
- 1 -

Ray Tracing Triangular Trimmed Free Form Surfaces

Wolfgang Stürzlinger1

Dept. of Computer Science, University of North Carolina at Chapel Hill
stuerzl@cs.unc.edu

Abstract
This paper presents a new approach to rendering triangular algebraic free form surfaces. A hierarchical subdivision
of the surface with associated tight bounding volumes provides for quick identification of the surface regions likely to
be hit by a ray. For each leaf of the hierarchy an approximation to the corresponding surface region is stored. The
approximation is used to compute a good starting point for the iteration, which ensures rapid convergence.
Trimming curves are described by a tree of trimming primitives such as squares, circles, polygons and free form
curves combined with Boolean operations. For trimmed surfaces an irregular adaptive subdivision is constructed to
quickly eliminate all parts outside the trimming curve from consideration during rendering. Cost heuristics are
introduced to optimize the rendering time further.

1. Introduction
Free form surfaces are used in computer aided design, CAD, to model curved objects such as automobiles, planes,
and design parts. The accurate visualization of free form surfaces helps significantly in the design process and
reduces the need to build physical models.
This work focuses on algebraic free form surfaces. For an introduction see e.g. [7]. Algebraic free form surfaces are
rational polynomial surfaces in two parameters. Two types of free form surfaces exist: rectangular or tensor product
surfaces and triangular surfaces. The definition of rectangular surfaces is conceptually more simple and they are
used in many applications. Triangular surfaces are nowadays used more frequently as they are topologically more
flexible than tensor product constructions. Surfaces based on a triangular domain are used in modeling complex
geometries, filling of three- or multi-sided holes in boundary representations, blending of multiple surfaces,
smoothing of polyhedra, free form deformations of solids, and for scattered data interpolation.
There are two main alternatives for creating images of free form surfaces: methods based on conversion to a
polygonal model and ray tracing methods. The first approximates the free form surface with ‘small enough’
polygons and renders these into a z-buffer. Ray tracing of free form surfaces determines the visible parts by
constructing rays from the viewpoint through the pixels of the image plane into the scene. The rays are intersected
with the surfaces of the scene and the first surface hit determines the color of the pixel. The disadvantages of
polygonalization are that visible shading artifacts occur if the subdivision is not very fine, that the subdivision
process must handle the cracking problem, and that reflection and refraction cannot be simulated properly. Ray
tracing is computationally more expensive than polygon display but all desired lighting effects can be simulated
accurately.
Trimmed free form surfaces have become popular in practice because they can represent holes in surfaces and they
can be used to define patches with arbitrary shape. Also, boolean operations on boundary representations of solids
yield trimmed surfaces.

1.1. Previous Work
In general the intersection point of a ray with an algebraic free form surface cannot be calculated directly, as the
degree of the corresponding equations is too high. Therefore an iterative approach is used. To obtain the intersection
point two main strategies have been proposed: interval methods and hierarchical bounding structures followed by
Newton iteration.
The first class progressively narrows the parameter interval of the intersection point and includes algorithms based
on interval arithmetic [21] and more recently Bézier clipping [16]. The advantage of Bézier clipping is its
guaranteed convergence. The algorithm can take trimming curves into account as well. A major disadvantage is the
cost of the clipping operation, which grows with the cube of the degree of the surface. Also the concept is not
straightforwardly applicable to triangular surfaces.

1 Part of the research was done at GUP, Johannes Kepler Universität Linz/Austria.

- 2 -

The second class of methods encloses each part of a hierarchical subdivision of the surface with a bounding volume.
In a preprocessing step a subdivision process splits the surface recursively and continues until the parts are flat
enough. Intersecting a ray with the surface recursively traverses the bounding volume hierarchy and identifies all
parts that may be hit. For each leaf reached Newton iteration is used to find the intersection point. Almost planar
parts have the advantage that iterative methods converge quickly in such areas. Additionally bounding volumes are
tighter. This improves the efficiency during the search for potentially intersecting surface regions as large parts of
the tree can be pruned quickly.
Examples for previously used bounding volumes include axes-parallel bounding boxes [20], Chebyshev boxing [10],
oriented slabs [22], and parallelepipeds [2]. The last method also employs an approximation to each surface part to
obtain an accurate starting point for the Newton iteration, thereby ensuring rapid convergence with relatively small
tree depths. Campagna [4] experimented also with combinations of enclosing volumes to optimize the performance.
The simplest approach for trimmed surfaces is to compute the intersection point first and then to test if the point is
inside or outside the trimming curve. If the point is outside of the trimming curve no hit is reported and the time
spent computing the intersection has been wasted. A different approach is to split all trimmed surfaces into multiple
non-trimmed sub-surfaces [13]. But for complex trimming curves the method may create very many sub-surfaces.

1.2. Motivation and Overview
Many design packages allow the rendering of diffuse free form surfaces only. This ignores the reflections, which are
quite important to the designer to judge the aesthetic ‘qualities’ of a surface. Ray tracing is better suited to the
visualization of free form surfaces because it can simulate reflections accurately.
The new method presented here is an optimized ray tracing method for triangular free form surfaces2. In the
presence of trimming curves the algorithm adapts the surface subdivision to their shapes. To support complex
trimming curves the method depends on the flexibility to subdivide along arbitrary directions. Only triangular
surfaces and the associated subdivision schemes support this. Therefore, this work concentrates on the ray tracing of
triangular free form surfaces exclusively. This is a general solution, since all rectangular free form surfaces can be
converted to two triangular free form surfaces [8].
In section 2 the definition of triangular free form surfaces and their most important properties are reviewed. A new
and compact description of arbitrarily complex trimming curves is presented as well. Section 3 introduces a new
method for ray tracing triangular free form surfaces and presents a new method that adapts the subdivision to the
trimming curve. Results are discussed in section 4, and section 5 concludes.

2. Trimmed Free Form Surfaces
Free form surfaces are used to model curved objects such as automobiles that cannot be modeled precisely with
conventional primitive objects such as polygons, polyhedra and spheres. This work focuses on the most common
type, algebraic free form surfaces. For an introduction see e.g. [7]. Trimming curves limit the surface to parts of its
parameter domain which is used e.g. to introduce holes.

2.1. Triangular Free Form Surfaces
The general definition of an algebraic free form surface is based on an array of three-dimensional control points Pi,j

that approximate the shape of the surface. The surface is parameterized by two parameters u and v. A weight
function Bi,j

n(u,v) describes the influence a control point Pi,j has onto the shape of surface, where n is the degree of
the surface. Relevant to this work are free form surfaces based on a triangular parameter domain. One powerful
variant of triangular free form surfaces is the rational triangular Bézier surface. Rational surfaces allow the exact
modeling of quadratic surfaces, which are common in mechanical design. See [6] for a survey. Triangular rational
Bézier surfaces are defined as follows:

1,0,
),(

),(
),(

0 0 ,,

0 0 ,,,
≤+≥=

∑ ∑

∑ ∑

=
−
=

=
−
=

vuvuwith
vuBw

vuBwP
vuP

n
j

jn
i

n
jiji

n
j

jn
i

n
jijiji

(1)

with the corresponding Bézier weight functions:

jinkvuwwithwvu
kji

n
vuB kjin

ji −−=−−== ,1
!!!

!
),(, (2)

2To the author’s knowledge no previous work has been published on ray tracing triangular free form surfaces.

- 3 -

For even better control of each point’s influence on the surface each control point is assigned a weight wi,j. In the
following all weights wi,j are constrained to be positive. Then the following two properties hold: The surface lies
completely inside the convex hull of its control points and the surface can be repeatedly subdivided into sub-surfaces
of the same type. Triangular surfaces based on B-Splines have been presented recently [5]. See Fig. 1 for an
example of a simple quadratic Bézier surface and it’s control points.

(a) (b)
u

v

P0,0

P1,0

P2,0

P1,2

P0,2P0,1

Fig. 1: (a) Bézier surface and (b) it’s control point mesh.

For subdivision of two-dimensional Bézier curves the de Casteljau algorithm is used. The algorithm works by
recursively applying linear interpolation with a fixed ratio to the control polygon. The final results are the control
polygons for the two sub-curves and a point on the curve. For a more detailed description of the de Casteljau
algorithm see e.g. [7]. Triangular free form surfaces can be subdivided with an extended form of the de Casteljau
algorithm. The triangular control point mesh is recursively subdivided with tri-linear interpolation for a given pair of
parameter values. The results are the control meshes for the three sub-surfaces and a point on the surface.
In Fig. 2(a) the geometric interpretation of the de Casteljau algorithm for a triangular surface (dashed) is illustrated.
The light gray triangles represent the original control point mesh and progressively darker shades of gray represent
subsequent recursions. The final result of the construction is the point of the surface corresponding to the chosen
parameter values, the white point in the center triangle of Fig. 2(a). The vertices created by the de Casteljau
algorithm form also the control point meshes of the three sub-surfaces. Fig. 2(b) depicts the control point mesh for
the upper right sub-surface in (the shaded triangles).

(a) (b)

Fig. 2: (a) geometric interpretation of the de Casteljau algorithm for a triangular surface and
(b) visualization of a control point mesh for the upper right sub-surface.

Applying the de Casteljau algorithm recursively to the resulting sub-surfaces leads to long thin triangles, see Fig.
3(a). Such triangles often cause numerical problems, which makes this subdivision algorithm impractical in this
context.
A more general subdivision algorithm was presented by Goldman [11]. It is based on the following idea. Each of the
three corner points Pj(uj,vj), j=1..3 of an arbitrary triangular sub-surface can be computed by evaluating a sequence
of n de Casteljau steps Cj

i(uj,vj), i=0..n, where n is the degree of the surface. Choosing an arbitrary de Casteljau step
from among the three Cj

i(uj,vj) for each of the n steps of the sequence will construct a control point of the sub-
triangle. Evaluating all possible permutations of this step sequence constructs all control points of the triangular sub-
surface, see Fig. 3(b) and (c). This technique is now also known as the blossoming principle (see also [7] section
18.3).

- 4 -

(a) (c)(b)

(u0,v0)

(u1,v1)

(u2,v2)

P0(u0,v0)
P2(u2,v2)

P1(u1,v1)

Fig. 3: (a) long thin triangles from repeated recursive subdivision with the de Casteljau algorithm, (b)
arbitrary parameter domain sub-triangle and (c) corresponding sub-surface and its control point net.

The flexibility of the Goldman algorithm to subdivide the parameter domain in arbitrarily oriented triangles will be
used in the following method for the adaptive subdivision of free form surfaces.

2.2. Trimming Curves
Trimming curves are used to limit the surface to parts of its parameter domain. They enable the user to define holes
in surfaces and allow for arbitrary boundary shapes. Fig. 4 shows an untrimmed free form surface, a trimming curve
in the parameter domain and the trimmed surface.

u

v

(a) (b) (c)u

v

u

v

Fig. 4: (a) un-trimmed surface, (b) trimming curve in the parameter domain, and (c) trimmed surface.

In this work trimming curves are specified in a very general and compact way. Closed contour primitives are
‘composited’ in a tree using constructive planar geometry, CPG, operators analogous to the well-known three-
dimensional CSG operators. The border contour of the resulting shape defines the trimmed region(s). These
trimming curve(s) are clipped implicitly at the border of the parameter domain for simplicity.
One source of trimming curves is a solid modeling system that represents the surfaces of solids as free form
surfaces. A basic operation in such a system is the intersection of two free form surfaces. The resulting three-
dimensional intersection curve is of high degree in general. One alternative to find the two-dimensional trimming
curves in the parameter domains of the two surfaces is a technique called inversion. A better possibility is to
compute the two-dimensional trimming curves directly [15]. Implementations of both approaches represent the
resulting trimming curve as a piecewise linear or cubic curve.
Furthermore, most solid modeling systems allow the combination of objects with CSG operators. A CSG
combination of multiple objects necessitates a corresponding combination of trimmed regions on the surfaces.
Instead of computing the trimmed regions directly, the final trimmed regions can be represented more efficiently as
a set of trimming curves combined by a tree of CPG operator nodes. One important benefit of describing trimmed
regions by a tree of CPG operators is that no intersection computation for trimming curves is needed.
In the following the CPG operator nodes, the contour primitives, and their corresponding inside tests are described.
The inside test determines if a point in the parameter domain is inside or outside with respect to the trimming curve.
Later on, during ray tracing (section 3), this inside test is used for each intersection point of a ray with the surface to
determine if the intersection point is valid, i.e. inside the trimming curve.

Constructive Planar Geometry - CPG
Constructive planar geometry operators are used to combine contours. The operators combine the shapes of the two
child nodes (the operands). The result is the border contour of the shape remaining after the operation. The operators
include union, intersection, and difference. See Fig. 5 for simple examples.

- 5 -

(c)(a) (b)

Fig. 5: CPG operators: (a) union OR, (b) intersection AND, and (c) difference SUB.

The inside test for an operator node recursively processes the two child nodes first. For the union operator the point
has to lie inside at least one of the two children. The intersection operator tests if the point lies inside both children.
For the difference operator the point has to be inside the left operand but not inside the right.

Contour Primitives
The following contour primitives are used as leaves in the CPG-tree: unit square, unit circle, closed polygon with
straight or free form curve (i.e. Bézier, B-Spline or NURBS) segments. Examples are shown in Fig. 6. The usual
affine transformation operators can be applied to all these primitives: translation, rotation, scale, and shear.

Fig. 6: Contour primitives: square, circle and closed polygon with straight and curved edges.

The inside test for the square and the circle is simple. For polygons a ray is traced from the query point in direction
of the positive x-axis to infinity and the number of intersections with the polygon edges are counted. If the number is
odd the point is considered inside [9]. For free form curves edge segments the ray-curve intersection test is
performed by the two-dimensional equivalent of the free form surface ray casting procedure described by [2]. In two
dimensions the method is very similar to strip trees [1]. If the number of edges, straight or curved, in a contour
polygon is higher than an implementation dependent number, e.g. 8, another tree of parallelograms is built for the
set of the edges. This optimizes the point-polygon test even for trimming polygons defined by a large number of
segments, such as a piecewise cubic curve obtained from intersecting free form surfaces.
For transformed primitives the query point is first transformed back into the original coordinate frame of the
primitive before performing the inside test.

3. Ray Tracing Trimmed Free Form Surfaces
The general idea is to construct a bounding volume hierarchy in a preprocessing step by subdividing each triangular
surface successively into parts and enclosing the parts in appropriate volumes. Subdivision continues until the
surface parts are almost planar or a given subdivision limit is reached. Tight bounding volumes are generated for
each node of the resulting hierarchy. While all interior nodes of the bounding volume hierarchy store only a
bounding volume the leaf nodes also store a planar approximation to the surface part. Control points for surface
parts are only needed temporarily during the preprocessing stage and are not stored. This reduces memory usage
significantly.
Depending on the shape of the trimming curve either a regular or an irregular subdivision pattern is used.
Furthermore the bounding volume hierarchy is constructed only for surface parts which do not lie outside the
trimming curve. During ray tracing the ray is checked recursively against this bounding volume hierarchy. If the ray
does not reach a leaf it cannot intersect the surface in this region. In each leaf hit by the ray the intersection point is
calculated by iterating on the original surface. For the leaves crossed by the trimming curve an inside test is
performed to determine if the intersection point is valid.

3.1. Construction of the Bounding Volume Tree
In earlier works parallelepipeds were used to construct tight bounding volumes for quadrilateral free form surfaces
[2]. Kajiya [13] used triangular prisms to optimize the ray tracing of fractals. Additionally recent work for collision

- 6 -

detection shows that orientable solids result in more efficient bounding volume hierarchies compared to axis-aligned
solids [12].

Tripipeds
As the bounding volume used in this work may also be skewed in the third direction the term tripiped, instead of
skewed triangular prism, is introduced here to emphasize the similarity with the parallelepipeds (see Fig. 7).

(b)(a) x

z
y

x

z
y

Fig. 7: (a) parallelepiped and (b) tripiped.

The algorithm splits the surface recursively until almost planar parts have been obtained or a maximum subdivision
limit is reached. The planes delimiting the tripiped are constructed as follows. First the tangent vectors in the three
directions u, v, w are approximated by computing the three difference vectors du, dv, dw of the corner points of the
surface. The normal vector N obtained from the cross product of two tangent vectors defines the orientation of the
bottom and top faces of the tripiped. The orientation of the three remaining planes is defined by the cross products of
the difference vectors with the normal vector. The five planes are then moved outwards until the growing tripiped
encloses all control points. The convex hull property of the triangular free form surfaces guarantees that all points of
the surface part will be inside the constructed tripiped. Fig. 8(a) shows an example of a surface and it’s enclosing
tripiped.
The distance between the top and bottom planes, the ‘thickness’ of the tripiped, is the main criterion for controlling
the subdivision depth. A ‘thick’ tripiped indicates that the surface might still be curved. A ‘thin’ tripiped signifies
that the surface part is almost planar. Planar surface parts are desirable, as the Newton iteration used for intersection
computations will converge much more rapidly in such regions.

(b)(a)

thickness

du

dv

dw

N

Fig. 8: (a) tripiped enclosing the surface and (b) planar approximation for surface.

The plane of the triangle defined by the three corner points is used as an approximation to the surface. It is depicted
in Fig. 8(b). Note that this triangle is a first order approximation to the surface. The plane equation of this triangle is
stored and used later on to compute the starting point for the Newton iteration.
The tripipeds in the coarser levels of the hierarchy enclose the control points of the corresponding subdivision of the
surface. A consequence is that the tripipeds of coarser-level nodes provide only a very ‘loose’ fit for the free form
surface in general. By shrinking each bounding volume to enclose the union of the children all bounding volumes
are optimized in a second bottom-up pass. This optimization is illustrated in Fig. 9. The shaded region indicates the
improvement.

- 7 -

unoptimized
bounding
volume

optimized
bounding
volume

(a) (b)

Fig. 9: (a) un-optimized and (b) optimized bounding volume.

For a multi-level hierarchy the benefits are larger in general, as the lowest level nodes enclose the surface very
tightly. Consequently the optimized top-level bounding volume encloses, in general, the whole surface much tighter
than the original bounding volume.

Subdivision for Contour Primitives
As discussed in section 2.1 a triangular free form surface can be subdivided in any triangular pattern by the
Goldman algorithm. For untrimmed surface parts the domain is subdivided regularly into four equal parts, see Fig.
10. Compared to the results of the de Casteljau algorithm this pattern creates a more ‘balanced’ subdivision of the
parameter domain.

Fig. 10: Regular subdivision of triangular parameter domain.

Later on, when calculating ray-surface intersections each potential intersection point needs to be tested against the
trimming curve to detect if it is inside the trimmed region. Depending on the complexity of the trimming curve this
test may be a costly operation.
An optimization is to classify each region of the regular subdivision with respect to the trimming curve during
preprocessing. Surface parts completely inside the trimming curve need no further inside test during ray tracing and
are marked accordingly. Parts fully outside are pruned completely. Only for parts crossed by the trimming curve the
inside test needs to be performed during ray tracing. See Fig. 11(a) for an illustration.
An even better result is obtained by utilizing the Goldman algorithm to subdivide along the trimming curve. If only
one straight edge segment crosses the triangular parameter domain the subdivision algorithm splits along this edge.
A curved segment is approximated by a secant. If too many edge segments cross the surface region or if the
subdivision pattern yields very long thin triangles regular subdivision is used. A more detailed description of the
algorithm is available in the Appendix. Pseudo code is shown in Fig. 12. This algorithm classifies much larger
surface regions as fully inside or fully outside with respect to the trimming curve, compare Fig. 11(a) and (b).

o

i

o

i

... trimming curve

... outside

... inside

... triangle where inside test is needed

(b)(a)

o

ii

o

o o

i

i

i

i

i

i

i
o ooo o

Fig. 11: (a) regular and (b) adaptive subdivision of the parameter domain with triangle classification.

- 8 -

Procedure Subdivide (Triangle T, Curve C)
Find all segments of C crossing or inside T
If subdivision limit is reached

Store a reference to C with T
Return

If all segments of C are outside of T
Return

If one segment crosses or is inside T
Create subdivision S of T with this edge

Else-if two segments cross or are inside T and at least one is straight
Choose one of the two to create subdivision S

Else
Create regular subdivision S

If irregular subdivision S contains long, thin triangles
Delete irregular subdivision S
Create regular subdivision S

Classify all triangles of S with respect to C
For all triangles X which are not fully inside nor fully outside

Subdivide (X, C)

Fig. 12: Pseudo-code for subdivision algorithm.

Note that all parts completely inside the trimming curve may still need further subdivision depending on the
curvature of the surface (not shown in Fig. 12).

Subdivision for CPG trees
In general, it is not always necessary to process the whole CPG tree for the inside test of a surface part. Determining
beforehand the nodes of the CPG tree, which can influence the result inside a given triangular domain, allows the
construction of an optimized CPG tree and reduces evaluation times. In the simplest case an optimized tree is easily
represented by a reference to a sub-tree of the original CPG tree. Fig. 13(a) shows the dashed triangular parameter
domain, a trimming curve consisting of two parts and the corresponding CPG tree. In this case a reference to the
right child suffices to characterize the trimming curve inside the triangular region. The general case can be handled
by selectively copying operator nodes from the original tree, see Fig. 13(b).

OR

original optimized

OR

original optimized

SUB SUB

(a) (b)

Fig. 13: (a), (b) Two examples for optimized CPG trees for inside tests (see text).

This optimization is applied during pre-processing to simplify the classifications against the trimming curve.
Moreover, the reference to the optimized CPG tree is stored for each leaf crossed to limits the complexity of the
inside test during ray tracing.

3.2. Cost Adaptive Construction of the Subdivision Tree
The subdivision method presented so far proceeds until each part of the free form surface corresponding to the
parameter domain triangle is flat enough or a predefined limit is reached. If the subdivision process were continued
further even more parts of the surface would need no inside test because more regions can be pre-classified.
Furthermore, optimized subdivision leads to simpler trimming curves in the leaves and therefore yields faster inside
tests, too. Clearly this is only beneficial if the cost for the descent in the subdivision tree is less than the cost of the
inside test. In this context the cost for the inside test is defined as the average amount of work required for the test of
a point with respect to the trimming curve.

- 9 -

To implement this strategy an estimate to the cost for the inside test is computed for each node of the CPG tree
during the construction. For square and circle the cost for the test is assumed to be constant. The cost for polygons
depends mainly on the number of edge segments and their type. Straight polygon segments have constant cost per
segment. For curved segments modeled by Bézier-curves the cost depends mainly on the degree of the curve. B-
Spline and NURBS segments are associated with cost depending on the order of the curve. The cost of a CPG-
operator can be approximated using the cost of the two children. See Table 3 for an example of values used in the
implementation.
During the subdivision phase a comparison of the cost of a recursive descent and the cost of the inside test
associated with the trimming curve of the current triangle part allows to decide quickly if further subdivision is
beneficial.

3.3. Ray-Surface Intersection
The intersection of a ray with the free form surface is performed with an adapted version of the iteration procedure
presented by Barth and Stürzlinger [2]. This method is summarized in the following paragraphs and a few relevant
details are discussed.
Each ray is intersected with the root tripiped of the bounding volume tree. If there is an intersection the successors of
the node are examined recursively. For each leaf encountered the plane approximating the surface part is used to
determine a good starting point for the Newton iteration, see Fig. 14(a). Iteration is performed on the original, whole
surface. Each iteration step computes the tangent plane to the current point on the surface and approximates the true
intersection point with the intersection of the ray with this plane. Iteration stops as soon as the change in parameter
values falls below a certain limit. If the iteration has not converged after a pre-defined number of iteration steps, the
algorithm assumes divergence. In this case the ray misses the surface part corresponding to the leaf of the
subdivision tree and no hit is reported. Note that the ray may still converge to the (correct) intersection point in a
neighboring part as the iteration is performed for each leaf hit by the ray. And as every point of the surface is
enclosed by at least one tripiped no intersections will be missed. Previous experience with quadrilateral free form
surfaces showed that a maximum of three iteration steps suffices for most rectangular surfaces [2].
The current approximation to the intersection point in the above iteration procedure may lie outside the parameter
domain of a surface part associated with a leaf node. If the intersection point leaves the parameter domain while
iterating by more than a predefined relative margin the point is re-projected onto the nearest border of the triangular
domain and this point is used for the next iteration step. Whenever the iteration leaves the parameter domain more
than once this indicates divergence. In this case the iteration is abandoned and no hit is reported for this leaf node.
Whenever the angle between the approximating plane and the ray is small there is a significant possibility that
multiple intersection points with the surface exist. This is detected by computing the absolute value of the dot
product of the ray direction and the plane normal. If it is smaller than a pre-defined threshold the ray intersects the
tripiped at a grazing angle; i.e. the ray is almost parallel to the surface. In this situation the iteration may converge to
the wrong intersection point. To guard against this the iteration is started twice using the projection of the two
intersection points with the bounding tripiped onto the approximating plane. The intersection point nearer to the eye
is returned. Fig. 14(b) shows a side view of a tripiped hit by a ‘grazing’ ray. The intersection points with the
bounding tripiped are shown in gray and the projected points are shown in black.

N

(a)

N

(b)

Fig. 14: Side view of the tripiped. (a) Starting point for normal ray and
(b) starting points for ray at grazing angle (see text).

After an intersection point has been computed it may need to be tested against the trimming curve in the parameter
domain. But with the presented method this happens only for a relatively small number of leaves in the subdivision
tree. All surface parts entirely outside the trimmed region were culled during pre-processing. Everything entirely
inside the trimming curve was marked as needing no inside test. Therefore the inside test is performed only for
leaves whose parameter region is near a trimming curve.

- 10 -

4. Implementation and Results
The new rendering method for trimmed triangular free form surfaces has been implemented in the framework of the
FLIRT ray tracer [19] in ANSI-C. All timings shown are in seconds for 512 by 512 images on a 250Mhz R4400
SGI-Onyx. One ray was shot through the midpoint of each pixel. The grazing angle criterion from section 3.3 was
set to 78.5 degrees as in [2].

4.1. Triangular Free Form Surfaces
In Fig. 15(a) a cubic Bézier surface and in Fig. 15(b) the tripipeds corresponding to 2 recursive subdivisions are
shown to illustrate the tight fit of the bounding volumes. A more complex model consisting of 288 triangular cubic
Bézier surfaces is shown in Fig. 15(c) and a larger view of the upper part is depicted in Fig. 15(d). Fig. 15(e) shows
a rational cubic Bézier surface. Another rational Bézier surface of degree 9 is shown in Fig. 15(f).

(a) (b) (c)

(d) (e) (f)

Fig. 15: Triangular free form surfaces.

To demonstrate the shape of the rational cubic surface more clearly a zoomed version with a reflective material is
shown in Fig. 16(a). For comparison purposes the surface was approximated by subdividing into triangles up to the
same maximum subdivision depth. Ray traced images of this polygonal approximation are shown in Fig. 16(b)
without and in Fig. 16 (c) with linear normal vector interpolation. The last image is similar to a rendering of the
surface with high-end graphics hardware and reflection mapping.

- 11 -

(a) (b) (c)

Fig. 16: Reflective free form surface (a) rendered with new ray tracing method and
(b), (c) rendered from polygonal approximation, without and with normal vector interpolation.

The statistics for all above images are shown in Table 1. Setup time denotes the time spent in pre-processing for the
creation of the subdivision tree and rendering time is the time spent ray tracing 512 by 512 images.

Fig. Surface type Avg. tree
depth

Max. tree
depth

of tree
leaves

Setup
time

Memory
in kb

Rendering
time

Avg. # of
iterations

15(a) Cubic Bézier 3 3 64 0.01 23 12.47 2.33
15(b) Tripipeds of 12(a) 2 2 16 0.01 6 10.87 N/A
15(c) 288 cubic Bézier 2.1 3 25 0.81 1233 86.64 2.79
15(d) 288 cubic Bézier 2.1 3 25 0.81 1233 105.1 2.79
15(e) Cubic rat. Bézier 3.53 5 88 0.02 32 20.95 2.62
15(f) Order 9 rat. Bézier 5.41 7 829 2.47 307 22.96 2.27
16(a) Cubic rat. Bézier 3.86 5 88 0.28 33 94.43 2.56
16(b) Tessellated 13(a) 5 5 1024 0.84 588 89.01 N/A
16(c) Tessellated 13(a) 5 5 1024 0.88 588 90.33 N/A

Table 1: Rendering statistics for triangular surfaces (times in seconds).

The ray tracing times for Fig. 15(c), (d), and Fig. 16(b), (c) may not be optimal as a regular grid of dimension 8 was
used for acceleration. The statistics show that the memory consumption of the method is moderate, only higher order
surfaces consume significantly more memory. Furthermore, the results show that on average convergence can be
achieved in fewer than three iterations. This is partly due to the fact that the tripipeds form tight bounding volumes
for the surface. Even more important is the use of an accurate surface approximation to calculate the starting point
for the iteration. The maximum number of iteration steps was limited to four in all tests. During ray tracing this limit
was reached in only a few pixels in each image, mostly along the outline of the objects.
Compared to the polygonal approximations, the quality of the ray-traced images is superior. See e.g. the shadows
cast into the inside of the object visible in Fig. 15(d) and the accurate reflections in the moderately curved surface in
Fig. 16. The ray tracing based approach renders the reflection of the rectangular light source array in Fig. 16(a)
accurately as the correct normal vector is computed at each point. The polygonal approximation in Fig. 16(b) is
clearly not fine enough to cope with the detail. The same approximation rendered with linear normal vector
interpolation in Fig. 16(c) gives a better result but some interpolation artifacts are visible and the topology of the
reflections is not correct. The differences are most visible near the left corner of the surface. Further subdivision,
optionally adaptive, or a better normal vector interpolation method, such as Phong-shading, may improve the image
further but cannot guarantee a correct image for all viewpoints.
In general the subdivision depth needed to achieve rapid convergence depends on the surface curvature and the
degree of the surface. Table 2 shows statistics for Fig. 15(f) to demonstrate the trade-off between subdivision depth
and iteration count. All corresponding images are identical to Fig. 15(f).

- 12 -

Avg. tree
depth

Max. tree
depth

Thickness
criterion

of tree
leaves

Setup
time

Memory
in kb

Rendering
time

Avg. # of
iterations

Max. # of
iterations

5.41 7 0.05 829 2.47 307 22.96 2.27 4
6.45 8 0.025 3325 9.80 1201 19.49 1.87 3
7.46 9 0.0125 13426 39.40 4812 18.83 1.57 2
8.46 10 0.00625 53725 157.25 19216 20.12 1.51 2

Table 2: Rendering statistics for varying subdivision depths for Fig. 15(f).

A smaller ‘thickness’ criterion for the tripipeds results in more planar leaf nodes, which results in faster convergence
of the Newton iteration. But at a certain subdivision level the cost for the traversal of the hierarchy outweighs the
gains and the rendering time increases again, compare the data for the last two rows. Note also the increase in
memory consumption and pre-processing time.

4.2. Trimmed Free Form Surfaces
For trimmed surfaces Table 3 summarizes the cost metrics for the various inside tests and operations. The values
were estimated by measuring the average time an inside test takes for the primitive. For tests with effort depending
on the characteristics of the primitive, e.g. the order of B-Spline curves, several values were measured and the
measurements were fitted with the equations in the table. These cost values are implementation dependent and vary
from machine to machine. Note also that the numbers given in the table do not directly correspond to the timing
results. Only the relative magnitudes are relevant, therefore the table entries were transformed to more convenient
integer values.

Object Estimated average cost for inside test
Square 270
Circle 390

Polygon 300 + Σ i=1..#seg Cost(segmenti)
Straight polygon segment 45
Curved polygon segment #iterations * Costs(curve)

Bézier 6950 + 70 n
B-Spline 11070 + 150 k2

NURBS 11635 + 310 k2

CPG-operator 510 + Costs(left_tree) + 0.5 Costs(right_tree)
Recursive descent in tree 2360

Table 3: Estimated average cost for inside test (see text).

In the table #seg is the number of edges of the polygon, #iterations is the estimated average number of Newton
iteration steps (two for strip trees in our implementation) and n and k are the number of control points respective the
order of the free form trimming curve. The cost for the CPG operator is calculated from the cost of the left child and
half the cost of the right child as it can be assumed that in half the cases the evaluation of the left sub-tree suffices to
determine the result.
In Fig. 17(a) a circle has been cut out from a triangular free form surfaces. A simple CPG-tree was used to create the
shape in Fig. 17(b). Another CPG-tree was used to create Fig. 17(c). This image shows the power of CPG-trees, as
only a few minutes were necessary to construct the shapes using 10 squares and 8 circles and 17 CPG-operator
nodes. In Fig. 17(d) twelve NURBS curves were used to generate the outer contour and another was used to cut out
the interior using a CPG-operator. To emphasize the qualities of the constructed subdivision the surface regions
where an inside test is necessary are depicted in Fig. 17(e). A coarser subdivision was used to generate the image;
otherwise the structures are almost too thin to be visible.

- 13 -

(a) (b) (c)

(d) (e)

Fig. 17: Trimmed free form surfaces (see text).

The statistics are shown in Table 4. No optimization signifies that the inside test was performed on the whole
surface. The tree optimization means that the tripiped tree has been built only for parts that are not outside the
trimming curve and the cost optimization used the cost adaptive scheme presented in section 3.2. The second set of
entries for Fig. 17(d) was produced using a tessellation of each NURBS trimming curve into 64 segments. The
rendered image is indistinguishable from Fig. 17(d).
Fig. Optimization Trimming

curve type
Avg. Tree

depth
Max. tree

depth
of tree
leaves

Setup
time

Memory
in kb

Rendering
time

Avg. # of
iterations

17(a) No Circle 3.86 4 184 0.03 65 11.46 2.37
17(a) Tree Circle 4.62 6 318 0.05 116 11.14 2.38
17(a) Cost Circle 4.4 5 258 0.05 94 10.75 2.38
17(b) No CPG-tree 3.86 4 184 0.03 65 12.62 2.23
17(b) Tree CPG-tree 5.35 12 386 0.11 156 11.15 2.17
17(b) Cost CPG-tree 4.88 12 252 0.06 94 10.98 2.18
17(c) No CPG-tree 6.38 7 4054 2.47 1426 45.64 1.56
17(c) Tree CPG-tree 6.83 7 1776 1.47 697 33.65 1.73
17(c) Cost CPG-tree 6.72 7 1505 1.18 583 32.14 1.74
17(d) No 13 NURBS 3 3 64 0.15 289 57.01 2.16
17(d) Tree 13 NURBS 6.52 8 1024 2.33 679 19.15 1.76
17(d) Cost 13 NURBS 6.52 8 1024 2.37 679 18.38 1.76
17(d) No tessellation 3 3 64 0.11 198 54.65 2.16
17(d) Tree tessellation 6.8 7 1429 1.83 450 19.09 1.47
17(d) Cost tessellation 6.8 7 1429 1.9 450 18.42 1.47
17(e) N/A 13 NURBS 5.95 6 409 1.43 602 14.63 N/A

Table 4: Rendering statistics for trimmed surfaces (times in seconds).

- 14 -

The results show that a large speedup is due to the optimized construction of the tripiped tree. Even for the simplest
case, a circle, a speedup is possible. For more complex trimming curves the speedup increases proportionally. Of
course the achievable speed-up depends on the ratio between inside and outside area with respect to the trimming
curve. If the area inside the trimming curve is small then better speed-ups are to be expected.
The cost heuristic introduced in section 3.2 provides only small benefit. One reason is that the tripiped tree is already
a very good optimization for the inside test, and the cost heuristic has little ‘room’ to work in.
No comparison with other methods was performed because no other approaches for ray tracing triangular free form
surfaces are known. Although decomposing a quadrilateral surface into two triangular surfaces is possible, it
involves a degree elevation for the triangular surfaces, which precludes a fair comparison!

5. Conclusions and Future Work
This work presented a new method for an optimized rendering method for triangular free form surfaces. The
technique is based on a hierarchical subdivision of the free form surface. Tripipeds, triangular skewed prisms, are
used as tight bounding volumes for the hierarchy. Each leaf stores an approximation for the corresponding part of
the surface. This approximation ensures that the Newton iteration converges rapidly to the intersection point.
Results demonstrate that the method is able to compute an image in competitive times compared to a polygonal
approximation. It was shown that the image quality is superior as all lighting effects can be depicted accurately. The
memory usage of the method is moderate and pre-processing times are small.
For trimmed surfaces a compact description of the trimmed regions using constructive planar geometry, CPG, was
presented. The algorithm adapts the hierarchical subdivision pattern to the shape of the trimming curve(s). This
allows predetermining the outcome of the inside test for almost all parts of the surface, thereby providing significant
speed-up as unnecessary computations are avoided. Cost heuristics were introduced to improve the results even
further, although they achieved only a minor speed-up in our tests.
It is straightforward to apply the presented adaptive subdivision method to rendering polygonal free form surface
approximations. Note that in this case no inside test can be performed at run-time, therefore a finer subdivision will
be necessary in general.
Future work includes methods to compute the subdivision of the surface on demand, e.g. as in [18]. This will reduce
the memory usage even further and is needed for models with a large number of free form surfaces. Also the
extension of the presented techniques to quadrilateral free form surfaces is considered. Evaluation of a new iteration
technique [17] is also planned.

Acknowledgements
Thanks to J. Bramsteidl for implementing parts of the software and to W. Barth, J. Volkert, D. Manocha, T. Whitted,
T. Hudson, and G. Meenakshi for helpful comments on previous versions of this manuscript. Many thanks to the
anonymous reviewers for their constructive suggestions. Thanks also to Jörg Peters for the 288-patch model. The
author acknowledges support from the Austrian Science Foundation (FWF).

References
[1] D. H. Ballard, Strip Trees: A Hierarchical Representation for Curves, Communications of the ACM 24(5), pp. 310-321,

1981.
[2] W. Barth, W. Stürzlinger, Efficient Ray tracing for Bézier and B-Spline Surfaces, Computers & Graphics 17(4), pp. 423-

430, July 1993.
[3] J. Bramsteidl, Ray tracing von Getrimmten Freiformflächen, Master thesis, Univ. of Linz, Austria, March 1996.
[4] S. Campagna, Vergleich und Erweiterung von Verfahren für die Schnittpunktberechnung von Strahlen mit Polynomflächen,

Master thesis, Univ. of Erlangen, Germany, August 1995.
[5] W. Dahmen, C. A. Micchelli, H. -P. Seidel, Blossoming begets B-Splines built better by B-Patches, Math. Comp., vol. 59,

pp. 97-115, 1992.
[6] G. Farin, Triangular Bernstein-Bézier patches, Computer Aided Geometric Design 3(2), pp. 83-128, 1986.
[7] G. E. Farin, Curves and Surfaces for Computer Aided Geometric Design, 4th edition, Academic Press, New York, 1997.
[8] D. J. Filip, R. N. Goldman, Conversion from Bézier-rectangles to Bézier-triangles, Computer Aided Design, vol. 19, pp. 25-

27, 1987.
[9] J. D. Foley, A. van Dam, S. K. Feiner, J. F. Hughes, Computer Graphics: Principles and Practice, second edition, Addison-

Wesley, 1990.
[10] A. Fournier, J. Buchanan. Chebyshev Polynomials for Boxing and Intersections of Parametric Curves and Surfaces,

Computer Graphics Forum 13(3) (Proceedings EUROGRAPHICS ‘94), pp. 127-142, September 1994.
[11] R. N. Goldman, Subdivision Algorithms for Bézier Triangles, Computer Aided Design, vol. 15, pp. 159-166, 1983.

- 15 -

[12] S. Gottschalk, M. C. Lin, D. Manocha, OBBTree: A Hierarchical Structure for Rapid Interference Detection, Computer
Graphics (Proceedings SIGGRAPH ‘96), pp. 171-180, August 1996.

[13] B. Hamann, P. -Y. Tsai, A Tessellation Algorithm for the Representation of Trimmed NURBS Surfaces with Arbitrary
Trimming Curves, Computer-Aided Design, vol. 28, pp. 461-472, 1996.

[14] J. T. Kajiya, New Techniques for Ray Tracing Procedurally Defined Objects, Computer Graphics 17(3) (Proceedings
SIGGRAPH ‘83), pp. 91-102, July 1983.

[15] S. Krishnan, D. Manocha, An Efficient Surface Intersection Algorithm based on Lower Dimensional Formulation, ACM
Trans. On Computer Graphics, 16(1), pp. 74-106, 1997.

[16] T. Nishita, T. W. Sederberg, M. Kakimoto, Ray Tracing Trimmed Rational Surface Patches, Computer Graphics
(Proceedings SIGGRAPH ‘90), vol. 24, pp. 337-345, August 1990.

[17] K. Qin, M. Gong, Y. Guan, W. Wang, A New Method for Speeding Up Ray Tracing NURBS Surfaces, Computers &
Graphics 21(5) pp. 577-586, 1997.

[18] S. M. Rubin, T. Whitted, A 3-Dimensional Representation for Fast Rendering of Complex Scenes, Computer Graphics 14(3)
(Proceedings SIGGRAPH ‘80), pp. 110-116, July 1980.

[19] W. Stürzlinger, R. F. Tobler, M. Schindler, FLIRT - Faster than Light Ray Tracer, Technical Report, Institut für
Computergraphik, Technical University of Vienna, Aug. 1993.

[20] M. Sweeney, R. Bartels, Ray Tracing Free-Form B-Spline Surfaces, IEEE Computer Graphics & Applications 6(2), pp. 41-
49, 1986.

[21] D. Toth, On Ray Tracing Parametric Surfaces, Computer Graphics (Proceedings SIGGRAPH ‘85), vol. 19, pp. 171-179,
July 1985.

[22] J. Yen, S. Spach, M. Smith, R. Pulleyblank, Parallel Boxing in B-Spline Intersection, IEEE Computer Graphics &
Applications 11(1), pp. 72-79, Jan. 1991.

Appendix
The following rules are used to adapt the subdivision pattern to the trimming curve: The simplest case is that one
straight edge segment of the trimming curve crosses the triangular parameter domain. If the subdivision pattern
incorporates this edge directly no further inside tests are necessary in this region of the surface. Fig. 11(b) is an
example where the entire triangular domain has been subdivided regularly once (as there are many segments
crossing the triangle), and subsequently the center, top-down triangle has been subdivided along the straight crossing
edge.
For curved edge segments of the trimming curve the subdivision pattern can only approximate the shape of the
curve. The freedom to subdivide in any direction is still exploited to limit the region needing an inside test to a small
portion of the whole surface. First all intersection points of the curve with the triangle borders are computed. If there
are more than two the triangle is subdivided regularly. Otherwise, the secant is constructed, which gives one edge of
the subdivision pattern. A second edge is obtained by computing the curve point corresponding to the center value of
the parameter interval and constructing a tangent parallel to the secant. The two edges define a trapezoidal region
that approximates an enclosure for the trimming curve. If the distance between secant and tangent is small compared
to the size of the triangle only the secant is used to subdivide the triangle. Otherwise, the trapezoid is split into three
triangles using the midpoint of the longer of the two edges. The upper part of Fig. 11(b) shows an example for a
curved segment. The secant to the curved edge segment has to be moved a short distance, relative to the triangle
edge length, away from the curve to avoid problems with numerical instabilities. In Fig. 11(b) this has been
exaggerated to illustrate the principle.
For the general case of multiple edge segments of the trimming curve crossing or inside a triangle, the following
heuristic rules are used:
1. Two straight edges: For each edge the maximum of the deviations of the two intersection points from the

middle point of the corresponding triangle edge is computed. The edge with the smaller value is chosen to
achieve a more balanced subdivision pattern. See the lower left and right part of Fig. 11(b). If an edge intersects
a triangle vertex this edge is used to subdivide the triangle into two parts.

2. A straight edge and a curved edge: For simplicity the subdivision proceeds along the straight edge.
3. For all other configurations regular subdivision into four triangles is performed.
For all cases discussed above the triangles of the resulting subdivision pattern are examined to avoid very long thin
triangles, which may cause numerical problems. If the aspect ratio of a triangle of the subdivision pattern falls below
a pre-defined threshold regular subdivision is used instead of irregular subdivision.
Once subdivision reaches a pre-defined limit a leaf is marked as needing an inside test and a reference to the
corresponding trimming curve is stored. Only such leaf nodes need inside tests during ray tracing, all other leaves
are classified by the algorithm to be either completely inside or completely outside the trimming curve.

