
Semantic Constraints for Scene Manipulation

Michael G�osele, Univ. of Ulm, Germany

Wolfgang Stuerzlinger�, York University, Toronto

Abstract

The creation of object models for computer graphics
applications, such as interior design or the genera-
tion of animations is a labour-intensive process. To-
day's computer aided design (CAD) programs address
the problem of creating geometric object models quite
well. But almost all users �nd common tasks, such as
quickly furnishing a room, hard to accomplish. One
of the basic reasons is that manipulation of objects
often does not yield the expected results.

This paper presents a new system that exploits
knowledge about natural behavior of objects to pro-
vide simple and intuitive interaction techniques for
object manipulation. Semantic constraints are intro-
duced, which encapsulate such `common knowledge'
about objects. Furthermore, we present a new way
to automatically infer a scene hierarchy by dynam-
ically grouping objects according to their constraint
relationships.

Keywords: Virtual Environments, User Interface
for Modeling, Constraints

1 Introduction and Previous Work

Today's computer-aided design (CAD) programs ad-
dress the problem of creating single geometric object
models quite well. But CAD systems are not well
suited for the quick creation of scenes populated with
thousands of objects. One simple, illustrative task is
the modeling of an attractive living room based on
a library of pre-de�ned objects. While one can po-
sition the main objects like the table and couch in a
reasonable short time it is much more work to gener-
ate a nice looking, detailed model with many common
accessories.

Direct manipulation of objects with 6 degree-of-
freedom devices is a very intuitive user interface. But
it is hard to position objects precisely and user fa-
tigue is an issue. For a discussion of the general prob-
lems see [HPGK94]. Due to the limitations of three-
dimensional (3D) displays and 6 degree-of-freedom in-
put devices, a great deal of research has been directed
towards software-based techniques for manipulating
3D objects with standard, low-cost 2D input and out-

�http://www.cs.yorku.ca/~wolfgang

put devices. One approach adds di�erent `widgets' to
the displayed objects. To manipulate the object the
user selects the appropriate widgets. But even the
latest work [SHR+92] concedes that 3D widget sets
do not approach the utility of their 2D counterpart.

Another approach that attacks the problem from a
di�erent angle uses constraints, which specify the rel-
ative position and orientation of objects. One simple
example is `on-plane'. This constraint limits transla-
tions to motions parallel to the plane and allows only
rotation around the orthogonal axis. Many constraint
systems force the user to specify all constraints before-
hand and utilize a constraint solver to �nd a con�g-
uration that satis�es them. Examples of recent work
can be found in [Bar94, Bor91, HHLM92]. One major
problem is that constraint systems are hard to solve at
interactive rates, especially for 3D scenes with many
objects.

Bier presented a user interface for specifying con-
straints between objects [Bie86] and introduced the
Snap-Dragging concept [Bie90] for easier selection of
object features. Both systems use constraints only for
the initial placement of objects and do not maintain
them. Based on this work Gleicher [Gle93] introduced
a system that incrementally maintains the constraints
during manipulation. Houde [Hou92] utilized simple
on-a-surface constraints for object manipulation in a
3D world and de�ned a resting plane or gravity di-
rection for each object. Bukowski and S�equin [BS95]
enhanced the user interface for this approach further
and included the ability to stack objects. Common to
all above approaches is that they are based only on
simple geometric constraints. They utilize no or little
knowledge about where an object is placed `naturally'.

2 System Overview

The laws of physics determine the behavior of objects
in real life. Most important for a static scene are grav-
ity, friction, and the fact that objects do not penetrate
each other.

However, in addition to the physical properties peo-
ple expect objects in a natural environment to behave
according to their experience. They know that a chair
will be standing on the 
oor and a painting will be
hung on a wall. Hanging the chair on the wall and
placing the painting on the 
oor is against common



sense. Bukowski and S�equin de�ned a direction of
gravity for each object [BS95]. But often more in-
formation about an object is available that is useful
for positioning. A chair and a cup are both placed on
horizontal surfaces. But a chair is usually standing on
the 
oor whereas a cup is standing on top of a table
or a shelf and not on the 
oor.

Based on this observation our system uses surface
constraints to describe possible relations between ob-
jects. Our system combines several approaches: It
enhances the object association concept [BS95] by
adding declarative modeling style information. With
this information we can create bindings between ob-
jects that re
ect the natural behavior of the objects.
Objects can be connected together, which makes
them behave similar to Bier's snap dragging approach
[Bie90]. Furthermore, these connections lead to a dy-
namic grouping technique, which is based on natural
relations between objects. We are using collision de-
tection/avoidance to prevent penetration of objects.

Both mechanisms (constraints with dynamic group-
ing and collision detection/avoidance) together cover
a large part of the natural behavior of objects. This
lets users interact naturally and quickly with objects
in the virtual environment.

3 Constraint Mechanisms

3.1 Surface Constraints

A user of our system builds scenes based on a pre-
de�ned library of objects. For each object two sets
of areas are de�ned in this library: o�er areas A =
fa1; a2; : : : g and binding areas B = fb1; b2; : : : g.
O�er areas mark places on the object surface where

other objects can connect to the object. Typical of-
fer areas are the top of a table, the top of a shelf, or
the surface of a wall. Binding areas are their coun-
terpart and mark areas on the object surface where it
can connect to other objects. Typical binding areas
are the bottom of a bottle, the sides of a die, or the
standing area of a chair. Figure 1 shows examples for
o�er and binding areas.

Each o�er area a = (p; l) and each binding area
b = (p; l) consists of an oriented planar polygon p

and a label l. p de�nes the geometry and orientation
of the area. An orientation vector is associated with
each o�er and binding area. Most of the behavior of
an object is encoded in the labels l. Each possible
value for l stands for a class of surfaces. Examples for
labels are on-Workspace or on-Floor. Intuitively an
o�er area and a binding area �t together if they both
have the same label.

However some values for l are special cases of
other values: a workspace can be (mis-)used to store
things. Therefore we introduced the special case re-

Figure 1: Table, lamp and 
oor with o�er areas
(dashed) and binding areas (dotted). Orientation vec-
tors are perpendicular to the o�er or binding areas
and de�ne their binding direction.

on-Workspace

on-Floor on-Store

on-Top

N N N N N N N N N N
on-Wall

on-Plane

qqqqqqqqqqq

Figure 2: Partial order diagram �L of surface con-
straints.

lation/hierarchy �L to avoid having multiple labels
per area. An o�er area a and a binding area b �t to-
gether if and only if l(b) �L l(a). Figure 2 shows as
an example the built-in hierarchy �L of our system.
Note that the de�nition of o�er and binding areas

depends on the (subjective) opinion of a user about
the natural behavior of an object and not on the con-
text in which an object is used. It is therefore possi-
ble to create a database of objects with corresponding
de�nitions that can be used in many di�erent appli-
cation areas.

3.1.1 Satisfying a Surface Constraint

The process of creating a connection between an of-
fer area and a binding area is called satisfying a con-
straint. A constraint between a binding area b and
an o�er area a can only be satis�ed if their labels are
partially ordered with l(b) �L l(a) and if they are ge-
ometrically aligned. A binding area b is geometrically
aligned to an o�er area a if they are coplanar, if b is
totally included in a, and if their orientation vectors
coincide.



The semantic criterion (the labels are partially or-
dered) is veri�ed only for newly satis�ed constraints.
The geometric alignment criterion restricts the way
objects can be moved relative to each other without
breaking the corresponding surface constraints. It is
tested whenever an objects in the scene is moved.

3.2 Collision Detection/Avoidance

In reality solid objects cannot interpenetrate each
other. Our systems uses collision detection to ensure
that no two objects occupy the same space. Due to
numerical inaccuracies collision detection sometimes
reports touching objects as intersecting. As con-
straints rely on touching surfaces we handle this case
as follows:
Whenever two objects are bound together by a sat-

is�ed surface constraint then two or more of their sur-
faces are touching. We explicitly disable collision de-
tection between two objects bound by a constraint to
avoid problems with numerical accuracy. The down-
side of this is that breaking the constraint without
moving any of the objects can lead to collisions be-
tween the two objects. This situation is handled as
an exceptional case in our implementation by requir-
ing that a surface constraint with a collision cannot
be completely broken without moving at least one of
the two objects until no collision occurs.

3.3 Consistency of Scenes

We can now de�ne a predicate consistent(s) that is
true for all valid scenes. A scene is consistent if all
satis�ed constraints are valid and no two objects are
colliding that are not connected by a satis�ed con-
straint:

consistent(s),

(8a; b 2 s : satis�ed(a; b)!

(aligned(a; b) ^ l(b) �L l(a))) ^

(8o; o0 2 s : collision(o; o0)!

(9a 2 A(o); b 2 B(o0) : satis�ed(a; b) _

9a 2 A(o0); b 2 B(o) : satis�ed(a; b)))

Our goal is to keep the scene consistent at all times.
The system starts with an empty scene. According

to the above de�nition an empty scene is always con-
sistent, because there are no objects in the scene. If a
scene is loaded from �le, it is checked for consistency
during loading. Therefore, it is su�cient to show that
all our operations transform a consistent scene into a
consistent scene.
When an object is added to the scene it has to be

placed at a position where it does not collide with any
other object in the scene. Removing an object from
a scene is a trivial task: satis�ed surface constraints

can be broken up and collisions can be removed from
the scene. Both operations cannot render a consistent
scene inconsistent.

It remains to be shown that moving an object and
breaking or satisfying a surface constraint in our sys-
tem maintains consistency. This is shown in section 5
after the concept of dynamic grouping is introduced
in the following section.

4 Dynamic Grouping

Each satis�ed surface constraint implies also a hier-
archy onto the objects involved. The object that be-
longs to the binding area is grouped to the o�ering
object. If the o�ering object is moved the bound ob-
ject should be moved, too. But the bound object can
move independently of the o�er object. Consider the
example of a cup standing on a table: If the table
is moved the cup will move along, too. Note that it
is still possible to move the cup without moving the
table.

The satis�ed constraints within a scene form a di-
rected graph. This graph can be interpreted as a hi-
erarchical grouping graph. Figures 3 and 4 show an
example of a scene and the corresponding grouping
graph. The chair is 
oating in the air and not yet
bound by a satis�ed surface constraint. It is therefore
a singular node in the grouping graph.

Figure 3: Picture of a scene. Figure 4 shows the cor-
responding grouping graph.

Note that we use existing information from the ob-
jects and their constraints to build this graph. We do
not have to infer the grouping graph from the position
of the objects in the scene. This is a very robust and
reliable way of automatically deriving a scene hierar-
chy as it does not rely on geometric computations.

Whenever the user moves an object and a con-
straint is satis�ed or broken the method re-structures
the internal representation to maintain the correct hi-
erarchical grouping. Details of this are described in
section 6.1.



Floor

{{

on-
Floor

x x x
x x x

x x x
x x x

x

��

on-
Floor

��

on-
Floor

44
44

44
44

44
44

44
44

44
44

44
Chair

Table

��

on-
Top

Wall

��

on-
Wall

""

on-
Wall

FFF
F

FFF
F

Lamp Chalkboard Desk

��

on-
Workspace

!!

on-
Store

BB
BB

BB
BB

BB
BB

Bottle Ink well

Figure 4: Grouping graph for the scene in �gure 3.
The label of satis�ed surface constraints is given in
italics.

4.1 Special Cases

The grouping graph has an arbitrary structure. There
are two special cases when a circle exists in the graph.
A directed circle in the graph implies that the ob-

jects in the circle are not hierarchically arranged but
are completely grouped. This can happen for exam-
ple when four walls are grouped together to form a
room. If one of the objects is moved all other objects
have to be moved, too. At present our implementa-
tion does not allow directed circles due to the way the
hierarchical grouping mechanism is implemented (for
details see section 6.1).
If the grouping graph contains an undirected circle

there may be objects with a common successor for
which no order is de�ned. Figure 6 shows an example
where no ordering between wall and table exists.

Figure 5: Picture of a scene. Figure 6 shows the cor-
responding grouping graph.

As no ordering information exists it is not clear
whether or not the wall moves when the table is
moved. Both alternatives are equally viable and there
is no one correct answer as di�erent persons will ex-
pect a di�erent solutions.
In our implementation we chose to group only an

Floor

��

on-
Floor

??
??

??
??

?

��

on-
Floor

� �
� �
� �
� �
�

Table

��
on-

Workspace� �
� �
� �
� �
�

Wall

��
on-
Wall

??
??

??
??

?

L-Piece

Figure 6: Grouping graph with undirected circle for
the scene in �gure 5. There is no ordering between
table and wall.

object's successors to the object. This is consistent
with the behavior of the system in other cases. It
is a viable solution and leads only to a small work
overhead for the user in cases where it is the wrong
choice.

5 Algorithms

5.1 Constraint Satisfaction Algorithm

The formal conditions for satisfying a surface con-
straint were already described in the previous sec-
tions: They deal with the position and shape of the of-
fer and binding areas, their labels, collisions between
objects and the resulting structure of the grouping
graph. Based on these conditions a declarative mod-
eling system can try to �nd a con�guration of ob-
jects where all possible surface constraints are satis-
�ed. But due to the potentially large number of com-
binations this is a very time-consuming option. Fur-
thermore, there are often many possible solutions and
not all of them match the user's expectations. For an
overview over research on constraint satisfaction see
e.g. [Doh95].
An interactive system allows the user to manipulate

objects directly and provides much better feedback to
the user. It is very important that the user can pre-
dict and understand the behavior of the objects - in
other words the objects should behave according to
the user's experience. Furthermore, objects should
only be moved to satisfy a surface constraint when
they are already close to the desired location and ori-
entation.
As discussed above a constraint is satis�ed if o�er

and binding areas are coplanar and share the same
orientation and if the binding area is included in the
o�er area. In general an object has to be rotated and
translated to satisfy these requirements.
First our search algorithm rotates the binding area

object so that the orientation vectors of o�er and
binding area coincide. The rotation axis is chosen
to be parallel to the o�er area. This avoids unnatural
rotations of the binding object during the alignment



procedure.

The binding area object is called close, if the per-
pendicular projection of the binding polygon on the
o�er polygon is completely included in the o�er poly-
gon. To keep objects from moving through the whole
scene a maximal distance between o�er and binding
area is de�ned in the system.

Further tests ensure that moving the binding object
maintains the alignment of other satis�ed constraints
in the scene and that the object does not collide with
other objects at the new position.

The search is performed by algorithm 1. The
function checkMove(o; t; r) (see section 5.2) checks
whether a given translation t and rotation r can
be applied to a scene without making it inconsis-
tent. The function searchCloseBindings(b; s) returns
all spatially close o�er areas a of objects o0 that can
satisfy the given binding area and the necessary trans-
lation t and rotation r. The algorithm guarantees that
the scene remains consistent whenever a surface con-
straint is newly satis�ed.

Algorithm 1 satisfying binding area b of object o in
scene s

satisfyConstraint(b; o; s)

1: o�ers( searchCloseBindings(b; s)

2: while jo�ersj > 0 do
3: choose x = (o0; a; t; r) 2 o�ers
4: o�ers( o�ers n fxg
5: disable collision test between o and o0

6: if checkMove(o; t; r) does not change (t; r)
then

7: satis�ed(a; b)( true
8: if grouping graph contains no directed circle

then

9: o�ers( ;
10: for all o00 2 O(s) do
11: if ancestor(o; o00) then
12: apply (t; r) to o00

13: else

14: satis�ed(a; b)( false
15: enable collision test between o and o0

16: else

17: enable collision test between o and o0

5.2 Restriction on the movement of ob-
jects by satis�ed surface constraints

Before applying any transformation to an object in a
scene algorithm 2 is used to check whether this can be
done without introducing an inconsistency. Depend-
ing on the context a transformation onto an object
can be either modi�ed or completely rejected. The

system modi�es the current transformation whenever
the user is moving a constrained object so that the
constraint is maintained. Whenever the system tries
to satisfy a new constraint it will reject the transfor-
mation if no solution can be found. Note that it is
possible that an object cannot be moved anymore if
it is bound by several constraints simultaneously.

The surface constraints in
uence the way an object
o can be moved based on the following restrictions:
All objects that are grouped to o are moved together
with o. Thus satis�ed surface constraints between
two objects grouped together cannot be corrupted.
Special precautions are necessary if the binding object
of a satis�ed surface constraint is moved without the
o�er object being moved, too.

Therefore algorithm 2 �rst collects all orientation
vectors of satis�ed surface constraints whose binding
objects are grouped to o and whose o�er objects are
not grouped to o. The object o can only be translated
perpendicular to this set of orientation vectors and
only rotated along an axis parallel to the set. t and
r are modi�ed accordingly. Furthermore, the system
has to test if the bound polygon is still included in
the o�er polygon and if no collisions occur. Note that
in the description t ( ~0 and r ( ~0 both describe an
identical transformation.

Algorithm 2 check whether translation t and rota-
tion r can be applied to object o in a scene without
making it inconsistent

checkMove(o; t; r)

1: group = fo and all objects grouped to og
2: ovs = fall orientation vectors of satis�ed surface

constraints satis�ed(a; b) with b 2 group and a 62
groupg

3: remove duplicate directions (parallel or antiparal-
lel) from ovs

4: if jovsj = 1 then
5: set t perpendicular to ovs[0], axis(r) ( ovs[0]
6: else if jovsj = 2 then
7: set t perpendicular to ovs[0] and ovs[1], r ( ~0
8: else if jovsj � 3 then
9: t( ~0, r ( ~0

10: if t 6= ~0 _ r 6= ~0 then
11: if t and r do not preserve polygon inclusion for

satis�ed surface constraints then
12: t( ~0, r ( ~0
13: if applying t and r to all objects in group leads

to a collision then
14: t( ~0, r ( ~0

15: return (t; r)



5.3 Breaking a surface constraint

Breaking a satis�ed surface constraint requires two
steps: the data structures describing the satis�ed con-
straint have to be updated and the collision test be-
tween the two objects has to be re-enabled. However,
due to numerical inaccuracies it is possible that break-
ing the constraint leads to a collision.

If a constraint is broken we add the corresponding
object pair to an exception list. All collisions between
pairs on this list are ignored to keep the scene consis-
tent. As soon as an object pair is no longer colliding it
is removed from the list and the constraint is removed.

6 Implementation Issues

The IConS system is based on SGI's OpenGL Op-
timizer 1.1 (see [Eck97]) and implemented in C++.
Objects are represented as polygonal models. IConS
uses a simple two-dimensional interface. The main
interaction device is the mouse, keyboard commands
are used only for switching modes and organizational
tasks (such as deleting an object). Currently three
modes exist: constrained and un-constrained object
movement and viewer navigation.

6.1 Implementation of Dynamic Group-
ing

The grouping graph as introduced in section 4 in
which all objects have one or no satis�ed surface con-
straints is a tree (or a set of trees). In Optimizer 1.1
we can represent the scene in a scene graph that has
the same structure as the grouping graph. As all
transformations of one node apply also to all of its
children we can maintain dynamic grouping with no
additional cost.

Whenever a surface constraint is newly satis�ed we
restructure the scene graph to make the binding ob-
ject a child of the o�er object (see �gure 7). Each
transformation of the o�er object is then automati-
cally applied to the binding object. Conversely, when-
ever a surface constraint is broken we attach the pre-
viously bound object to the root node of the tree.

If an object o is bound by more than one constraint
it will also appear at several places in the grouping
graph. If all o�er objects are ordered in the group-
ing graph the object o is simply inserted in the scene
graph as a child of the o�er object lowest in this order
But if the o�er objects are not ordered the scene graph
has to be restructured before one of the o�er objects
is moved to ensure that o is one of its successors.

Root of the
Scene Graph

�� &&MM
MMM

MMM
MM

Root of the
Scene Graph

��
Object A //

Surface
Constraint

____ Object B Object A

��
Object B0

Figure 7: Changes in the scene graph when a sur-
face constraint is satis�ed. B becomes a successor of
A. The change from B to B0 symbolizes the changed
transformationof Object B.

7 Results

In the presented system the interaction speed depends
mainly on the following three factors: First, Each sat-
is�ed constraint between the moved object and the
rest of the scene has to be checked for validity. This
is quite fast because an object or a group of objects
is usually bound by less than three constraints (oth-
erwise it would be immovable). Moreover, for each
non-satis�ed binding area of the moved object all of-
fer areas with matching labels within close proximity
have to be checked. Lastly, a collision check for the
moved object is necessary.

These factors depend mainly on the local complex-
ity of the scene. Consequently, our approach scales
well with scene size.

A simple, informal user test was performed using
Gomoll's methodology [Gom90]. Six subjects were
asked to perform simple tasks with our system. We
observed their performance and collected their com-
ments about the program. No timing tests were per-
formed. The test showed that even inexperienced
users could quickly construct a virtual environment
with the IConS system. One user even remarked that
objects behaved quite naturally.

8 Conclusion and Future Work

We presented the IConS modelling system, which uses
semantic constraints to facilitate user interaction with
prede�ned objects in a scene. The constraints en-
capsulate (part of) the natural behaviour of objects,
which ensures that objects are placed according to
the user's expectations. The current prototype uses a
traditional 2D mouse and screen interface.

During manipulation the semantic constraints cull
most potential alternatives from consideration. Only
a small number of geometric constraint checks are per-
formed, which ensures the system's interactivity.

In the future we want to extend the constraint sys-
tem to encapsulate object behavior even more accu-



rately and to support complete grouping of objects
in the presence of cycles. Furthermore, we need to
ensure that the system can deal e�ciently with large
scenes with thousands of objects. And �nally, we want
to test the semantic constraint concept with a di�er-
ent user interfaces such as an immersive VR system
or even a system with haptic feedback.

9 Acknowledgments

We would like to thank the Baden-W�urttemberg Pro-
gram, the FWF, the computing centre and the Dept.
of Programming Methodology at the Univ. of Ulm,
and especially all people at the Dept. of Computer
Science at the Univ. of North Carolina at Chapel Hill
for their support.

References

[Bar94] D. Bara�. Fast Contact Force Computa-
tion for Non-penetrating Rigid Bodies. In
Computer Graphics (SIGGRAPH 1994),
pages 311{318, 1994.

[Bie86] Eric A. Bier. Skitters and Jacks: In-
teractive 3D positioning tools. In Proc.
1986 Workshop on Interactive 3D Graph-
ics, pages 183{196, 1986.

[Bie90] Eric A. Bier. Snap-Dragging in Three Di-
mensions. In Computer Graphics (1990
Symposium on Interactive 3D Graphics),
pages 193{204, 1990.

[Bor91] A. Borning. Constraint Hierarchies and
Their Applications. In IEEE CompCon
Spring 1991, Digest of Papers, pages 376{
387. IEEE Computer Society Press, Los
Alamos, 1991.

[BS95] Richard W. Bukowski and Carlo H.
S�equin. Object Associations: A Sim-
ple and Practical Approach to Virtual
3D Manipulation. In Computer Graph-
ics (1995 Symposium on Interactive 3D
Graphics), pages 131{138, 1995.

[Doh95] M. Dohmen. A Survey of Constraint Sat-
isfaction Techniques for Geometric Mod-
eling. Computers & Graphics, 19(6):831{
845, 1995.

[Eck97] George Eckel. Cosmo 3D Programmer's
Guide. Silicon Graphics, Inc., 1997.

[Gle93] M. Gleicher. A Graphics Toolkit Based on
Di�erential Constraints. In ACM UIST
'93, pages 109{120, 1993.

[Gom90] Kathleen Gomoll. Some Techniques for
Observing Users. In B. Laurel, editor, The
Art of Human-Computer Interface De-
sign, pages 85{90. Addison-Wesley, 1990.

[HHLM92] R. Helm, T. Huynh, C. Lassez, and
K. Marriott. Linear Constraint Tech-
nology for Interactive Graphic Systems.
In Graphics Interface '92, pages 301{309,
1992.

[Hou92] Stephanie Houde. Iterative Design of an
Interface for Easy 3-D Direct Manipula-
tion. In Proceedings of the ACM Confer-
ence on Human Factors in Operating Sys-
tems - CHI '92, pages 135{141, 1992.

[HPGK94] Ken Hinckley, Randy Pausch, John C.
Goble, and Neal F. Kassell. Design Hints
for Spatial Input, Course Notes { Devel-
oping Advanced VR Applications. In SIG-
GRAPH 1994, 1994.

[SHR+92] S. Snibbe, K. Herndon, D. Robbins,
D. Conner, and A. van Dam. Using Defor-
mations to Explore 3D Widget Design. In
Computer Graphics (SIGGRAPH 1992),
pages 351{352, 1992.


