
Comput. & Graphics Vol. 17, No. 4, pp. 423--430, 1993 0097-8493/93 $6.00 + .00 
Printed in Great Britain. © 1993 Pergamon Press Ltd. 

T e c h n i c a l  Sec t ion  

EFFICIENT RAY TRACING FOR BEZIER 
AND B-SPLINE SURFACES 

W. BARTH and W. STORZLINGER 
Technical University of Vienna, Institut fiir Computergraphik, 

Karlsplatz 13/1861, A-1040 Vienna, Austria 

Abstract--Generating realistic pictures by ray tracing requires intersecting the objects with many rays 
( 1 million or more). With Bezier or B-spline surfaces as objects the intersections must be calculated by an 
iterative method. This paper describes an algorithm that performs these calculations el~ciently. In a pre- 
processing step, the surface is subdivided adaptively into parts and a tight enclosure is calculated for each 
part. We selected parallelepipeds (first order approximations) as enclosures, their orientation and the angles 
between their edges are chosen in such a way that they enclose the respective part as tightly as possible, they 
are not rectangular in general. A binary tree built with these enclosures allows us to test very fast which 
parts of the surface may be hit by a given ray. The leaves of the tree contain small, almost plane parts of 
the surface. For each part a linear approximation is calculated, this is a parallelogram, in general not rectangular. 
For each ray that hits the enclosure the intersection with this approximation is calculated first, yielding an 
accurate starting point for the following iteration. 

1. INTRODUCTION 
The generation of  realistic pictures by ray tracing is an 
expensive method. It is necessary to "shoot"  at least 
one ray for each pixel of  the picture. Each "shooting" 
operation involves intersecting the ray and the dis- 
played scene. Reflections and refractions create addi- 
tional rays. To avoid aliasing-effects, normally more 
than one ray per pixel has to be "shot." Thus ray tracing 
a picture involves a lot of  ray-object-intersections 
( 1 million or more) ,  and efficient routines for their 
computat ion are needed. 

Because of  the large number  of  rays, it is advanta- 
geous to use a preprocessing step, which leads to a 
speed-up in computing the intersections. Even a very 
t ime-consuming preparation that yields only a tiny 
saving per intersection may reduce the total t ime sig- 
nificantly, because preprocessing is executed only once. 

Bezier or B-spline surfaces are polynomials in the 
parameters u and v. The intersection point of  a ray 
and such a surface has to be calculated iteratively. The 
Newton-Iteration is well suited if the starting point is 
sufficiently accurate. Therefore we will adaptively sub- 
divide the surface into parts during the preprocessing 
step. This subdivision is done by halving the surface, 
or a part of  the surface, parallel to the u- or v-axis. 
Subdivision will be repeated until all final parts of  the 
surface can be approximated accurately by a plane 
parallelogram. This linear approximation in general 
yields nonrectangular parallelograms. By intersecting 
the rays with these approximations we get very good 
starting points for the following Newton-Iteration. 

Many rays totally miss the surface, and these should 
be detected with minimal  computational  effort. Sim- 
ilarly, the fact that a ray will not hit a specific part has 
to be discovered very fast. We exploit a property of  the 
Bezier and B-spline surfaces, namely that such a surface 
lies completely in the inner of  the convex hull of  its 
control points, to construct a tight and simple enclosure 
for each part of  the surface. Then, for many parts we 

can very quickly detect that they cannot be hit because 
the ray misses their enclosures. The tighter the enclo- 
sures, the more parts will be excluded from further 
computations,  the simpler they are, the faster the al- 
gorithm will work. We construct the enclosures by ex- 
panding the approximating parallelograms in the third 
"d imens ion"  until all control points are inside the en- 
closure. This results in parallelepipeds, which adapt 
well to the shape and orientation of  the surface parts. 
For small parts overestimation is caused only by second 
order terms. 

The algorithm that selects the parts of  the surface 
possibly hit by a ray, i.e., parts whose enclosures are 
hit, should also be as efficient as possible. When sub- 
dividing a surface, in each step we subdivide into two 
parts by splitting it along a line parallel to the u- or v- 
axis. All parts are arranged in a binary tree, the nodes 
of  which contain the parallelepipeds enclosing the re- 
spective parts. The root encloses the whole surface and 
the leaves are very small, almost plane parts of  the 
surface. 

Figure l shows the enclosing parallelepipeds for a 
goblet [ 1 ]. You can see that they adapt well to the sur- 
face and that the degree of  subdivision depends on the 
shape of  the surface. The enclosures are very thin, con- 
sequently they approximate the parts of  the surface 
well. Therefore they are a well-suited base for our it- 
eration method, which produced Fig. 2. Figure 3 shows 
the large enclosing parallelepipeds corresponding to a 
very rough subdivision of  the surface from Fig. 4. It is 
easy to see that the angles of  the parallelepipeds are 
chosen in such a way that they approximate the surface 
part very tightly. In general they are not orthogonal. 

To intersect a ray with the surface, we now test 
whether the ray hits the parallelepiped of  the root. If  
it does, we test both subtrees and so on until we reach 
the leaves. If the ray misses the enclosure of  a subtree 
we know that it misses all parts of  the surface enclosed 
by it, and we can exclude the subtree from further 

423 



424 W. BARTH and W. ST~RZLINGER 

Fig. 1. Enclosing parallelepipeds. 

consideration. With high probability each of the 
reached leaves selects a part of the surface hit by the 
ray. Now the intersection can be calculated iteratively. 

The entire algorithm consists of two parts: 
1. Preprocessing--The surface is divided along a line 

parallel to the u- or v-axis, the parts are divided 
again, and so on, until each part can be approxi- 
mated accurately by a plane parallelogram. For 
these subdivisions we use the algorithm of de Cas- 
teljau and de Boor[2, 3], which uses the control 
points of the surface(-part) to calculate those for 
the two parts. From the control points of the parts 
we calculate the enclosing parallelepipeds. A binary 
tree is built in which each node contains only data 
about the parallelepiped, while the leaves contain 
the u- and v-interval and the approximating par- 
allelogram too. 

Fig. 3. Very rough subdivision. 

2. Intersection--Beginning with the root of the tree, 
i.e., the whole surface, we test whether the ray in- 
tersects the enclosing parallelepiped. Then this test 
is done for succeeding nodes of the tree. If it misses 
a parallelepiped the appropriate subtree is pruned 
from further consideration. Finally the search will 
reach all leaves whose enclosures are hit by the ray. 
Each leaf contains the approximating parallelogram, 
which is used to calculate the starting point for the 
iteration depending on the ray. The following it- 
eration is done on the whole surface using its control 
points; therefore, the control points of the surface 
parts need not be stored. 

1.1. Related work 
Miiller and Hagen[4] describe an algorithm for 

speeding up ray tracing for Bezier and B-spline surfaces 

Fig. 2. Goblet. Fig. 4. Surface. 



Efficient ray tracing for Bezier and B-spline surfaces 

by dividing them into small parts. Some other papers, 
e.g.,[ 5 ] present an approach preventing failure of the 
iteration by using interval arithmetic, but this is very 
time consuming. Hierarchical structures for the parts 
of the Bezier or B-spline surface have been used by 
other authors, e.g., [ 6, 7 ]. Sweeney and Barrels [ 6 ] use 
rectangular bounding boxes as enclosures. Through fine 
subdivision they get tight enclosures and good starting 
points. Yen, Spach, Smith, and Pulleyblank[7] con- 
struct better boxes by using "oriented slabs," i.e., the 
enclosures adapt to the orientation of the surface parts, 
but they are rectangular, too. Other authors, e.g.,J8, 
9], use bounding boxes as enclosures for parts of the 
scene in ray tracing, but don't refer to Bezier or 
B-spline surfaces. 

Using accurate approximations for the surface parts 
and nonrectangular parallelepipeds as well fitting en- 
closures was first described by Barth [10]. The method 
uses the parallelogram, that is the first order approxi- 
mation of the surface part, for calculating a starting 
point and expands the parallelogram by second order 
terms in the third dimension to get a simple and tight 
enclosure. This yields much better starting points for 
the iteration and very good exclusion criteria for the 
parts not hit by a ray, without increasing the compu- 
tational effort considerably. Giger-Hofmann uses the 
method of[10]; in this thesis, however, iteration is 
based on a "down-hill" method; additionally, coher- 
ence is exploited for speeding up the calculations. The 
main ideas of[10] are repeated here. Additionally we 
report on new experiences and from these we develop 
some new variants of the algorithm. 

2. BEZIER AND B-SPLINE SURFACES 
Bezier surfaces as treated in this paper are defined 

by their control points P,,j. The formula for this def- 
inition is 

m 

B(u, v)= ~ Z P,.jbj.,,,(v)bi.,(u) 
t=0 /=0  

for O<u,v<_ 1 (1) 

where the blending functions are the Bernsteinpoly- 
nomials 

bi,,(t) = ( ~ ) t i ( 1 -  t) "-~ 

425 

(2) 

Additionally we apply our method to B-spline surfaces 
defined by 

n m 

BSk(U, v)= ~, ~ Pi,jNj, k(V)Ni,k(U ) 
i -O j 0 

for O < _ u < _ n - k + 2  

and O < _ v < _ m - k + 2  (3) 

with the normal blending functions. All details for cal- 
culating points of these surfaces, normal vectors, etc. 
may be looked up in a textbook or monograph, e.g.,[2] 
or[ 3 ]. Especially we require methods for dividing a 
(part of a) surface into two parts by cutting it along a 
u- or v-line, which is normally performed by the al- 
gorithm of de Casteljau respective de Boor. 

3.  T H E  P R E P R O C E S S 1 N G  S T E P  

In Section 1 we mentioned the necessity of a tight 
enclosure of a part of the surface. Furthermore this 
enclosure should be a convex solid that is formed as 
simply as possible. These properties aid in testing 
quickly whether a ray hits a part of the surface. If we 
expect a hit, a good initial value for the iteration process 
should be easy to find too. 

3.1. The approximating parallelogram 
Let a given Bezier or B-spline surface be cut into 

parts that are all nearly plane. Each part belongs to 
two parameter intervals u < u < ff and _v < v < ~ (see 
Fig. 5). Its four cornerpoints and the control points 
are known. The plane parallelogram defined by the 
two vectors 3~ and 32 is a good approximation (the 
beginning of the Taylor series) for the part of the sur- 
face. This holds only if the part is small enough, and 
contains no singularities, especially no edges. 

This method will fail if the vectors 31 and 32 are 
linearly dependent or at least one of them is zero, in 
which case other vectors 31, 32 have to be used, for 
instance the axes of the coordinate-system. 

This Taylor approximation favours one of the four 

E3 

E4 
(~,u) 

Fig. 5. A part of the surface. 



426 W. BARTH and W. STORZLINGER 

vertices of the surface part. It is better to avoid the 
unsymmetry and to use the mean value of the two 
vectors from El to E2 and from E3 to E4 instead of 
3a and to calculate a similar replacement for 32. By 
moving the parallelogram spanned by 3~ and 32 in an 
orthogonal direction so that the "highest" and "lowest" 
control points of the surface part have the same distance 
from i t - -on  different sides--a very good approxima- 
tion is constructed. We found that the last method 
saves almost one iteration step per ray. 

The intersection of the ray with the parallelogram 
gives an appropriate starting point for the iteration, 
the values of u and v are calculated by linear inter- 
polation (see Section 4.3). 

3.2. The enclosing parallelepiped 
After calculating the parallelogram according to the 

method of the previous section we expand it to an 
oblique angled parallelepiped. A third vector 33 is used 
to generate a parallelepiped spanned by 31, 32 and 
33. Then the three major edges are elongated until all 
control points are enclosed (see Fig. 6). The parallel- 
epiped is defined by 

E+/31G + fl2~2 + /33~3 (4) 

where E is one vertex of the approximating paralle- 
logram. The coefficients fl~, /32, /33 are  intervals. For 
all control points we calculate the coefficients of a rep- 
resentation according to Eq. (4). If all these coefficients 
are contained in ill,/32,/33 then all control points are 
enclosed by the parallelepiped. We start the calculation 
of the intervals with [0, 1] for/3] and/32 and with [0, 
0 ] for fl3--this corresponds to the approximating par- 
allelogram--calculate the coefficients for the remaining 
control points and extend the/3-intervals if necessary. 
This provides an expansion of the parallelepiped in the 
plane of the parallelogram as well as in the third di- 
rection. Figure 6 shows the control points for a part of 

the surface, the part itself, the approximating paralle- 
logram and the enclosing parallelepiped. 

3.3. The tree of the surface parts 
When subdividing the given Bezier or B-spline sur- 

face, we cut it into two parts of approximately equal 
size in each step. These parts are arranged in a binary 
tree. In each node we store the information about the 
corresponding part, which will be used later for the 
intersection test or for calculation of a starting point 
for the iteration. The essential information stored in a 
node is 

1. Internal node: The enclosing parallelepiped; 
2. Leaf: The enclosing parallelepiped, the parameter 

domain _u, ff and _v, and ~, the approximating par- 
allelogram. 

It is not necessary to store the control points of the 
part of the surface, because they are not required for 
the calculation of the ray-surface-intersections per- 
formed later: The intersection test and the calculation 
of a starting point are performed with the parallelogram 
and the oblique angled parallelepiped. The iteration 
process described in the next section uses the control 
points of the original surface only. Because it yields 
the same results regardless of whether it is performed 
on the whole surface or on a part, the iteration is always 
executed on the whole. 

3.4. Subdivision strategy 
We subdivide the current part of the surface by 

halving either in the u- or in the v-direction. The al- 
gorithms of de Casteljau and de Boor allow us to cal- 
culate the control points of the two new parts from 
those of the large part. The new control points are 
required for further subdivision during our prepro- 
cessing step. But they are not stored in the tree as men- 
tioned in Section 3.3. 

• Fig. 6. Control points, surface part and parallelepiped. 



Efficient ray tracing for Bezier and B-spline surfaces 427 

Subdivision stops when the resulting part is approx- 
imated well enough by a plane parallelogram of Section 
3.1. This can be seen from its control points. Both of 
the following conditions must hold for each part that 
will not be divided further. 

1. All control points are close to the plane of the ap- 
proximating parallelogram, i.e., the enclosing par- 
allelepiped is thin. 

2. The four corner points El, E2, E3 and E4 approx- 
imately form a parallelogram, i.e., the lengths of 
the opposite sides do not differ much. 

The decision whether to halve along the u- or the 
v-axis is based on the curvature of the u- and v-lines. 
The control points for a given parameter direction show 
how much these lines deviate from a straight line. To 
get an estimate for the curvature in the v-direction we 
take three points P~.j with fixed i and ascending j ,  cal- 
culate the chord of the two outer points and the distance 
of the third point from it. Then we take the maximum 
of these chord-distances for all triples. The same is done 
for the u-direction. Now we divide along a v-line if the 
measure for the curvature in u-direction is the bigger 
one. 

Also the subdivision along a v-line should be fa- 
voured if the distance between Et and E3 differs much 
from the distance of E2 and E4 (see Fig. 5), and this 
difference is bigger than that for the other two sides of 
the parallelogram. This causes a split of a ring-shaped 
surface into two sectors, and this split is carried out 
even if the surface is almost plane. 

4. CALCULATION OF THE 
RAY-SURFACE-INTERSECTIONS 

After performing the preparations described in the 
previous sections the ray tracing process is started and 
the following steps will be performed for each ray: The 
tree of the surface parts is searched for parts that may 
be hit by the ray, a starting point is calculated for each 
part hit, and the iteration is started. Because of the 
preparations the calculations can be performed very 
quickly. 

4.1. Searching the tree of  surface parts 
First, we search for all parts of the surface that may 

contain an intersection with the ray. We start at the 
root of the tree (the whole surface) and test whether 
the ray hits the enclosing parallelepiped. If it does, we 
continue with both of the successors and carry out the 
same test. We go on until we reach those leaves of the 
tree whose parallelepipeds are intersected by the ray. 
These leaves correspond to small, almost plane parts 
of the surface. Because the parallelepipeds enclose the 
surface tightly, we often find a node that is not hit by 
the ray, and therefore we can prune the corresponding 
subtree from further consideration (all direct and in- 
direct successors of this node belong to parts of the 
surface that are enclosed by this parallelepiped). 

As we use enclosures we are sure that for each ray 
all parts of the surface that may contain a hit will be 

found. For these parts the iterative process that will be 
discussed in Section 4.4 is started. 

4.2. Intersection with the parallelepiped 
The test whether a ray hits an epiped is simple. The 

ray is given by 

A + t7 (5) 

where A is the origin and r the direction vector. We 
define ~ as the vector from A to E, and ffk as the normal 
vector on a face of the epiped, then we use Eq. (4) and 
(5), and after some transformations we get 

(P" Wk) -~- ~k(-~k'~k) 
tk= with k =  1 ,2 ,3  (6) 

(-~" ~k) 

Taking the boundaries of the interval/3k calculated in 
the preparation step we obtain from Eq. (6), the 
boundaries of an interval for lk, which determines the 
intersection of the ray with the two planes containing 
opposite faces of the parallelepiped in the k-th dimen- 
sion. Therefore the interval tk gives the "time" the ray 
"spends" between these two planes. The intersection 
of the three intervals tk 

[t] = [tl] n [tz] n [t3] (7) 

states the "time"-interval for the ray being inside the 
parallelepiped. Especially if [t] is empty, the ray misses 
the epiped completely. If the denominator in Eq. (6) 
is zero, the ray is parallel to the two corresponding 
faces. It lies either between the two planes or it is out- 
side. Instead of developing (complicated) rules for dis- 
tinguishing between these two cases we calculate the 
intersection of a nearly parallel ray by taking a very 
small value for the denominator. Then we get a very 
large interval tk containing the interesting domain of t 
completely if the ray is between the two planes, in the 
other case tk is far away and Eq. (7) will yield an empty 
interval. 

In ray tracing all primary rays come from the same 
origin A, the eye point, but they have different direc- 
tions -~. All these rays have to be tested for an inter- 
section with the same tree of parallelepipeds and, 
therefore, very often the same epiped is tested against 
many rays with the same ~. In Eq. (6) only the de- 
nominator is dependent on ~. All other values can be 
precalculated for fixed ,~ and they can be stored in the 
epiped tree. During ray tracing, for each primary ray 
only 3 dotproducts for the denominator, 6 divisions 
for the tk-intervals and the comparisons for Eq. ( 7 ) are 
required to calculate the intersection completely. Only 
for rays with a different origin does the first dotproduct 
in the numerator of Eq. (6) have to be calculated ad- 
ditionally. 

These intersection tests should be optimized very 
carefully, because they heavily affect the efficiency of 
the method, as they have to be done for each pixel 
(when oversampling even more often) and for each 



node of  the tree that is reached. In most cases they 
yield an empty interval: For all rays far from the sur- 
face, in all branches of  the tree ending at an interme- 
diate node. Therefore intersection tests are executed 
much more frequently than the calculation of  a starting 
point and the iteration. 

4.3. Starting point for the iteration 
As an initial point for the iteration, we use the in- 

tersection point between the parallelogram from Sec- 
tion 3.1 and the ray. The t parameter for this point is 
found by setting k = 3 and/33 = 0 in Eq. (6) 

( ~ "  ~3) 
to = ( 8 )  

( ~ "  ~)3) " 

In Section 4.2, ~3 has been defined as the normal vector 
to the approximating parallelogram, therefore it is an 
approximation for the normal to the surface. The point 
itself is found by 

Do = A  + t0"T. 

and 

To get the first approximate values u0, v0 for the in- 
tersection point we calculate the coefficients/31 and/32 
for Do and get 

b 
tan a > - .  

h 

Uo = u + /3~  . ( a  - _u) 

v0 = v + / 3 2 " ( ~  - ~ ) .  

Some problems arise if  the denominator  of  Eq. (8) is 
zero or very small, i.e., the ray -~ is almost orthogonal 
to ~3. The geometric interpretation is that the ray is 
nearly tangential to the part of  the surface (see Fig. 7 ). 

This critical case can be recognized because it ap- 
pears only when the ray passes through a very thin box 
approximately parallel to the larger face, we take as a 
criterion 

8 t 

h 

Then it is very likely that more than one intersection 
point exists. This situation causes convergence to be 
very slow. But there is yet another problem, we may 
find the wrong intersection. For ray tracing this proves 
to be fatal! The algorithm computes the color as if  the 
ray came from the wrong side of  the surface. And this 
color is usually completely different, as the one side is 
usually in shadow if the other one is lighted. We avoid 
such errors by using the entrance point of  the ray into 
the u, v-domain as the initial value. Now the iteration 
is more likely to converge to the first intersection. But 
because of  efficiency, this additional iteration is only 
done when Eq. (12) holds, therefore in all normal cases 
we do not affect the speed of  convergence. 

4.4. The iteration 
The calculation of  an accurate value for the inter- 

section point is performed by the Newton method, 
which generally converges very quickly. 

In Section 4.3 we calculated the initial values u0, Vo 
from the parallelogram that approximates a part of  the 
surface. The iteration process itself works on the whole 

(9) surface and with the original control points. We cal- 
culate the corresponding point P0 with the partial de- 
rivatives P0, and Pov and the normal no. The ray is 
then intersected with the plane tangential to the point 
P0 corresponding to u0, Vo and we get a new approxi- 
mation u~, vj (Fig. 8). 

( 10 ) We stop the iteration process if two succeeding points 
differ less than a given ~. This ~ can be calculated either 
as the max imum of  the differences between the u and 
v values of  two approximations or from the x, y, and ( l l )  
z values. 

Finally, we have to cope with another difficulty: ter- 
mination of  the iteration without success. We start the 
iteration for each ray that hits the enclosure of  a part. 
But some of these rays miss the corresponding part of  
the surface. In these cases the iteration cannot converge. 
Consequently, if the convergence criteria are not met 
after a preset maximum number of  iteration steps (e.g., 
3) the algorithm assumes that the ray misses the part 
of  the surface and returns the result "no  hit." Another 
indication is that the iteration leaves the u, v-domain 
of  the surface part. Then the intersection is probably (12) 
inside the domain of  a neighbour part. Because the 

428 W. BARTH and W. STORZLINGER 

Fig. 7. An almost tangential ray. 



Efficient ray tracing for Bezier and B-spline surfaces 

~ - - - - ~  i' / PO 

/ 
\ 

PO~ 
/ 

Fig. 8. Iteration. 

429 

iteration is likely to approach the solution from one 
side, we go back to the border of the domain after 
leaving it for the first time. If the next iteration step 
again leads to a point outside the domain, we return 
the result "no hit." These two heuristic rules identify 
all rays that have no intersection point inside the actual 
part. On the other hand, it is also very unlikely that 
they eliminate (by mistake) a ray that does intersect. 

In order to avoid losing an intersection we start a 
second iteration process after an unsuccessful iteration, 
using the entrance point into the epiped as the initial 
value. This happens only for a small fraction of all rays 
and, therefore, does not significantly slow down the 
whole algorithm. If a third iteration is carried out after 
an unsuccessful second one, using the exit point of the 
ray as initial value, it is almost impossible to miss an 
intersection. 

5. IMPLEMENTATION AND RESULTS 

The algorithm described in this paper has been im- 
plemented and integrated in the RISS-System[11], 
which is a ray tracing system developed at the Institute 
for Computer Graphics at the Technical University of 
Vienna. 

Tests showed the predicted behaviour, namely, quick 
convergence of the iteration and a very small number 
of failures if the given surface has been subdivided into 
sufficiently small parts. We even observed some effects 
that were counterintuitive at first glance, e.g., the total 

computation time may decrease as the number of sub- 
divisions increases. This surprising behaviour results 
from the fact that finer subdivision yields more accurate 
starting values for the "costly" iteration and, therefore, 
less iterations are required. These savings are a multiple 
of the increased effort for search in the epiped tree. As 
expected, the additional time for the preprocessing step 
is minimal. Figure 9 [ 12 ] shows the teapot as generated 
by RISS [11 ]. For anti-aliasing we used the method of 
"Adaptive Stochastic Sampling"[13 ]. The surface has 
been divided into 1397 parts. Approximately half of 
the rays required only one iteration, this is always nec- 
essary to check the accuracy. For nearly all other rays 
a second iteration was sufficient to get an accurate in- 
tersection. The preprocessing step took 22 seconds, 
while the actual rendering for 1000 by 750 pixels took 
about 4 hours on a VAXStation 3100/38. 

Even more important is the fact that the number of 
failures drops with the number of subdivisions. If the 
parts of the surface are too big, the following will hap- 
pen at the outline of the surface: Based on slow con- 
vergence, further computation is considered useless and 
the iteration is--falsely--stopped. The algorithm er- 
roneously assumes the surface is not hit, although a 
parallelepiped has been hit. It consequently assigns the 

Fig. 9. Teapot. Fig. 10. Failures caused by too rough subdivision. 



430 W. BARTH and W. STORZLINGER 

color of the background to the pixel. Therefore the 
outline may have some notches. Sometimes we even 
found such "gaps" in areas of the surface where the 
curvature changed its sign. The iteration also may con- 
verge to the rear of the two intersection points, as was 
discussed in Section 4. As an example, if Fig. 9 is done 
without anti-aliasing, only four wrong pixels are cal- 
culated. But they are not easily noticeable, and in the 
anti-aliased picture, all wrong values are mixed with 
correct ones, and therefore invisible. 

As we can get only an approximate value for the 
intersection point (and not the exact one),  we also 
have to consider the situation where the approximation 
point lies "behind" the surface. Then the test whether 
a light source contributes to the i l lumination shows 
that the surface shades itself. This problem can be 
avoided by placing the intersection point a little closer 
to the origin of the ray, the magnitude of the correction 
has to be larger than the error of the last iterated point. 

Figure l0 shows some of the failures that can occur 
when no attention is paid to the directives discussed 
earlier: For this figure we used a too rough subdivision 
(Fig. 3 ), therefore the algorithm failed to converge after 
the preset number  of steps at parts of the surface where 
the parallelograms don ' t  approximate the surface well. 
Additionally, the test for almost tangential rays (Section 
4.3) was disabled. Consequently, artifacts appear near 
the outline of the surface. The correct picture generated 
with a finer subdivision and careful iteration is shown 
in Fig. 4. 

REFERENCES 
1. R. GroB, Ray- Tracingffir Bezier-Flgichen. Diplomarbeit, 

Technical University of Wien ( 1991 ). 
2. J. Hoschek and D. Lasser, Grundlagen dergeometrischen 

Datenverarbeitung. Teubner, Stuttgart (1989). 

3. T. Pavlidis, Algorithms for Graphics and lmage Process- 
ing. Springer-Verlag, Heidelberg (1982). 

4. H. Mtiller and H. Hagen, Beschleunigung der Bilderzeu- 
gung f'tir Freiforrnfl~ichen durch Speichereinsatz. In Proc. 
Austrographics 1986, A. Clauer and W. Purgathofer 
(Eds.), Oldenbourg-Verlag, Wien, Mtinchen, 38-51 
(1986). 

5. C. Giger, Ray Tracing Polynomial Tensor Product Sur- 
faces. In Proc. Eurographics 1989, Hansmann, Hopgood, 
and Strasser (Eds.), North-Holland, Amsterdam, 125- 
136 (1989). 

6. M. Sweeney and R. Bartels, Ray Tracing Free-Form B- 
Spline Surfaces. IEEE Comp. Graph. Appl. 6, 41-49 
(February 1986). 

7. J. Yen, S. Spach, M. Smith, and R. Pulleyblank, Parallel 
Boxing in B-Spline Intersection. IEEE Comp. Graph. 
Appl. 11, 72-79 (January 1991 ). 

8. T. Kay and J. Kajiya, Ray Tracing Complex Scenes, 
Comp. Graph. Proc. SIGGRAPH 20, 269-278 (August 
1986). 

9. H. Weghorst, G. Hooper, and D. Greenberg, Improved 
Computational Methods for Ray Tracing. ACM Trans. 
Graph. 3, 52-69 (January 1984). 

10. W. Barth, Effazientes Ray-Tracing fiir Bezier- und B-Spline 
Fl~ichen. In Geometrische Verfahren der Graphischen 
Datenverarbeitung, J. Encarna¢~o, J. Hoschek, and J. Rix 
(Eds.), ZGDV Beitr~ige zur Graphischen Datenverarbei- 
tung, Springer-Verlag, Berlin, 180-197 (1990). 

11. M. Gervautz and W. Purgathofer, RISS--Ein Entwick- 
lungs-System zur Generierung realistischer Bilder. In 
Visualisierungstechniken und Algorithmen, Informatik- 
Fachberichte No. 182, W. Barth (Ed.), Springer-Verlag, 
Berlin, 61-79 (1988). 

12. W. Kiendl, Ray- Tracing fiir Bezier-Flgichen. Diplomar- 
beit, Technical University 0f Wien (1991). 

13. W. Purgathofer, A Statistical Method for Adaptive Sto- 
chastic Sampling. Proc. Eurographics 1986. Comp. & 
Graph. 11, 157-162 (1987). 

14. C. Giger-Hofmann, Ein Ray-Tracing-Verfahren zur Vis- 
ualisierung polynomialer Tensorproduktfli~'chen, Doctoral 
Dissertation, Technische Hochschule Darmstadt, Ger- 
many (1992). 


