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Abstract

Raytracing is a method to produce photo-realistic pictures. For each pixel of an image

one ray is shot to �nd the object, which determines the color of the pixel. Rays are also

used to simulate shadows and reections. Previously bounding volume hierarchies have

been used to speed raytracing. A new method to speed the traversal of a bounding volume

hierarchy is presented. Optimisation methods to �nd the intersection point between the

ray and the scene have been introduced previously. A new algorithm based on cylinders

is presented also.

1 Introduction

Raytracing is a method to produce photo-realistic pictures. Rays are used to determine
visibility and to capture important illumination e�ects such as shadows and reections. For
a more complete introduction to raytracing see e.g. the book by Glassner [Gl89].

Intersecting a ray with a non-trivial object (e.g. free-form surfaces, sweeps, etc.) is a
very time consuming operation. One way to speed this intersection process is to use simple
objects as bounding volumes (BV's), e.g. axis-aligned boxes, spheres, slabs. As the BV
encloses the object completely, we can �rst intersect the ray with the simpler BV and only
if the ray intersects the BV proceed to compute the intersection with the original object.
This proved to speed raytracing signi�cantly. Another method to restrict the set of objects,
which has to be intersected with a given ray, is to subdivide the space of the environment
and determine beforehand, which objects lie in each of the subdivisions. When tracing a ray
one has to determine, which subdivisions the ray traverses, and intersect the ray only with
these objects, which are stored with the respective subdivision.

2 Optimized Bounding Volume Hierarchy Traversal

Intersecting a ray with thousands of BV's and the respective objects is still a timeconsuming
operation. Most rays intersect only a small part of all BV's and objects. Clearly the perfor-
mance can be improved by intersecting the ray with only the objects which lie approximately
in the region of space the ray traverses. One way to quickly cull objects from consideration
is a hierarchy of BV's - a bounding volume hierarchy (BVH).

2.1 Bounding Volume Hierarchy

Figure 1 describes how to construct the union of two BV's. When this process is applied to
the total set of objects, we get a set of BV's numbering half the originial objects.

Reapplying the process recursively leads to a hierarchy of BV's and the top node of the
tree describes the BV of the whole scene. Of course the e�ectiveness of the BVH depends on
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Figure 1: Combination of Bounding Volumes.

the order in which the objects are combined. If we build the BVH bottom-up by combining
BV's randomly the resulting BVH will not show a good performance, as objects lying near
to each other may end up in totally di�erent parts of the BVH. Searching for the \nearest"
BV is a time consuming process, therefore a good way is to build the BVH top-down. This
is done by entering each object into the BVH so that the increase of the volume is minimized
at each node. Another way to build the BVH is to utilized information supplied by the used
in the modelling process.

In this paper it is assumed that either axis-aligned boxes or slabs are used to construct
the BVH.

To intersect a ray with the scene stored in the BVH the ray is intersected with the topmost
box. If an intersection is found, the children of the root node are tested for intersections and
so on. When an intersection with a leaf of the BVH is found all objects inside this node are
tested for intersection with the current ray.

2.2 Optimized Bounding Volume Hierarchy Traversal

The new approach exploits the special structure of a BVH with boxes and slabs more fully.
When the union of e.g. two boxes is computed (see �gure) a ag is stored, whether a side of
the box conincides with the side of the box of the parent node (see �gure 2).

*

*

*

*

Figure 2: Conciding Box Sides (agged).

When traversing the BVH there is no need to compute the intersection of the ray and a
agged side of the current box, as the intersection will have been computer previously

This number of BVH-box-intersection tests (more precisely the number of ray-plane-
intersections) this improved algorithm executes is less than half the number of tests of the
original algorithm. Therefore a speedup is to be expected.
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3 Cylinder Cube

Previously a number of space subdivision methods to speed raytracing have been suggested.
These methods include the regular grid, the octree, etc, which subdivide space into voxels.
A \voxel walking" algorithm is then used to �nd the next voxel along the ray. When an
intersection is detected in the current voxel the search is terminated, and the intersection is
returned. Arvo and Kirk [AK87] proposed a method which subdivides the 5 dimensional ray
space.

3.1 Cylinder Cube

Another way to exploit the coherence of scenes is to use the direction of the ray to eliminate
objects from the intersection tests.

We start by partitioning each of the six sides of the bounding box of the total scene with
a regular pattern of n2 \gridels" (i.e. squares or rectangles, see �gure 3).

Figure 3: Cube with partitioned sides (gridels).

The interconnecting volume of two arbitrary gridels can be approximated easily by a
cylinder. The two midpoints of the gridels are connected to form the central axis of the
cylinder. Then this cylinder is enlarged until all of the eight corner points of the two gridels
are included (see �gure 4).

Figure 4: Construction of the cylinders.

The cylinder can be easiliy tested against a bounding sphere of an object, it is only
neccessary to compute the distance of the center to the cylinder axis and compare this
distance to the sum of the radii.

Thus we construct all cylinders of the cylinder cube and store for each of the 6n4 cylinders
which objects lie inside or intersect the cylinder. Due to the symetry of a cylinder we need
only store 3n4 cylinders.
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To �nd which objects may potentially intersect a ray we intersect the ray with the bound-
ing box of the scene. The two corresponding gridels (where the ray enters and leaves the
bounding box) can be found easily by a modulo-operation. The index of the two gridels gives
quickly the corresponding cylinder and the list of objects which lie inside.

4 Conclusion and Results

The optimized BVH traversal method speeds, as expected, the ray intersection test signif-
icantly. We measured the performance with a test scene showing a glass chessboard with
glass �gures (approx. 150 objects) and two di�use chemical molecules consisting of approx
2800 and approx 27000 objects. The pictures were rendered on a SGI R3000 with 256 by 256
pixels.

Objects Rays Normal BVH Traversal Optimized BVH Traversal

150 190000 185 143

2800 62000 91 74

27000 64000 184 158

As expected the optimized BVH traversal outperforms the old method consistently.
To test the cylinder cube optimisation method we compared it's results with the results

for the regular grid method for the same scenes. The size of the grid was 4x4x4 and the
cylinder cube was also subdivided into 6x4x4 cylinders.

Objects Rays Grid Cylinder Cube

150 190000 186 199

2800 62000 65 202

27000 64000 114 -

For the last example we were not able to measure the time as the process ran out of
virtual memory (48MB) after approx. 10 minutes. As one can see, normally the grid method
is faster. One reason for this behaviour is that bounding spheres are not as tight as bounding
boxes in general. This can also be observed for the �gures for memory consumption, which
were higher for the cylinder cube, due to the \looser" bounding volumes. The setup times
(not shown) for the cylinder cube were also slower that the grid setup times due to the more
complicated calculations.
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