: (1) they investigated different tasks (e.g., moving
targets [36, 64], steering law [88, 160] or peg-and-hole task [8]) or
(2) did not use Fitts’ law, or applied Fitts’ law to study other values
except TP, ER, and MT, which are outside the scope of our investi-
gation (e.g., physical attributes such as shoulder angle [77] and task
load and discomfort [115]). Other excluded reports in this phase
either (3) mentioned Fitts’ law without using it as a methodology
(e.g., related work by others [92], general claim [84], and future
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work [26]), (4) lacked sufficient information on the data items and
methodology to be effective in our study (e.g., [39, 82]), or (5) exhib-
ited some combination of these above reasons. In addition, full-text
screening helped us recognize duplicate publications (e.g., [33, 137]).
Ultimately, we included 119 publications in the final in-depth analy-
sis to extract data related to their Fitts’ law user studies in XR.When
papers presented different user studies with separate experimental
designs (e.g., one experiment with ISO 9241-411 multidirectional
tapping task [67, 95] and one Fitts’ original bar selection task [52]),
we extracted values for each study individually, resulting in data
for 122 user studies.

4.3 Data Collection Process and Measures
For analyzing Fitts’ methodology in user studies, we recorded vari-
ables from the papers and aimed to extract the most reliable values.
Details about the variables that we collected are provided in Table 1.
When data values were visualized in charts, we extracted only a
range based on the granularity of the corresponding axis. Due to
the varied presentation of experiment-related values, we performed
all data extraction manually and peer-reviewed it to ensure the ac-
curacy and quality of the retrieved information. The data collection
process occurred in two cycles: first, we captured detailed data to
identify trends and develop a framework for different data types
and representations; second, we used this framework to merge and
format the information for the final synthesis and analysis.

We also observed varying terminologies for data items in Fitts’
law studies, such as throughput and index of performance, which
often referred to the same measure. During data collection, we
included values reported with different names but referring to the
same measure. In contrast, we did not report values for measures
with similar names that did not match the data items we are in-
vestigating. For instance, we included error rate (ER) but excluded
measures like accuracy due to the difficulty of reliably converting
these values to ER across studies. As for the movement time, we
included values for metrics like selection time (if they were refer-
ring to the data item under study), but did not capture task total
completion time to decrease the variety of reported values and keep
data collection consistent.

4.4 Risk of Bias and Certainty Assessment
In our study, one potential source of bias stems from duplications,
where the same study is published across different libraries. The
large number of papers reviewed presents a challenge for accurately
identifying and managing such duplications, by both human re-
viewers and automated systems. Still, we made efforts to minimize
duplications by removing obvious duplicate user studies encoun-
tered, based on memory. We also further investigated papers with
similar results in the data synthesis phase to minimize bias.

Our focus on user studies involving 3D perspective views in XR,
such as head-mounted and stereoscopic displays, helped narrow
the scope and reduced biases from irrelevant studies (e.g., those
using standard 2D wall projections or laptops without stereoscopic
view). This inclusion criterion further ensured that our analysis
concentrated on relevant studies within the desired field, thereby
mitigating potential biases in our results. Besides, since all reviews

in this study were manually done by human reviewers over a sub-
stantial period, potential inconsistencies may have been created
over time. In addition, some user studies may report less accurate re-
sults or be contaminated by biases (such as the bias in non-reported
results). Yet, due to the large volume of papers, it was impractical to
investigate biases within each study, including identifying flaws in
experimental design. As a result, we relied on the reported values by
the authors. This is another reason why we focused on high-quality
peer-reviewed publications in the identification phase.

4.5 Synthesis Methods
After extracting information from the papers, we merged the data
into a format suitable for analysis in Excel. The data for each user
study was consolidated into a single row, which was then passed
to the analysis phase. For data items where we only focus on the
percentage of the results (like ID exact, where we aim to investi-
gate what portion of studies reported the exact values for ID), we
provided the partial values (like 0.5, when two experiments are
done using same target arrangements, but ID is reported for one of
the experiments) in the merged cell to present more precise results.
For each study that used different metrics for measures like target
size and distance in their experiment design, we first performed an
overview to identify the emerging trends and then prioritized the
most popular metrics for our cross-study analysis (e.g., if a study
used both angular and Euclidean metrics for target distance, we
reported the Euclidean value, since it is more common between
investigated studies). Similarly, in studies that used or mentioned
different equations derived from Fitts’ law (e.g., the classic formu-
lation Equation 2 or Shannon’s Equation 6), we first identified the
formula used for throughput and related calculations, prioritizing
the most commonly applied version. This approach ensured the
captured values were comparable across a broader range of studies..

5 Results
5.1 Fitts’ Variations
Fitts’ law and its extensions have been a topic of debate in 3D XR
research, as the original equation was developed for 1D tasks and
later adapted for 2D and 3D interactions. The choice of the appro-
priate formula is critical, as it can significantly influence a study’s
outcomes. During our full-text data retrieval and meta-analysis,
we thus observed inconsistencies and ambiguities regarding the
formulas used. While many studies reference different variations
of Fitts’ law, they often apply only one version, which may not al-
ways be explicitly stated. This highlights the importance of clearly
indicating which formula is used to generate results, as it poses
a challenge for cross-study comparisons and future research. For
example, in Kopper et al.’s formulation (Equation 11) set 𝑘 = 1 to
transform it into the Shannon formulation (Equation 6), but using
angular measures. Although the 𝑘 constant in Kopper et al.’s for-
mula has been a topic of discussion in the literature, our focus is on
reporting the values used, so we do not explore this issue further.
Additionally, Kopper et al.’s approach is commonly used in studies
employing the angular formulation to ensure comparability with re-
sults based on Shannon’s version (e.g., [122]). In Table 2, we present
the extensions of Fitts’ law identified during our full-text meta-
analysis along with their corresponding percentage of occurrences.
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Table 1: Summary of data items and their representations in the study

Data Item Data Type Example Details

Throughput (TP) /
Movement Time (MT) /
Error Rate (ER) Captured

Boolean 1/0 If TP / MT / ER is measured in the user
study

Index of difficulty (ID)
reported

Boolean 1/0 If ID is reported

TP (bits/s) / MT (s) / ER (%)
/ ID (bits) Range

Numeric Values (3.25,3.75) Range provided in charts, exact
average value if specified

TP / MT / ER / ID Exact Boolean 1/0 If they reported the exact value for it
TP / MT / ER / ID Scale Numeric Values 0.5 If a diagram is used, what is the most

precise step size of the diagram
Number of IDs Numeric Values 10 Number of IDs used
Feedback Type Text visual Feedback used in the experiment

design
Regression Reported Boolean 1/0 If they reported the Fitts’ regression
Slope (b) Range Numeric Values 0.255 Range provided in charts, exact

average value if specified
Environment Text VR (HTC Vive) Experiment environment, (device) if

specified
Selection Technique Text ray casting Selection technique used
Condition Text feedback evaluation General aim of the study
Target Amplitude (A) and
Width (W) Reported

Boolean 1/0 If A and W used for experiment design
is reported

A and W Metric Text angular Main metric used for A and W
Distance From User /
Distance From Screen (cm)

Numeric Values (300,600) Target (visual) depth information

Experiment Design Text grid target selection Task used for the study
Participant Info Text 10 (6,4,2) 23.5 Format: number (male,female,other)

mean_age

Due to the ambiguities discussed in this paper, the percentages for
extensions 3 and 4, as well as 7 and 8, have been merged. Not all of
these extensions are necessarily used to evaluate 3D selection tasks;
some are mentioned as variations not directly applied in the study
but evaluated as models or used as a basis for investigating new
models. For example, Clark et al. [40] investigated extensions 9-12
(Table 2) to explore potential factors influencing MT in VR. Janzen
et al. [70] explored extensions 5-8 (Table 2) to study the effect of
target depth on performance in target-pointing tasks.

Our meta-analysis showed that the effective-measures formula-
tion of Fitts’ law is the most mentioned and studied version. It was
explicitly referenced in 61 (50.0%) studies, no matter what metric
they used for target amplitude and size (e.g., [15, 18, 50, 54, 106, 112,
125, 150]). In addition, 16 other studies did not report the formula
they used precisely, but stated that they followed ISO 9241 in their
user studies (e.g., [75, 86, 90]). Since the use of effective measures
is mentioned in the ISO 9241 document, this fact could imply that
these studies used effective calculation too, increasing the number
of studies that incorporated this formula to 78 (63.93%). There are

other studies, such as Yu et al. [158] that mentioned Shannon’s
formulation in the text, but did the calculations based on other
studies (Soukoreff and MacKenzie[132] in the mentioned example),
which likely means they did follow the effective variation. In total,
25 (20.5%) studies were identified that only mentioned Fitts’ law
or ISO 9241 without directly reporting the variation used in their
calculations and/or if they used effective measures. This makes a
cross-study evaluation challenging for researchers since there is
no indication if the accuracy adjustments have been adapted or
not. Nevertheless, the effective-measures formulation is clearly the
most widely used variation of Fitts’ law.

In contrast, with the advances in 3D XR, the original Fitts’ law
formulation (Equation 2) is rarely used anymore. Traces of classic
formulation can only be seen in older studies (e.g., [152], which used
the classic calculation of ID, not the MT equation). Even studies
that briefly mentioned the classic formulation without explicitly
using it in their methodology (e.g., [85]) are scarce, with usages
accounting for less than 5%.
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Table 2: Fitts’ Law variations in 3D XR studies.

# Name Equation % of Studies

1 Original [52] 𝑀𝑇 = 𝑎 + 𝑏
(
2𝐴
𝑊

)
4.0%

2 Meyer et al. [103] 𝑀𝑇 = 𝑎 + 𝑏
√︃

𝐴
𝑊

< 2.0%

3 Shannon [94] 𝑀𝑇 = 𝑎 + 𝑏 log2
(
𝐴
𝑊

+ 1
)

77.8%
4 Effective [94] 𝑀𝑇 = 𝑎 + 𝑏 log2

(
𝐴𝑒

𝑊𝑒
+ 1

)
5 Two-part [154] 𝑀𝑇 = 𝑎 + 𝑏1 log (𝐴) − 𝑏2 log(𝑊 ) < 2.0%
6 Shannon-Welford [129] 𝑀𝑇 = 𝑎 + 𝑏1 log (𝐴 +𝑊 ) − 𝑏2 log(𝑊 ) < 2.0%

7 Angular [78] 𝑀𝑇 = 𝑎 + 𝑏 log2
(
𝛼
𝜔𝑘 + 1

)
28.7%

8 Effective Angular [16] 𝑀𝑇 = 𝑎 + 𝑏 log2
(
𝛼𝑒
𝜔𝑘
𝑒

+ 1
)

9 Hoffmann [60] 𝑀𝑇 = 𝑎 + 𝑏 log2 ( 2𝑅
𝑆+𝑃 ) < 2.0%

10 Murata and Iwase [108] 𝑀𝑇 = 𝑎 + 𝑏 (sin𝜑) + 𝑐 log2
(
𝐴
𝑊

+ 1
)

< 2.0%

11 Cha and Myung [37] 𝑀𝑇 = 𝑎 + 𝑏𝜑 + 𝑐 sin(𝜃 ) + 𝑑 · log2
(

2𝐷
𝑊 +𝐹

)
< 2.0%

12 Machuca and Stuerzlinger [12] 𝑀𝑇 = 𝑎 + 𝑏 (ID) + 𝑐 (CTD) 3.2%

13 MacKenzie and Buxton[97] 𝑀𝑇𝑚𝑖𝑛 = 𝑎 + 𝑏 log2
(

𝐴
min(𝑊,𝛼1𝐻 ) + 1

)
< 2.0%

14 Accot and Zhai [2] 𝑀𝑇 = 𝑎 + 𝑏 log
(√︂(

𝐴
𝑊

)2
+ 𝛼1

(
𝐴
𝐻

)2
+ 1

)
< 2.0%

Additionally, for the calculation of the TP, studies mostly used
TP = ID/𝑀𝑇 , rather than the traditional calculation based on the
slope (TP = 1/𝑏). In our analysis, roughly 3% of studies used only
the IP, i.e., the reciprocal of the slope for the calculation of “TP”,
e.g., Wolf et al. [156].

Challenges encountered during the analysis of different Fitts’
law variations in our meta-analysis highlight the need for clear
specification of the extensions used. Table 2 presents some of the
most cited extensions of Fitts’ law in 3D XR studies. These exten-
sions are evolving alongside XR advancements, each addressing
specific factors, such as visual depth, to enhance the modeling of
user behavior.

5.2 Fitts’ Applications
There are various applications and usages for Fitts’ law in the HCI
context [71, 94]. This diversity is also observed in 3D XR studies
throughout the different phases of this systematic review. In our
in-depth meta-analysis of the included papers, we categorized the
applications of Fitts’ law into three distinct aspects (Table 3). The
studies analyzed in this phase are those that specifically employed
Fitts’ law as part of their user studies and applied it to at least one
of the identified categories.

As seen in Table 3, the studies analyzed mostly used Fitts’ law
to evaluate an interaction method or a system. It is also used for
evaluating different feedback types such as auditory (e.g., [19, 24])
or haptic feedback (e.g., [17, 141]). Various studies also investigated
the effect of other factors on user performance and interactions,
such as Batmaz et al. [18] investigating the effect of rotational jitter,
Kohli et al. [76] who studied the impact of warped space on task
performance, or Machuca and Stuerzlinger [12] studying the effects
of stereo display deficiencies.

The use of Fitts’ law in 3D XR extends beyond the areas men-
tioned above. There are numerous other applications of Fitts’ law
within the context of XR, which may not fall within the scope of
our in-depth analysis of user studies incorporating a 3D perspective
but are still worth mentioning. To provide a broader view of how
Fitts’ law has been employed in XR research, we further examined
papers that were screened but excluded from our detailed meta-
analysis due to incompatible applications of Fitts’ law or a lack of a
3D perspective.

5.2.1 Accessibility. With the advances in XR, it is becoming an
effective technology with promising results and opportunities for
users with different accessibility needs, such as people undergoing
rehabilitation [62, 123, 139]. Our systematic review shows that Fitts’
law is also applied in research related to accessibility for designing
and evaluating systems. For example, Jacho-Guanoluisa et al. [68]
applied Fitts’ law to a cognitive rehabilitation application designed
for children with rare diseases. Fitts’ law was also applied in many
other papers screened during this systematic review aiming to
design and investigate rehabilitation systems (e.g., [11, 49, 61, 105,
113, 165]).

Past research has also shown that Fitts’ law is well-suited to eval-
uating selection tasks for people with visual impairments [74, 89].
For example, Hu et al. [63] used Fitts’ law to evaluate their wearable
target location system, designed for visually impaired or blind users.
Fitts’ law is also used in studies for people with motor impairments.
Vatavu and Ungurean [148] used a Fitts’ evaluation to investigate
input performance for people with upper-body motor impairments.
In another study, Zimmerli et al. [166] implemented a mechanism
based on Fitts’ law to balance the difficulty of upper-extremity
rehabilitation tasks. These examples illustrate that Fitts’ law is
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Table 3: Main applications of Fitts’ law in investigated user studies.

# Focus of Study % of Studies Examples
1 Interaction and System Evaluation 62.3% [50, 54, 104, 150, 156, 158, 161]
2 Feedback Evaluation 13.9 % [17, 19, 24, 125, 126, 141]
3 Other Factors Influence on Interaction 26.2 % [12, 14, 18, 23, 93, 146]

also useful for researchers focusing on designing and evaluating
interaction systems for users with accessibility difficulties.

5.2.2 Medical Education and Training. As XR technology advances,
it is increasingly being explored as a powerful and cost-effective
tool for medical education in different areas, such as anatomical
training, self-paced safe learning, and also surgical and neurosurgi-
cal training [42, 121, 130, 167]. In addition, with the increased need
for remote education and training during the COVID-19 pandemic,
XR technologies such as VR have shown to be effective, especially
for medical training [7, 151, 167]. With the growing popularity of
XR in education, especially medical education, comes the need for
effective design and evaluation of such systems. Throughout our
investigation, we identified studies (e.g., [45, 46, 79, 80]) that used
Fitts’ law as a design and evaluation tool in exploring XR tech-
nologies for medical purposes. This finding further highlights the
applicability of Fitts’ law in this growing context.

5.2.3 Human-Robot Interaction (HRI). During our systematic re-
view, we also identified a large number of papers used Fitts’ law
for either designing or evaluating Human-Robot Interaction (HRI)
methods in 3D XR [28, 47, 72, 79, 119, 120, 128, 166]. Besides, XR is
being widely explored as a means for HRI for building innovative in-
teraction methods that have future promise [44, 57, 155]. XR-based
HRI is thus another example of Fitts’ law’s vast area of applications.
For instance, Prada et al. [117] evaluated their MR solution for HRI
using Fitts’ law.

5.3 Environment (Display and Interaction
Method)

Our results synthesis reveals that various display systems are used
in 3D XR Fitts’ studies which is to be expected with the advancing
nature of this field. In total, 83.5% of papers explored HMDs in their
studies (e.g., [15, 17, 91], which are mostly either VR (79.4%) and AR
or MR (20.6%) systems. The rest, 19.7% of the papers, incorporated
more traditional stereo-displays rather than HMDs (e.g., [70, 142,
143]).

Figure 3 illustrates the disparity and trend of reported values
for MT, ER, and TP based on the display explored. In addition, the
scatter plot inside each category represents the number of studies
and their distribution. The median TP values are 3.25 bits/s and
3.20 bits/s for HMD and stereo-displays respectively. As for the MT,
median values are 1.25s (HMD) and 1.32s (stereo-display), and for
the ER 11.45% (HMD) and 3.20% (stereo-display), respectively. Also,
in Figure 3 stereo-displays exhibit significantly less disparity for
the recorded ERs in Fitts’ task studies.

In addition to different displays used in XR Fitts’ studies, nu-
merous interaction methods are explored, acting as another source
of variability. Of the studies reviewed, 36% used the virtual hand

Figure 3: Trend of reported values for Movement Time (MT),
Error Rate (ER), and Throughput (TP) based on the display
type, i.e., Head-Mounted Display (HMD) or Stereo-display
(Stereo). Distinct colors indicate AR (blue) and VR (Red) sys-
tems.

(e.g., [15, 17]) and 28.6% used ray casting (e.g., [18, 146]) as a part
of their interaction method. Each different interaction (selection)
method involves different characteristics in aimed selection, like
the distance to the target, resulting in variance in methodologies.

5.4 Measures
5.4.1 MT, ER, and TP. Our meta-analysis found that MT is the
most common metric reported in 3D XR Fitts’ user studies. For each
metric, we assessed how precise values are reported in publications
since a reliable and informative perception of reports is critical. In
Table 4, besides the number of studies that measured each metric
among investigated studies, we list how many reported the exact
value (either in diagrams or in text), and in those that incorporated
diagrams for showing the results, what the average step size of
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the corresponding axis is. Furthermore, the same inconsistency in
studies is also observed in reporting ID values (71% reported ID
range, 49% reported exact ID values, and the median step size in
diagrams with IDs as an axis is 0.5 bits). For a better representation
of popularity, Figure 4 illustrates the precision trend in reports for
MT, ER, and TP. It shows that with a maximum step size of 0.5 s,
5%, and 0.5 bits/s for MT, ER, and TP, respectively, a study’s results
are comparable with most other 3D XR Fitts’ studies. Besides these
step sizes are suitable for each metric, e.g., a step size of 2 bits/s for
TP can be greatly less informative and comparable than 0.5 bits/s,
based on its nature and observed reported values in investigated
studies.

Figure 4: Density of different step sizes used in diagrams
for reporting Movement Time (MT), Error Rate (ER), and
Throughput (TP)

5.4.2 Trends Based on ID. We analyzed the average range for MT,
ER, and TP based on the IDs. Among all studies, 80 (65.6%), 60
(49.2%), and 56 (45.9%) reported MT, TP, and ER along with IDs,
respectively. Figure 5 represents the MT, ER, and TP ranges against
used IDs. We plotted these measures to investigate how well the
captured values in the studies match. For each measure, the lower
and upper bounds of the reported range are mapped with the lower
and higher bounds of the used IDs. If either the measure (MT, TP,
ER) or ID was reported as a single value or average in a study, it is
represented as a point on the plot. When one measure is a range
and the other is a single value, the plot uses the midpoint of the
range along with the single value to illustrate it with a dot.

As can be seen in Figure 5 (a), the area between MTs of 0.5s
and 2s, and IDs of 2 and 4.5 bits, is notably denser. This density
shows how reported MTs cluster between IDs of 2 to 4.5 bits. As
for the ER (Figure 5 (b)), reported results cluster between 0% to 20%
across mentioned IDs. In addition, although the common area of
reported TPs in Figure 5 (c) is not as dense as the two others, it
shows that most of the TPs reported in 3D XR Fitts’ user studies are
distributed between 1.5 and 5 bits/s. The IDs themselves, which are
presented in Figure 5, show how the IDs are distributed between the
ISO recommendation 2 and 8 bits. IDs between 2 and 4.5 are much
more commonly used and never exceed 8 bits. These distributions
indicate that our current knowledge is largely centered on relatively
low-difficulty selection tasks, leaving more complex interactions at
higher IDs underexplored.

5.4.3 Fitts’ Regression. Fitts’ regression is widely used in HCI stud-
ies, which is also a repeatedly used approach for showing the
performance of users with linear regression of MT and ID. Our

Figure 5: Plots representing the average ranges of movement
time (a), error rate (b), and throughput (c) based on the re-
ported IDs.

meta-analysis also investigated the distribution of reported slopes
in studies, to represent the trend. Figure 6, shows the density and
median of reported slopes (b coefficient in Fitts’ law MT equation),
representing the trend of captured values in 3D XR studies. A main
inconsistency regarding Fitts’ regression is the metric used for MT.
39.6% of studies used milliseconds and 60.4% seconds, resulting
in variability and confusion in reports, especially if values are re-
ported in a table instead of a plot. For instance, at a glance, a naive
reader might interpret the results as vastly different (e.g., thinking
Study A’s MT is 1000 times higher than Study B’s), when in fact
they represent the same duration. This lack of clarity undermines
the reliability of comparisons and can mislead further analysis or
application of the findings. More concerningly, MT must be mea-
sured in seconds to ensure TP is correctly expressed in bits/s. If
MT is mistakenly reported in milliseconds instead of seconds, the
resulting TP value could be incorrect. Moreover, inconsistencies can
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Table 4: Number and precision information for reported Movement Time (MT), Throughput (TP), and Error Rate (ER)

MT (s) TP (bits/s) ER (%)
Number of Studies Measured 114 (93.4%) 84 (68.8%) 85 (69.7%)
Reported Exact Value 46.9% 54.2% 51.2%
Average Step Size (sd) 0.45 (0.36) 0.78 (0.48) 5.85 (5.17)

affect the linear regression analysis results, leading to larger 𝑎 and 𝑏
values. Our meta-analysis shows that 53.3% of studies used the Fitts’
regression to report the relation between MT and ID in their study.
This highlights the popularity of such regression as an evaluation
tool in 3D XR. Nevertheless, among studies that reported regression,
26.1% presented the diagram without information related to the
regression coefficient (especially slope), making cross-study of this
important measure difficult.

Figure 6: Density and median of reported slopes in studies
that calculated Fitts’ regressions.

5.5 Task Design
5.5.1 Target Placement. Fitts’ law originally investigated 1D linear
serial selections [52]. In XR, new target patterns are being explored,
especially in terms of the third dimension, i.e., visual depth. Our
analysis showed that the distribution of targets in Fitts’ task is
among the sources of variability in methodologies in 3D XR studies.
Mainly there are 5 different designs used in experiment designs as
listed in Table 5.

Among the approaches listed in Table 5, the circular distribution
of targets is widely used in experiment designs, which also aligns
with the extensive use of ISO 9241-411 multi-directional selection
in XR studies. Our meta-analysis also revealed variability in de-
signs and methodologies within each target distribution category.
For example, the circular pattern, recommended by Soukoreff and
MacKenzie [132] includes various implementations, e.g., Fernandes
et al. [51] used a double-ISO design for their experimental task,
resulting in a spectrum of task designs.

Another factor related to the target placement and task design
analyzed during our analysis is the transparency and clarity in
reporting A, W, and target Depth (D) in studies. A and W are the
main attributes in the original Fitts’ task design [52] that directly
impact the index of difficulty in all extensions of Fitts’ law. Of the
studies reviewed, 84% reported A andW but in various metrics such

as Euclidean distances (71.8%), angular distances (25.3%), and pixels
(8.7%). In addition to the original A andWvariables, D (depth) is also
an important characteristic of 3D XR studies, indicating how far the
target is placed from the screen surface or the user. Unfortunately,
in 45.1% of the investigated studies, D is not explicitly indicated as
part of the task design.

5.5.2 Feedback Type. Three main feedback types are used in 3D
XR studies, visual (e.g., highlight or target change of color), auditory
(e.g., beep or error sound), haptic feedback, which can be either
active haptic (e.g., electrovibration [161] or passive haptics [101]).
Many examples show that such feedback can affect the user’s per-
formance in selection tasks [19, 24, 101, 161]. Thus, many studies
used one or a combination of these feedback methods in their ex-
perimental task. Our meta-analysis showed that visual feedback is
the most commonly used feedback, with 121 (99.2%) studies report-
ing its use. One study, by Lin et al. [87], did not directly mention
incorporated feedback as a part of the methodology, but based on
the provided figure of the experiment it likely also used visual feed-
back, too. The widespread use of visual feedback is understandable
given its ease of implementation and alignment with the Fitts’ se-
lection task, which inherently relies on clear indications of the next
target. Further, it also exploits the fact that humans are generally
visual-dominant. After visual feedback, auditory feedback with 31
instances (25.4%) and haptic feedback with 22 (18.0%) are in second
and third place, respectively. Each feedback type was either a con-
stant part of the experiment design or a factor under investigation
in the study. In contrast, of studies that investigated feedback type
as an independent variable, haptic feedback is the most studied
feedback with 15 instances (12.3%) (e.g., [21, 101, 161]), followed
by visual (e.g., [53, 90]) and auditory feedback (e.g., [19, 24]) with
7 (5.7%) and 6 (4.91%) studies respectively. Throughout the meta-
analysis, we investigated the effect of feedback within Fitts’ study
results in 3D XR in Table 6. Figure 7 - Figure 9 show the density
of reported values based on each feedback category, in different
levels of usage (overall, feedback as the condition under study, and
feedback constantly presents during the experiment).

To further illustrate how studies are clustered based on the feed-
back type incorporated, plotting the reported MT, TP, or ER based
on used IDs is not informative, since the number of studies for
each feedback category varies greatly. To address this, Figure 10
- Figure 12 illustrate the clusters of reported values based on IDs
in different studies and visualize a correlation between the aver-
age results and the number of studies for each feedback type. In
these figures, the average used ID and reported MT, TP, or ER is
calculated (for studies that reported both), and illustrated as dots.
The area of the bubble indicates the number of studies that used
specific types of feedback and center crosses illustrate the overall
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Table 5: List of different target distributions in Fitts’ task designs.

# Target Distribution Pattern % of Studies Examples
1 Circular 74.4 % [10, 19, 20, 54]
2 Grid 8.2 % [17, 22, 141]
3 1D Linear 7.4 % [25, 146]
4 Distributed in 3D Space 7.4 % [38, 163]
5 Bi-Directional (Lateral and/or In-Depth) 2.6 % [15]

Table 6: Feedback types used in 3D XR Fitts’ studies

# Feedback Type Identifier % of Studies
1 Visual only V 61.6%
2 Visual and Auditory VA 20.4%
3 Visual and Haptic VH 12.3%
4 Visual, Auditory, and Haptic VAH 5.7%

Figure 7: Density of reported movement times based on the
used feedback in studies, for three levels of usage, feedback
as a condition under study (pink), feedback present in all
conditions of study (blue), and overall (yellow). The median
is also listed.

average for each combination (bubbles are scaled by 8 for better
readability).

As can be seen in Figure 10 - Figure 12, used IDs are mostly
clustered between 2 to 4 bits for MT and 3 to 4 bits for ER and TP
in different feedback categories. The sizes of the bubbles illustrate
the portion of studies for each category, where visual only is the
most reported one. Interestingly, it seems that the combination
of visual and haptic feedback might (across all involved studies)
exhibit overall higher throughput than visual alone, see Figure 12.

Figure 8: Density of reported error rates based on the used
feedback in studies, for three levels of usage, feedback as a
condition under study (pink), feedback present in all condi-
tions of study (blue), and overall (yellow). The median is also
listed.

5.6 Participants
Since participants are the main source of data in a user study, we
also analyzed participant attributes. Participant characteristics are
fundamental to understanding the outcomes of a user study in
HCI. This analysis may also inform future research to manage the
corresponding participant selection.

5.6.1 Number and Age of Participants. Among the analyzed 3D
XR studies, all reported the number of participants, and 117 (95.9%)
reported the age of the participants. The mean age of participants
was 25.81 (SD = 4.26). The number of participants varied between
studies, but on average, experiments included 18 participants (SD =
8.52). Figure 13 illustrates the distribution of participant ages, show-
ing both the density of ages with the violin plot and the summary
statistics, including the median and quartiles, with the embedded
box plot.

5.6.2 Gender of Participants. Of all the studies investigated, 110
(90.2%) reported the gender of participants, highlighting the im-
portance of considering gender in participant selection. In total,
62.6% were male and 36.8% were female. In other words, slightly
more than one-third of the participants were female, and a bit less
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Figure 9: Density of reported throughputs based on the used
feedback in studies, for three levels of usage, feedback as a
condition under study (pink), feedback present in all condi-
tions of study (blue), and overall (yellow). The median is also
listed.

Figure 10: Average reported movement times based on the
index of difficulty for different feedback combinations

than two-thirds of the participants were male. The gap between
the percentage of male and female participants is due to the small
number of studies that reported answers like non-binary, other,
prefer not to say (e.g., [14, 51, 54, 55, 73, 122]). In total, 93.6% of
studies solely differentiate between male and female, not reporting
other genders.

6 Discussion
Fitts’ law is widely used to investigate user interaction in 3D XR
research. It has been widely applied in a diverse range of studies
and applications within the XR field. Despite its significant impact
in 2D HCI research, inconsistencies and variability in the appli-
cation of Fitts’ law within XR remain problematic [81, 145]. Our
systematic review of Fitts’ law in 3D XR reveals a research land-
scape that is both broad and fragmented. While each variation of

Figure 11: Average reported error rates based on the index of
difficulty for different feedback combinations.

Figure 12: Average reported throughput based on the index
of difficulty for different feedback combinations.

Figure 13: Distribution of the number of participants (a) and
age of participants (b) in 3D XR Fitts’ studies.
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Fitts’ law is designed to formulate movement time in a specific task
environment, such as angular movements or targeting movements
that change only the depth, these variations make it difficult for
the research community to establish a standard approach. As a
result, experiments using different versions of Fitts’ law are often
tailored to specific characteristics of XR interactions, such as target
depth or the arrangement of objects in 3D space, whether planar
or curved. There is no single formulation of Fitts’ law satisfying all
the different characteristics of XR interactions. Yet, as our focus is
on the practices currently used in the field [58], whether a singular
Fitts’ law formulation should be established with an analysis of
mathematical formulations is beyond the scope of this paper. Still,
the focus of our systematic review is to address the lack of standard-
ization, identify the common ground and sources of variability, and
provide a framework to enable future research to move towards
more consistent reports.

6.1 Variability and Inconsistency in 3D XR Fitts’
Studies

Lack of Standard Approaches for Fitts’ Law Studies in XR:
Through our systematic review, we demonstrated the substantial
influence and diverse applicability of Fitts’ law in XR research. How-
ever, the lack of standard approaches for Fitts’ law considerably
hinders the reliability and comparability of results, blurring the
global sense of outcomes in the research community. The very pur-
pose of the standardized methodologies introduced originally in
ISO 9241-9 [66] and later ISO 9241-411 [67] is to present a single
consistent method for pointing device evaluation. These standards
were adopted by the 2D HCI community in recognition of the
importance of having a comparable methodology to support the
replication of experiments, a key tenet of scientific research across
all disciplines, from which HCI is not exempt [96]. This consistency
has been instrumental in facilitating the growth of the research
field on 2D selection interfaces, and we argue it is similarly impor-
tant in the 3D XR domain. For instance, using different Fitts’ law
extensions provides different levels of model accuracy (𝑅2) in 3D
target acquisition task [70].

Various Experimental Setups and Tasks: Different experi-
ment setups and task designs can influence users’ performance, e.g.,
if targets are highlighted [33, 138], whether selection errors are per-
missible (e.g., [15, 19, 144]) or not (e.g., [104, 108, 156]), the direction
of selections [108], the position of the targets (as selection in depth
is less accurate and slower [138]), or considerations regarding the
Heisenberg spatial effect [29]. For instance, while [153] and [164]
used the same interaction technique and feedbackwith anHMD and
overlapping ID ranges ([2.82–3.70] and [1.37–3.64], respectively),
their TP results did not overlap ([2.49–3.11] and [4.13–5.06]). This
discrepancy may be attributed to differences in target depths or
experimental methodologies but is inconclusive due to a lack of
standardized methodologies and reporting. This is one of the inher-
ent problems of the use of Fitts’ law in 2D research [58]. Although
ISO 9241 [66, 67, 94] was a great step toward the standardization of
methods, with the rapidly growing research in 3D XR, the clarity
of description and solid justifications should not be neglected. Our
systematic review shows that with more complex characteristics of
XR interactions, like proximal (e.g., [15, 17]) and distal interactions

(e.g., [18, 146]), correct and more accurate application of Fitts’ law
plays a crucial role in maintaining a high quality of research. It is
important to note that simply mentioning Fitts’ law or using
the movement time formulation to validate results is not nec-
essarily sufficient, particularly if a study aims to understand
and compare user performance.

Fitts’ Law Variations: The main sources of variability in 3D
XR Fitts’ studies are the use of diverse variations of the original
model, the different types of displays and interaction methods ex-
plored, the multiple task designs with different approaches towards
target placement, and the use of heterogeneous metrics. These in-
consistencies, from task design to result reporting, exacerbate the
challenges posed by the lack of a standard, particularly as Fitts’
law applications in XR continue to grow rapidly. Addressing these
issues is necessary for creating a climate of effective future research,
intending to limit the blind growth of variability, and to provide
better options for the evaluation of XR real-world contexts.

6.2 Trends in 3D XR Fitts’ Studies
Performance Metrics and Experimental Trends: Our meta-
analysis shows the trend of different measures related to Fitts’
experiments, particularly movement time which is the most studied
measure, error rate, and throughput. Selection tasks in XR headsets
take 1.25 seconds, with an error rate of 11.95% and throughput of
3.25 bits/s, though these values vary depending on feedback, chosen
IDs, and participant demographics. Moreover, the average age of
the participants is 28, and 36.8% of them female, 62.6% of them male,
and 0.6% of them reported as binary, other, or prefer not to say.
The majority of the papers used Shannon formulation Equation 6
or Effective Fitts’ law equation Equation 8 (78.5%), which is also
used in the ISO 9241 document. The majority of the papers (62.3%)
used Fitts’ law for analysis of interaction and system evaluation.
Our results also revealed that most user studies were conducted
with an HMD (83.5%). Overall, investigated papers used a circular
target distribution pattern (78%) for user performance analysis.
The majority of the papers reported that they only used visual
feedback (61%). Moreover, in Appendix Table 7, we summarized
Fitts’ law equation variations for 3D XR for different interaction
spaces, displays, interaction techniques, and target types that are
commonly used.

Implications in 3D XR Studies: Our detailed meta-analysis
revealed the wide distribution of reported values in 3D XR research.
Reported clusters highlight the overall trends and the current state
of results, such as feedback type, and the range of IDs explored
across studies. The observed clusters not only reflect how different
experimental designs and task complexities impact the measured
outcomes but also highlight the variability in methodologies and
their implications on performance metrics. For instance, MacKen-
zie [94] recommended using IDs between 2 to 8 bits for HCI user
experiments. Our meta-analysis shows that used IDs in 3D XR stud-
ies not only lie within this range but also do not exceed a difficulty
of 8 bits, with the majority of the studies investigating the user
performance within the range of 2 to 4.5 bits. This is expected, as,
for instance, the accuracy of a 2D tabletop mouse and a human hand
hovering in mid-air have different ergonomic limitations associated.
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A task with a difficulty of 8 bits is challenging for virtual hand inter-
action since it requires a high level of precision and control. Besides,
the synthesized findings of reported values in 3D XR research can
be used as a tool for further assessment of the results of future user
studies. As an example, if a study reports values around 3 to 5 s
as the movement time for a task with the index of difficulty equal
to 4 bits, this very likely indicates either a sub-optimal interaction
technique or that the study is suffering from some other issue that
requires the work to be re-investigated.

6.3 Recommendations and Insights
Although Fitts’ law serves as a common conceptual foundation,
the field currently lacks consistent methodologies, as discussed
above, standardized reporting practices, and clear guidelines for
adapting the law to the complexities of XR. These issues manifest
themselves in multiple ways. For instance, while many studies rely
on effective-measures formulations or variations such as Kopper
et al.’s angular equation (Equation 11), the choice of the formula is
rarely justified, and sometimes even unclear. This situation hinders
meaningful comparisons across studies. Moreover, measurements
crucial for reproducibility, such as ID, MT, ER, and TP,—are often
reported with insufficient precision or inconsistent units. A and W
are measured in everything from angular degrees to pixels, while
MT might be reported in seconds or milliseconds without explicit
mention. Variability in reporting feedback modalities (visual, au-
ditory, haptic), task design (circular, grid-based, linear, or fully 3D
distributions), and participant demographics further complicates
efforts to synthesize results. This harms the HCI community as it
undermines the consistency and comparability of the studies.

Additionally, although over 90% of studies report the gender
distribution of participants, the data remain skewed, with female
and non-binary participants underrepresented. The lack of demo-
graphic diversity—and incomplete reporting thereof—could limit
our understanding of how different populations experience and
perform in 3D XR tasks.

Even though consistency is instrumental in facilitating the growth
of research, there has been no silver bullet in 3D XR Fitts’ law stud-
ies. Taken together, these observations signal a pressing need to
move beyond mere “documentation” of what has been done. In-
stead, the field should coalesce around clearer, well-rationalized
methodologies, provide more transparency in reporting, and adopt
standardized frameworks that facilitate cross-study comparisons.
The goal is to empower researchers and practitioners to build on
each other’s work more effectively and to ensure that conclusions
are robust, equitable, and broadly applicable.

Our framework for conducting Fitts’ law studies, especially in 3D
XR, is provided in Appendix Table 8, as are its practical implications
that can be used by researchers, developers, and practitioners. We
also hope that reviewers can use this document to evaluate future
3D XR papers that use Fitts’ law as a methodology. Below, we
summarized this table with accessible approaches. Rather than
simply stating that standardized methods are needed, we detail
what those methods might look like, who could define them, and
how researchers can adopt them.

Adopt and Reference Standardized Frameworks: To im-
prove the quality and consistency of Fitts’ law research in 3D XR,

adopting standardized frameworks is crucial. Established guidelines,
such as ISO 9241-411 [67], should be referenced to ensure adher-
ence to commonly accepted methodologies. Researchers should
explicitly state which version of Fitts’ law they employ—such as the
effective-width measures—while including the exact equation, units
used, and rationale for the chosen variation. By clearly referencing
these standards, studies can better align with benchmarks, enabling
improved cross-study comparability and fostering a cohesive re-
search framework.

Use Consistent Units and Scales in Reporting: Consistency
in units and scales is another essential practice. Defining a de-
fault unit system, such as centimeters or degrees for distances and
seconds for time, would greatly enhance clarity. Recommended
granularity, such as increments of 0.5 bits/s for throughput (TP) or
5% for error rate (ER), can facilitate direct comparisons. Before col-
lecting data, researchers should decide on and document all units,
ensuring MT is consistently reported in seconds (not milliseconds)
and target dimensions are converted into commonly understood
metrics like centimeters or degrees (e.g., not pixels). The uniform
use of units and scales minimizes confusion and allows researchers
to integrate results across studies more effectively.

Standardize Task Designs and ID Selections: Standardization
of task designs and ID selections can further streamline research.
It is essential to commit to commonly used ID ranges, such as 2
to 4.5 bits, and to document the target amplitude (A) and width
(W) thoroughly. This documentation should include details on how
these values are derived, whether through Euclidean or angular
distances, with clear justification. A simple reference table sum-
marizing IDs, A, W, and depth (D) for each condition should be
provided in publications. Specifying whether A and W are effective
or nominal and rationalizing the chosen metrics, such as degrees
for ray casting or centimeters for virtual hand interactions, ensures
that task parameters are more uniform and studies are easier to
replicate and compare.

Guidelines for Feedback Modalities and Reporting: Re-
searchers should provide comprehensive information on the type,
intensity, duration, and rationale for feedback used in experiments.
For instance, if haptic feedback is introduced, the device’s technical
parameters and calibration methods should be specified. Similarly,
auditory feedback should include volume and frequency ranges.
Transparent documentation of feedback conditions not only en-
ables accurate replication of the study but also helps identify how
different modalities influence user performance.

JustifyMethodological Choices and Clearly Report Regres-
sion Models:When employing regression analyses—such as linear
fits between MT and ID—it is critical to report the slope, intercept,
goodness of fit, and units used with clarity. A supplementary table
summarizing regression parameters for each condition can improve
transparency. Additionally, researchers should explicitly state any
unit conversions. Clear reporting of regression models ensures fu-
ture researchers can accurately interpret and integrate findings into
meta-analyses without ambiguity.

ImproveTransparency inParticipantDemographics:Trans-
parency in participant demographics is another key considera-
tion. Studies should move beyond a binary male/female distinction
and clearly report non-binary or unreported genders. Researchers
should include a rationale for participant demographic selections
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and discuss their implications for the generalizability of findings.
Inclusive recruitment strategies can be enhanced by providing a de-
mographics table with categories such as male, female, non-binary,
other, and prefer not to say. Encouraging self-identification rather
than imposing predefined categories ensures more representative
samples.

Pre-Study Protocol Registration and Data Sharing Shar-
ing data can significantly enhance research transparency [118].
Researchers should consider open-source platforms to share their
methodologies, including chosen ID levels, feedback details, and
demographic plans. By making anonymized raw datasets avail-
able, future researchers can replicate or reanalyze results, thereby
strengthening the collective reliability of findings in the field. These
practices ensure that Fitts’ law research in 3D XR continues to
evolve in a rigorous and reproducible manner.

We also recommend that researchers explain and give details
of their study if they cannot follow these recommendations. Since
Fitts’ law is used to compare different input and output devices
and interaction methods, the existing framework might not ad-
dress all the challenges. For instance, Batmaz et al.[23] changed the
layout of the ISO 9241:411 multidirectional selection task. In such
cases, we recommend providing a clear justification for the modifi-
cations made, including detailed descriptions of the study design,
task adjustments, and their rationale. This ensures transparency
and allows other researchers to replicate or build upon the work,
contributing to the broader understanding of Fitts’ law applications
in novel contexts.

By transitioning from ad-hoc, case-by-case methodologies to-
wards more standardized and transparent frameworks, future Fitts’
law research in 3D XR can achieve greater consistency, compara-
bility, and relevance. These recommendations are not mere sug-
gestions: they outline a path forward, guiding researchers to make
deliberate, well-documented choices at each stage of their study.
Such practices will accelerate progress in understanding how users
interact with XR systems, enabling researchers, developers, and
practitioners to design more effective and inclusive environments.

6.4 Open Problems and Considerations
Through our identification of the trends and gaps in 3D XR Fitts’
studies, we present an overview of open problems that can be
addressed and further investigated by the research community. For
instance, future research should examine user performance across
a wider range of IDs to better understand how task difficulty affects
performance, particularly for high-difficulty tasks. These tasks,
often explored in desktop environments, remain underexplored
in XR contexts. Addressing such gaps would contribute to a more
comprehensive and robust application.

Moreover, more studies about the effect of sources of variability
in Fitts’ tasks might help the research community as a whole to
move towards more standardized evaluations, ultimately bringing
all the currently dispersed results for the main interaction methods
(e.g., ray casting and virtual hand) together to directly affect the
real-world application of XR. As an example, future research efforts
can explore the effect of feedback type on user performance with
a focus on Fitts’ task or, in particular, different combinations of
feedback types. Our synthesis shows that there is less focus on

incorporating multiple feedback types together in Fitts’ studies,
such as visual and haptic (12.3% of studies reported such feedback),
or visual and haptic with auditory feedback (5.7%), all opportunities
for further exploration.

While standards such as ISO 9241:411 provide valuable guide-
lines for Fitts’ law studies, their suitability and efficiency for 3D XR
contexts remain largely untested. These standards were originally
developed for 2D interaction environments, and there is no empiri-
cal evidence demonstrating whether they adequately account for
the unique complexities of 3D XR interactions, such as depth per-
ception, spatial orientation, or multimodal feedback. For instance,
our review showed that there is more focus on the circular arrange-
ment of targets in Fitts’ study (e.g., [19, 20]). However, our results
indicate that target arrangements are mostly placed at a constant
depth distance, which limits the performance assessment of the
analyzed methodology or interaction technique. We also recom-
mend evaluating the validity of the methodologies with targets at
different depth distances by using the appropriate Fitts’ law formu-
lation. In other words, it is essential to conduct empirical analyses
to determine whether these models need to be adjusted or extended
to address the challenges posed by 3D XR environments. Such in-
vestigations would provide clarity on the applicability of existing
standards and inform the development of optimized frameworks
for 3D XR studies. It is worth mentioning that Fitts’ law is proposed
considering pointing tasks with rapid aimed movements, creating a
balance in speed-accuracy trade-off [52, 94]. However, it should not
be considered as the only method for evaluating XR systems or user
performance. Especially, owing to growing interactions in 3D XR,
other alternative methods, e.g., “targets inside a volume" for dense
environments [13], can be used to investigate user performance
and interaction techniques.

This systematic review mainly focuses on Fitts’ law studies in 3D
XR, in particular, for target pointing and selection tasks. However,
Fitts’ law extends beyond this scope and applies to other tasks,
including those modeled by extensions like the steering law [1].

7 Conclusions
In conclusion, our systematic review and meta-analysis indicate
the variable application of and diverse approaches used for Fitts’
law in 3D XR research, and emphasize the importance of precise
reporting and thoughtful task design in Fitts’ law studies within
3D XR environments. The findings reveal that while Fitts’ law pro-
vides a robust framework for evaluating and designing interaction
techniques, variability in the variation of the Fitts’ law model used
in the study, many aspects of the experimental task, and the met-
ric precision of the results reported can influence study outcomes
and their comparability. Our analysis highlights the predominant
focus on specific demographics in current research and points to
opportunities for expanding studies to include more diverse de-
mographics. By adhering to the recommendations provided and
clearly reporting which Fitts’ law-related methodology was used,
researchers can enhance the reliability and applicability of their
findings, ultimately contributing to a clearer understanding of the
many subtle aspects of interaction performance in the 3D XR con-
text. Overall, as the field continues to evolve, our work will help
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researchers shape the direction of future research, ensuring that it
builds on a solid foundation of past knowledge.
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B Recommended Framework for Conducting 3D XR Fitts’ Law Studies

Table 8: Recommended framework and practical implications

Checklist Elements Research Theme (RT) and Recommendations
1. Study Objectives
1.1. Study Goal and Research Theme
Clearly define the goal within the related
research theme (see subsection 5.2).

GENERAL - Recommendations applicable across all research themes. Explicitly defining the goal
and theme of a study enhances transparency and provides a clearer distinction between types of
studies. For instance, when examining the influence of a factor (EXP), specify whether the goal is
to evaluate the effect of the factor using performance measures (e.g., movement time, error rate,
throughput) or to propose a mathematical model (MDL).
Design (DES) - The goal is to use Fitts’ law to design interactions and interfaces.
Evaluation (EVAL) - The goal is to evaluate a proposed system, interaction, or solution.
Exploration (EXP) - The goal is to investigate the effect of external factors on 3D interaction,
e.g., stereo-deficiencies or frame rate.
Modeling (MDL) - The goal is to formulate new extensions to Fitts’ law.

1.2. Hypotheses
Formulate a hypothesis around quantita-
tive and subjective measures (if applica-
ble).

GENERAL - For quantitative measures, design a hypothesis around movement time (MT), error
rate (ER), and throughput (TP), to provide insights on speed, accuracy, and speed-accuracy trade-
offs. Use subjective measures (e.g., NASA-TLX [59], SUS [32]) for a broader understanding of
perceived interaction quality (see subsection 5.4).
MDL - Explicitly include the new factor under study along with the proposed model. Consider
the effective Shannon form of Fitts’ law, widely used in the research community, in both overall
conditions and per-condition modeling for comprehensive evaluation and comparability (see
subsection 5.1 and Table 7).

2. Methodology
2.1. Model Selection
Explicitly provide the selected Fitts’ law
extension and clear justification for the
decision.

GENERAL - Each Fitts’ law extension accounts for different factors and is validated in specific
setups. We recommend selecting the extension that best aligns with the research goals and theme,
as outlined in Table 7. For example, if the interaction technique is ray-based (not a direct one-to-one
mapping), it is rational to choose the model that is empirically validated with a similar interaction
technique that extends (Table 7) from the input device, instead of one-to-one mapping (“Direct" in
Table 7). Additionally, since Shannon’s model (Equation 6), included in ISO 9241-411 [67], is the
most studied variation (see subsection 5.1), we recommend including it to ensure comparability with
other studies. Reporting results based on Shannon’s model also benefits the research community
by facilitating insights across broader experimental setups and domains. Note that in Table 7,
Murata and Iwase [108] and Cha and Myung [37] models are experimentally formulated to be on
real-world interactions, not 3D XR setups (where various characteristics of 3D XR interaction such
as vergence-accommodation [14, 23] and stereo deficiencies [12, 16] have been shown to influence
user performance).

2.2. Task Design and Target Characteristics
Report the shape of the target. GENERAL - Clearly indicate the target shape in Fitts’ task, specifying whether it is rectangular,

circular, 2D (e.g., a disc), or 3D (e.g., a sphere or cylinder), as these shapes influence the perceived
target area and hitpoint distribution [138]. Note that the sphere is widely used since it is the direct
correspondence of ISO 9241-411 2D circles [67] within 3D space.

Continued on next page...



CHI ’25, April 26-May 1, 2025, Yokohama, Japan Amini et al.

Checklist Elements Research Theme (RT) and Recommendations
Report target arrangement in 3D space. GENERAL - We recommend choosing the target arrangement to be the same as the one that was

experimentally evaluated in the original model formulation the researchers decide on (Table 7).
Note that the circular layout is the most studied variation, as also supported by ISO 9241-411 [67],
and supports multidirectional selection (see subsection 5.5). Clearly indicate if consecutive selection
with varying depths is allowed in one trial or if the task involves only the selection of 3D targets
in a 2D planar layout with fixed depth at each trial (since moving in depth has been shown to be
more challenging [12]).
MDL - When designing a task for an experiment, the task should directly reflect and involve the
specific factor being studied (see Table 7).
DES - We recommend prioritizing the arrangement of the final system under study and refining
common tasks accordingly. Note that the empirical evaluation of model fit in a refined task provides
supporting insights regarding the validity and applicability of the selected model in the refined
task. In this research theme, we recommend designing the task first to match the designed system
and then to select the model based on the involved characteristics of interaction, e.g., interaction
type (see Table 7).

Report target amplitude (A), width (W),
and depth/distance (D) (see subsection 5.5).

GENERAL - Clearly indicate target W, A, and D in Fitts’ tasks. Use Euclidean measures for
consistency unless the selection extends beyond the peripersonal area, where alternative spatial
metrics, i.e., angular measures, may be more appropriate since they provide measures based on
the perceived values by the participant at a specific depth. We suggest avoiding the use of pixels
(px) as units due to the low number of studies using them, especially when using Head-Mounted
Displays (HMD), where resolutions vary widely.

Calculate and report Indices of Difficulty
(ID).

GENERAL - Provide exact values of task difficulty used in the experiment as it can enhance the
replicability of the user study and provide informative results, e.g., captured movement time, error
rate, or throughput are reported for difficulties lower than 3 bits. The task difficulty recommended
by ISO 9241-411 [67] for 2D interfaces is between 2-8. In the context of 3D XR interactions,
we recommend covering IDs between 2-4.5 bits based on the observed trends in the reviewed
studies (see subsection 5.4), which also increases the comparability of results. Following the 2D
recommendation, we recommend using the adjustment of accuracy through ID𝑒 [132]. Note that
accuracy adjustment in Fitts’ law accounts for spatial variability of human performance over a
series of trials for calculating the main portion of hit points, i.e., effective width [95]. Besides using
Equation 7, i.e., the “standard-deviation method", ID𝑒 can also be calculated using the “discrete-error
method" based on the error rate and 𝑧 − 𝑠𝑐𝑜𝑟𝑒 [95]. Although the “discrete-error method" can be
considered a simpler way of calculation due to its independence from capturing hit points and
standard deviation, we recommend using the “standard-deviation method" since it relies on actual
hit information from the experiment and provides more precise results [95], aligning with previous
recommendations in 2D Fitts’ studies [132].
DES - For XR user interface design, 𝑊𝑒 can inform, e.g., the minimum size for targets to be
reasonably easy to hit. Similarly, the relative task difficulty of a pointing task can be estimated
through ID𝑒 .

Vary directions for selection. GENERAL - Including various directions for selection is recommended, e.g., left to right and
right to left for lateral movements or varying directions in a circular arrangement (including
clockwise and counterclockwise sequences based on the effect of handedness [12, 107] to ensure
the generalizability of findings).

Continued on next page...
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Checklist Elements Research Theme (RT) and Recommendations
Report the selection strategy involved in
the study and ask participants to act ac-
cordingly.

GENERAL - Since the selection strategy (as fast, as precise, or - most frequently - as fast and
precise as possible) affects user performance, especially the movement time and error rate [19],
we recommend guiding participants to select targets as ‘fast and as precise as possible’ to balance
speed and accuracy in Fitts’ studies, unless the study goal requires otherwise. Besides, based
on the observed variability in studies, we recommend explicitly reporting if making an error
is allowed in a trial that is considered a successful trial or not, to increase the transparency,
applicability, and comparability of the user study. Note that Fitts’ law originally considers single
ballistic movements [52]. Thus, when errors are not permissible, multiple selection attempts may
add substantial correction time to the movement and make movement time inconsistent across
trials, ultimately making movement time not representative. Consequently, we do not recommend
enforcing error-free trials for participants.

2.3. Interaction Space and Method
Clearly explain the interaction technique
incorporated in the study.

GENERAL - The interaction method is also useful for choosing the 3D variation of Fitts’ law
empirically validated in similar interaction (see Table 7), e.g., if the interaction is ray-based, 3D
extensions originally validated with ray-based are recommended. Researchers can also choose
other interaction techniques than the original method used, but providing the model-fit measures,
e.g., 𝑅2 is recommended to give insights on the validity and applicability of the used extension
with incorporated interaction method.
DES/MDL - For design and modeling we recommend the inclusion of ray casting and virtual hand
interactions in Fitts’ studies as they are the most common interaction methods and widely studied
based on our findings (see subsection 5.3).

Report if any kind of 3D display is inte-
grated into the study, or interaction is with
real objects.

GENERAL - 3D interaction with real objects should be clearly distinguished from 3D interactions
with virtual objects using stereo-displays or head-mounted displays, due to the known impact of
various factors on user performance, e.g., the vergence-accommodation conflict [14].

Mention the system environment and in-
teraction space used in the study.

GENERAL - Based on the findings of this paper, we recommend using head-mounted displays for
more comparability of findings (see subsection 5.3) if the display is not determined by the study’s
aim. Using HMDs provides more comparability due to their wide usage in the investigated literature.
Further, due to the lower number of studies compared to VR, investigating AR/MR/XR environments
can also provide insights regarding the applicability and validity of Fitts’ law extensions in XR.
Also, a clear report of the environment used in the study potentially contributes to the replicability
of the user study.

Explicitly mention the feedback type used
in the user study, even if it is not an inde-
pendent variable (see subsection 5.5).

GENERAL -As the type of feedback can affect user performance, we recommended it be reported to
enhance the replicability and transparency of Fitts’ studies. Highlighting targets (visual feedback) is
recommended since it is the most common form of feedback in Fitts’ studies based on the findings
of this study, and it is also good user interface design practice [109]. Note that feedback type
potentially influences user performance in Fitts’ studies [19, 24, 101], so it should be reported as
a part of the methodology. Regarding the visual feedback, we recommend choosing color vision
deficiency-safe colors to ensure accessibility of the Fitts’ study.

Participant selection and reporting. GENERAL - Based on the findings regarding the participant numbers and demographics (see
subsection 5.6), we recommend inviting at least 18 participants considering gender diversity and
varying XR experience. Gaming experience should also be considered similarly, as increased gaming
experience seems to affect 3D interaction [131, 144]

Choosing dependent variables (see subsec-
tion 5.4).

GENERAL - Based on the findings regarding the measurements used in investigated Fitts’ studies,
we recommend including movement time, error rate, and throughput to performance results
regarding speed, accuracy, and speed-accuracy trade-off, respectively. Note that movement time
is the time spent on the actual pointing movement, not other movements, i.e., reaction or dwell
times should be excluded [132]. Regarding throughput, we recommend using ID/𝑀𝑇 [94] instead
of the slope formulation (1/𝑏, also known as the index of performance) [132] due to the much
larger number of studies using it, ensuring consistency and comparability. Further, we recommend
the use of effective measures [67, 95], again to ensure comparability with other work.

Continued on next page...
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Checklist Elements Research Theme (RT) and Recommendations
3. Results, Analysis, and Report
Plotting and visualizations. GENERAL - We recommend using, at a very minimum, the observed step sizes in plots for

movement time (0.5 s), error rate (5%), throughput (0.5 bits/s), and index of difficulty (0.5 bits) for
easier visual comparison across different studies (see subsection 5.4). Particularly for the movement
time versus index of difficulty plot, we recommend using seconds instead of ms, since the slope
of the regression line presents the index of performance (bits/s), which enables better visual
comparison of regression results.

Reporting dependent variables. GENERAL - Clearly report captured movement time (s), error rate (%), and calculated
throughput (𝑏𝑖𝑡𝑠/𝑠) value as results, and do not solely rely on presentation through graphs,
especially for throughput owing to the observed shorter variability change (see subsec-
tion 5.4). We recommend using the “means of means" method for throughput calculation
(TP = 1/𝑛∑𝑛

𝑖=1

(
1/𝑚∑𝑚

𝑗=1
(
ID𝑖 𝑗/𝑀𝑇𝑖 𝑗

) )
, n and m are number of participants and conditions,

respectively) instead of other alternative variations, e.g., average ID over average MT (TP =(
1/𝑘 ∑𝑘

𝑖=1 ID𝑘

)
/
(
1/𝑘 ∑𝑘

𝑖=1𝑀𝑇𝑘

)
, k is total number of trials). Note that each of these methods can

lead to different results [110], making it important to highlight the variation used by researchers
for improved comparability of findings. The “means of means" method can reduce the inter-subject
variability impact on the calculated result, i.e., bias in cases where some participants provide higher
contributions to throughput. Additionally, “means of means" has been previously recommended
for 2D Fitts’ studies [132, 159]. Mentioning the method for throughput calculation in the study
also reduces inconsistencies in studies, improving the comparability and transparency of findings.

Movement time versus the index of diffi-
culty regression.

GENERAL - One of the common visualizations of data in Fitts’ experiments is the movement
time and index of difficulty scatter plot along with the regression line representing the model
used in the study [95]. However, just providing the regression line is not enough, and reporting
the model-fit, e.g., 𝑅2 value for showing the model-fit is required [132]. Note that for creating the
scatter plots with linear regression, models are transformed into 𝑀𝑇 = 𝑎 + 𝑏 · ID, meaning that
more complex models will be simplified, e.g., Equation 10 is transformed into 𝑀𝑇 = 𝑎 + 𝑏′ID′,
where slope (𝑏′) is no longer the coefficient for Shannon’s index of difficulty (Equation 6). This
transformation needs to be reported clearly for transparency and replicability of the study.
MDL - In comparing model-fits, due to varying numbers of coefficients present in complex Fitts’
law 3D variations (see subsection 5.1 and Table 7) and the potential of overfitting while using
𝑅2 [157], we recommend using adjusted 𝑅2 instead. Further, to avoid artificial inflation of the
quality of fit due to additional parameters, we recommend using metrics such as𝐴𝐼𝐶 [5] and/or 𝐵𝐼𝐶
[124] to ensure outcomes that account for both the model’s fit and number of free parameters of
the equation itself, For example, for𝐴𝐼𝐶 it is typical to reject a model with𝐴𝐼𝐶 > 𝐴𝐼𝐶𝑚𝑖𝑛 +10 [34].

Optionally provide raw data for the exper-
iment as supplementary material.

GENERAL - Given the increasing number of extensions of Fitts’ law identified in this study (see
subsection 5.1), researchers are encouraged to provide raw information on captured dependent
variables for each combination of task design characteristics used in the study, e.g., studied factors
in Table 7 (if applicable). This will enable future comparisons and collaborations by reusing the
provided information in calculations with other models.

Continued on next page...
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Checklist Elements Research Theme (RT) and Recommendations
4. Post-Study Evaluation
Trends and red flags for researchers and
reviewers.

The observed trends from the reported user performance measures in Fitts’ studies are useful
to provide general insights for evaluating the captured results (see subsection 5.4). For example,
movement times higher than 3 s and error rates above 40% for pointing tasks with difficulty less
than 2 bits likely indicate a suboptimal interaction or a problem in the captured data that requires
scrutiny (which in turn may point to problems in areas such as the logging, analysis, experimental
design, or the underlying technology). Besides, a negative Index of Difficulty (ID) is also a red flag
for evaluating the validity of findings. For example, in Shannon’s Equation 6, which is shown in
this study to be the most studied variation of Fitts’ law, 0 bits is the minimum mathematically
possible value for the ID (𝑙𝑜𝑔2 (1) = 0). A negative ID can imply a serious theoretical issue with the
model [95], and our findings indicate ID > 0 in all investigated empirical studies (see subsection 5.4).
Based on the analysis of movement time versus ID regression slopes in investigated studies, a
negative slope can also be considered a red flag. Besides, the conceptual meaning of a negative
slope (𝑏) in Fitts’ studies would be a lower movement time in more difficult tasks, which (while
spectacular) contradicts to current literature on human pointing.
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