
Group Selection Techniques for Efficient 3D Modeling

Ji-Young Oh*, Wolfgang Stuerzlinger**, Darius Dadgari**
* Optical Sciences, University of Arizona

Tucson, AZ, USA
** Computer Science, York University

Toronto, ON, Canada

ABSTRACT
Object selection and manipulation (e.g. moving, rotating) are the
most basic tasks in 3D scene construction. While most research on
selection and manipulation techniques targets single objects, we
examine the concept of group selection in this paper.

Group selection is often given lesser importance than single
object selection, yet is vital in providing users with a way to
modify larger scenes with objects which are repetitive, sequential,
or otherwise inherently understood as ‘belonging together’ by a
user. We observed users manipulating objects in 3D scenes, and
while doing so, they clearly expected that objects would be
grouped based on their gravitational relationship. That is, all
objects that are supported by some selected object will follow the
motion of the selected object when manipulated.

In this paper, we present a system that efficiently supports the
manipulation of groups of objects via a gravitational hierarchy. As
this hierarchy is derived with a collision detector, the new
grouping techniques do not require semantic or user specified
information to work. The results of the evaluation show that using
the gravitational hierarchy improves scene rearrangement
significantly compared to conventional non-hierarchical methods.
Finally, we discuss lessons learned from this study and make
some suggestions on how the results can be incorporated into
other systems.

CR Categories and Subject Descriptors: I.3.6 [Computer
Graphics]: Methodology and Techniques - Interaction Techniques,
I.3.5 [Computational Geometry and Object Modeling]: Object
hierarchies, J.6.0 [Computer-aided design (CAD)]
Additional Keywords: Group selection and manipulation

1 INTRODUCTION
Selection and manipulation of objects in 3D modeling systems are
typically used to modify a virtual representation of real world
objects such as furniture, buildings, or architectural elements –
walls or pillars, etc. These types of scenes generally include some
sort of ground surface to provide users with a frame of reference
and a depth cue [1, 21]. This ground surface is generally used as a
base for all construction.

In real world scenery, we can frequently observe scenes
composed of repetitive or similar objects – e.g. rows of desks and
chairs in an office, windows on a building, or houses in a
suburban town. Even if some components in the scene do not look
exactly the same, people tend to ignore those differences and
group these objects into conceptual units to understand the overall
structure, e.g. the way we can conceptually group a row of
assorted books on a shelf.

3D scene modeling systems often replicate such real world

situations where an element or a number of neighbouring
elements are repeatedly used in different arrangements. Hence,
selection and rearrangement of groups are important tasks in 3D
scene modeling. In particular, we believe that group selection and
manipulation are key ingredients for systems that can deal with
larger scale problems, i.e. scenes consisting of many objects.

The focus of this paper is efficient and natural 3D group
selection methods to help users explore various arrangements of a
larger, complex scene. In this context, we are mainly interested in
two very common types of grouping: bi-directional and
hierarchical groupings. A bi-directional relationship is perceived
when objects are arranged in a row – e.g. tables in a lecture hall or
trees along a street. On the other hand, a hierarchical relationship
is perceived when an object is attached to another object by
gravity or a fixture – e.g. a cup on a tabletop or picture on a wall.

For bi-directional grouping, users generally use the
conventional method of rectangular selection to select a group of
objects in current 3D modeling systems. One disadvantage of this
technique is it may also select objects that are hidden from the
current viewpoint (i.e. objects behind other objects), and thus
users have to frequently check the selected set of objects
whenever they perform a grouping. In our informal observations
of users naïve to 3D modeling, they seemed to be often surprised
by the selection results after discovering that some unexpected
objects were grouped. Phrased differently, we believe that the
familiar paradigm of 2D rectangle selection transfers only
imperfectly into the 3D domain, as perspective and occlusion
complicate the issue.

We also would like to point out that the standard user interface
mechanism of (shift-) clicking on each object in turn to define a
group is hardly optimal. While it is one of the most general
grouping techniques and can be used for arbitrary selections, we
argue that it is suboptimal for many common scene structures with
a hierarchical scene structure.

For hierarchical grouping the placement of an object usually
determines what type of behaviour it can have, e.g. the type of
surface that the object can be placed on or the constraint plane that
the object can move on. Such type of behaviour can be explicitly
supported via semantic definitions or explicit user specification.
The disadvantages of using semantic information are: 1) it
restricts the domain of scene construction to the range of provided
semantic information, e.g. kitchen/office interior design and 2) it
is difficult to deviate from the semantic constraints on the fly, e.g.
a plate designed to go on tables cannot be placed on a wall. On the
other hand, explicit user specification requires some level of user
expertise, and thus this idea is only useful for domain experts such
as machine part designers.

This paper introduces a new hierarchical grouping scheme, and
its application to the manipulation of bi-directional groups. The
presented manipulation techniques provide efficient group
selection for general types of objects in a 3D modeling system.
The new hierarchical grouping scheme makes use of contact
information provided by a collision detector, and thus does not

require semantic information. This allows users to manipulate
arbitrary scenes without requiring semantic information.
Furthermore, users can play and experiment with many different
compositions, since the system does not restrict object placement
to particular surface types.

2 PREVIOUS WORK
Many commercial 3D modeling systems are very complex
applications and require substantial user training before they can
be used effectively. Most of these systems include only some
variant of rectangle selection and/or shift-clicking to support
group selection. On the research side, many different solutions
have been proposed to simplify the modeling process [5, 6, 9, 10,
16, 22]. Most of these systems are targeted at the creation of a
single or a small number of objects. Typically, the modification of
the overall structure of a scene through efficient group selection
and manipulation is neglected in these prototypes. For example, in
Chateau [10], users have to delete an edge and redraw it
(potentially repeatedly) to modify the created scene, rather than
selecting an edge and manipulating it directly to create the desired
result. Therefore, these systems are limited when it comes to the
creation and iterative manipulation of a large, complex structure.
It is also noteworthy that a recent publication on Virtual-SAP [3],
an architectural building design and simulation system for
Immersive Virtual Environments, explicitly recognizes the
selection and manipulation of object groups as an important
problem in their “future work” section.

In the following, we discuss only 3D modeling systems that
address the issue of group selection and/or manipulation, as this is
a key issue for modeling of larger scenes.

Sketch [22] supports lassoing for selection of groups of
arbitrary objects. However, the accuracy of a lassoing gesture, a
quick circling motion, is somewhat limited and may lead to
selection errors. Furthermore, the problem of perspective and
occlusion still exists, similar to the problems with rectangle
selection.

Another approach for grouping can be found in DDDoolz [20],
an architectural conceptual design tool. In this system, a user fills
space with blocks, and these blocks are grouped together by
assigning them the same colour. The authors motivate their choice
with the fact that different colours are used to visualize different
architectural elements. However, in other application domains,
where colour can be an important aesthetic feature, this may not
be appropriate. Hence, this mechanism seems to be unnecessarily
restrictive and time-consuming to use as each block needs to be
coloured individually.

Several researchers also attempted to provide rapid assembly
and rearrangement of a 3D scene using a library of predefined
objects and accompanying knowledge-base, e.g. for machine
assembly [11], or building interior design [4, 15, 18, 19]. Real-
world behaviours such as gravity or collision are usually
simulated to facilitate the task. One of the first was the Object
Association approach [4]. In this system, predefined information
on the behaviour of each object, such as vertical or horizontal
movement constraints, is used to restrict how objects can be
moved.

Mive [15, 18, 19] investigates the use of a several forms of
semantic constraints to rearrange predefined objects efficiently.
Hierarchical grouping was facilitated directly by the potential
placement of objects to their usual locations (e.g. phone on table)
[15, 18] and these constraints also improved user interaction
greatly. The same kind of ideas is also available in the Smartscene
technology in Multigen-Paradigms products [17]. The Mive
system also introduced a new form of bi-directional grouping,

named dual constraints, to align objects of the same kind (e.g.
cabinets on a wall, or chairs in a classroom) [19]. Objects
satisfying these dual constraints snap together, and can be
manipulated as a group. However, all constraints in the Mive
system must be pre-defined and the grouping process supports
only 2D relationships. Furthermore, the dual constraint
manipulation technique applies only to groups of identical objects.

In the Virtual Lego system [13], bi-directional grouping
techniques were investigated in a simple block world. Here, the
ideas of dual constraints from the Mive systems are extended
towards full 3D bi-directional grouping techniques. Using the two
grouping techniques directional dragging and anchoring and
grouping, users were able to manipulate complex compositions in
a block world efficiently. The main limitation of the grouping
techniques in the Virtual Lego system is that they are only
applicable to scenes with rectangular block shapes. This leaves the
question if the presented techniques will work for general types of
objects open.

The grouping techniques newly presented in this paper build
directly upon the work in Virtual Lego. Hence, the next
subsection will revisit the relevant parts of the Virtual Lego
system in detail.

2.1 Bi-directional Grouping in a Block World
The Virtual Lego system [13] was built based on the observation
that people can build large and complex scene by manipulating
various groups of relatively simple Lego blocks. Figure 1 is an
image of the user interface of the Virtual Lego system.

Figure 1. Screen capture of the Virtual Lego system.

In Virtual Lego, two grouping techniques were introduced:
directional dragging and anchoring and grouping. Both
techniques allow users to select a subset of connected components.

In directional dragging, the user drags an object, as if he/she is
tearing one part from the other. If the dragging direction is
towards a (connected) object, then it gets selected. Separation of
selected subsets occurs only if the movement amplitude exceeds a
threshold. Figure 2 demonstrates this scheme with a simple 2x2
arrangement of Lego blocks. For example, in Figure 2b, dragging
downwards and to the right, selects only the bottom right block.
Conversely, in Figure 2c, a drag downwards selects both blocks
on the bottom as they are connected. In Figure 2d, the user is
moving towards all blocks and hence, all 4 blocks are selected.
Finally, in Figure 2e and f, the user moves further and further to
the right, which eventually separates the two rightmost blocks.

Another way to describe this technique is that we assume that
objects are “sticky” in that if an object is in contact with the
currently selected object and is not in the direction opposite to the

dragging direction, then that object also becomes selected. Overall,
this technique allows the selection of many different parts of large
clusters of block objects.

 (a) (b) (c)

 (d) (e) (f)

Figure 2. Directional dragging visualized by a line from the starting
point to the current cursor position. (a) Start of separation by

clicking on a block, (b)-(e) different drag directions form
different groups, (f) dragging further separates a group of

blocks.

Anchoring and grouping (Figure 3) is a variant of directional
dragging. As explained in [13], in user studies on directional
dragging, users sometimes inadvertently broke existing
compositions as any drag may break a group. Hence, the
anchoring and grouping technique introduces an explicit
additional step to define a group: anchoring and dragging. First,
the user places one (or more) anchors onto object(s) that should
not be in the group (Figure 3.b). Then, the user can click and drag
another adjacent object to select a group (Figure 3.c). The
positional relationship between the anchored object and the
dragged object is considered to be a dragging direction, which is
used to define the selected group of objects, just like in the
directional dragging scheme. If the user does not place an anchor,
all connected objects are selected as a group. With this grouping
method, users are less likely to “break” a composition by mistake.

(a) (b) (c) (d)

Figure 3. Anchoring and grouping. (a) Dragging into any direction
without placing an anchor selects the whole (connected) object.
(b) The user places an anchor visualized by the white rectangle,
(c) clicks on another block and drags rightwards, and (d) once a

certain threshold is reached the group is separated.

These techniques provide a natural way of selecting “an object”
as perceived by a user, since people generally recognize a
connected group of elements as an object in Virtual Lego. For
example, people may perceive the scene in Figure 1 as a “castle”
that is composed of a “main gate” and two “guard houses”.
However, for the system, the scene is nothing more than a
collection of connected Lego blocks. Using the presented
grouping methods, users can select what they consider to be a
meaningful part of the scene and manipulate it as a unit.

While these two techniques work well in a world consisting of
many small blocks, they implicitly assume that all objects are of
the same type and the same size.

3 GROUP SELECTION TECHNIQUES FOR GENERAL
GEOMETRY

In the user evaluation of Virtual Lego [13], the test focused on bi-
directional grouping techniques and showed that the techniques
work well when objects have approximately the same size and
regular shapes. However, when there are objects with various
sizes and different shapes, for example, blocks, wedges, and
cylinders, then the relative position becomes an important
property. No previous work addresses this issue.

3.1 A General Group Selection Techniques
As discussed in the introduction, we believe, based on our
observation of users manipulating geometry, that the hierarchical
relationship resulting from gravity affects the grouping of objects.
That is, users automatically expect that objects supported by an
object via gravity will follow the motion of the supporting object.
Note here that objects at the same level of hierarchy may also be
grouped via a bi-directional (i.e. side-by-side) relationship. As an
analogy, computational vision researchers [2, 12] hypothesized
that humans recognize an object by decomposing it into many
smaller simplified components. They also suggested hierarchical
decomposition of objects as a scheme to recognize a category of
an object (e.g. human, dog, etc.). Note that side-by-side
relationships describe both objects that are in physical contact and
those that are not.

This section explains our grouping techniques using a simple
office scenario. However, we immediately point out that the
methods discussed below do not use any semantic knowledge
about the scene, such as whether the computer monitor in Figure 4
should always be constrained to the top surface of the desk.
Therefore, the user can place objects in any configuration, for
example, two computer monitors on top of each other or a
keyboard on a monitor. We expect that this freedom will aid the
user overall by facilitating experimentation with various
configurations of a scene.

Figure 4. An office scene and it’s contact graph

To support the idea of a gravitational hierarchy, we use a
collision detector to build a contact graph of a scene. The contact
graph is built starting from the base plane as a root node,
providing the frame of reference for the gravitational hierarchy.
As illustrated in Figure 4, the child-parent relationship in the
graph represents attachment relative to the base plane. The sibling

relationship represents a side-by-side attachment between objects
that share the same contact object as a parent. As a result, the
contact graph represents both hierarchical and bi-directional
relationships at the same time.

As in Virtual Lego, we interpret the location of the mouse
cursor as the reference position, and then allow the user to
continue with a dragging motion to select a group of objects.
Dragging within a small, static distance triggers highlighting of
the currently selected group. The selection is computed using the
contact graph and the direction of the drag from the user’s input.
Once the user is satisfied with the current selection, he/she can
drag the mouse further from the initial reference position to
separate the selected group and move it to another place. For the
3D movement, we use a previously presented technique where the
object follows the mouse cursor position naturally, while the
object stays constrained to the surfaces of the rest of the scene and
avoids collisions [14].

The difference between directional dragging, and anchoring and
grouping is in how the binding of the bi-directional relationship in
the contact graph can be disconnected. In directional dragging
(Figure 5), dragging away from the side-by-side contact
relationship disconnects the binding. The child objects that belong
to the dragged objects are also selected into the group due to their
hierarchical relationship.

(a) (b)

Figure 5. Directional dragging. (a) Objects in the dragging direction
are selected and all supported objects are selected together.

(b) Dragging away de-select the objects that are not in the
dragging direction.

In anchoring and grouping, dragging in any direction will select
all the connected components when there is no anchored object
(Figure 6.a). To disconnect the side-by-side binding, the user
places an anchor onto objects that will not belong to the group,
and then selects the desired objects (Figure 6.b, c).

 (a) (b) (c)

Figure 6. Anchoring and grouping. (a) Dragging in any direction
selects all the connected objects in the contact graph. (b) By

placing an anchor and (c) dragging on other part disconnect the
contact siblings.

When two objects support an object, that object has two parents
in the contact graph (Figure 7). In fact, an object can have an
arbitrary number of parents. Due to the gravitational hierarchy,
when any parent is selected, all child objects are also selected in
our system. That means that the monitor in the middle will be
selected when either of the two desks in Figure 7 is selected.

The user can also explicitly specify when he/she does not want
the object to be in the selected group by using either of the
presented grouping methods. For example, in directional dragging,
the user can drag objects that are underneath some object that they
do not wish to select by dragging “downward”, which only selects
the part underneath said object as part of the group. In anchoring,
the user can simply anchor the object that they do not want to be
in the group.

Figure 7. An object that has multiple parents

Finally, in both the directional dragging and anchoring and
grouping technique, the user can release the button before
separation occurs, i.e. after the drag direction has been used to
select the object group but before the selected group is moving
away. In this case, the highlighted group remains selected and the
user can now use other operations (such as rotation) to manipulate
the object group.

3.2 Hierarchical Rectangular Selection
In conventional rectangular selection, all the objects that are
inside a user specified rectangular region on the screen are
selected as a group. The selected group also includes any object
that is not visible from the current viewpoint. As mentioned in the
introduction, the main disadvantage of this technique is that the
user always has to check if he/she selected the desired objects by
examining it from different viewpoints. In addition, it is difficult
to select small objects that are attached to something else, since
the grouping action may result in other (larger) objects to be
selected, too.

Hierarchical rectangular selection modifies the behaviour of
conventional rectangular selection by applying the information
from the contact graph. In this technique, if any object is
determined to be inside the user specified rectangular region, then
its children objects in the contact graph are also added to the
group. For example, if the user specifies a rectangular region
around the right desk in Figure 7, then the monitor and the book
are also added to the group. The user has an option to de-select
any object that belongs to the group later by clicking on it, as in
conventional rectangular selection. In scenes with hierarchical
configurations, this technique has the advantage that the user does
not have to check if “naturally” attached objects are also selected.

3.3 Implementation
This section explains the implementation of the contact graph and
the two bi-directional grouping techniques: directional dragging,
and anchoring and dragging.

The requirements for the contact graph data structure should
allow for easy retrieval of parents of a node, easy identification of
sibling nodes in contact, and easy comparisons of hierarchical
levels. These requirements make it unnecessary to build a
conventional graph data structure that has the typical “next” or
“children” nodes to support navigation of the graph. Therefore, in
our implementation, the contact graph exists only conceptually.

In order to implement this, we build a list of nodes, each
containing: 1) the object, 2) hierarchical level number (with the
base plane defined to be at level zero), and 3) a list of parent
objects. Siblings that are in contact are easy to determine with the
following criterion: if the hierarchy level numbers of two objects
are the same and if they are in contact, then they are siblings in
contact with each other.

Figure 8 shows the pseudo-code for building our contact graph
data structure. First, the system determines the list of components
connected to the selected object, resulting in a contact list. A
collision detector [8] is used for this process. The collision
detector only produces binary feedback whether the two objects
are in collision or not, and it only identifies objects overlapping in
space, not the contact to each other. Therefore, we feed the
collision detector with the mesh objects scaled up by a small
factor (in our system, scaled up by 1.02). To identify the contact
surfaces, for any two colliding objects, we look for faces of both
objects that overlap in space and are facing towards each other.
These procedures could be eliminated if a more advanced
collision detector that returns contact surfaces of objects within
certain threshold distance, e.g. [7] would be used, however at a
larger cost of performance compared to the collision detector we
are currently using.

Second, the system generates the hierarchy information
(hierarchyList in Figure 8). This is done by navigating the contact
list starting from the base plane, and by assigning the hierarchy
level of the object based on the contact relationship. That is, the
objects that are in contact with the base plane are assigned as
objects in the second level of the contact graph. The third level
objects are those that are in the contact with any object in the
second level, etc.

As discussed before, the difference between the directional
dragging and the anchoring and dragging techniques is the way
siblings in contact are disconnected. In terms of implementation,
we identify a cutting plane that clearly cuts between siblings in
the contact graph that are in contact. The difference between the
two grouping schemes here is how the cutting planes are
identified.

In directional dragging, the system projects the normal direction
of each face of the selected object into screen space. The face
whose normal is most opposite to the dragging direction is
selected as the position of the cutting plane, but the normal vector
of that face is flipped to define the orientation of the cutting plane.
To provide users with the option to pull away an object that is in
contact with multiple objects, we allow diagonal directional
dragging. In this situation, there can be a multiple contact planes,
whose normal directions are approximately equal in angle to the
dragging direction. We handle this by defining multiple cutting
planes internally.

In anchoring and grouping, the cutting plane is defined by the
contact surface between the anchored object and the dragged
object. Since there can be multiple anchored objects, there can be
multiple cutting planes.

hierarchyList: The contact graph that we need for the selection
of a group

hierarchyNode: A node of hierarchyList
 struct hierarchyNode { theObject,
 currentLevelNumber,
 parentList }
contactList: List of connected objects
parentList: List of objects in one level higher than the current

navigation level
siblingList: List of objects that are in the current level
parentToNodeList: List of objects that are in contact with the

current object from the parentList

currentLevel 0
hierarchyList.add(hierarchyNode (baseplane,
 currentLevel,
 null))
contactList all objects connected to the currently selected

object
parentList.add (baseplane)
siblingList [empty]
parentToNodeList [empty]

While parentList is not empty
 currentLevel currentLevel + 1
 For each node n in contactList
 If n.visit is false
 parentToNodeList contact objects in the parentList
 If parentToNodeList is not empty
 hierarchyList.add (hierarchyNode(n,
 currentLevel,
 parentToNodeList))
 siblingList.add(n)
 n.visit true
 End If
 End If
 End For

 parentList siblingList
 siblingList.remove_all
End While

Figure 8. Pseudo-code for the contact graph

Once the cutting planes are identified, the system retrieves the
contact graph to collect the selected objects based on the contact
relationship and the boundary condition defined by the cutting
plane. The group starts from the selected object. If any object has
a higher hierarchy level number (lower in the tree) and its parent
is already in the group, then the object is added to the group
(Figure 10, objects B). If any object has the same hierarchy level
and any of its vertices is on the positive side of the cutting plane,
then the object is added to the group (Figure 10, object C). If any
object has a lower hierarchy level, then the system checks if its
child contact object is already in the group and if the object is on
the positive side of the cutting plane. If the object satisfies these
two conditions, then the object is added to the group. Figure 9 is
the pseudo-code explaining how to determine the group of objects
based on the user input and the contact graph. Figure 10 outlines
the algorithm for the directional dragging technique.

Directional dragging:
cutting_plane from dragging
direction and the selected
object to position the plane

Anchoring & grouping:
cutting_plane from the contact
surface between the anchored
object and the selected object

currObject selected object
navList empty
connectedList.add (currObject)

While currObject is not null
 For each object in hierarchyList

 do_add false
 If currObject.hierarchy < object.hierarchy
 If object.isparent(currObject) = true
 do_add true
 Else If currObject.hierarchy = object.hierarchy
 and contact(currObject, object) = true
 and isInCuttingPlane(object))
 do_add true
 Else If currObject.hierarchy > object.hierarchy
 and isInCuttingPlane (object) = true
 and object.hierarchy
 = (any object in connectedList).hierarchy)
 do_add true
 End If

 If do_add = true
 navList.add(object)
 conncectedList.add(object)
 End If

 End For

 currObject navList.remove (object)
End While

Figure 9. Pseudo-code for grouping

Figure 10. Group selection by directional dragging: The cutting

plane is determined by the geometry of A and the dragging
direction. Object A is selected and dragged into the direction.
Objects B are selected since they are children of the existing

group, and C is selected since it is a sibling of A and it is on the
positive side of the cutting plane.

3.4 Example Scenes
The scenes depicted in Figure 11 are some of the examples that
were built using the grouping techniques discussed above. During
the construction of these scenes, users frequently selected a group
of objects and repositioned it to reach the desired arrangement.

Figure 11. Example scenes

4 USER EVALUATION
We performed a 3 (grouping method) x 2 (hierarchy) factorial test,
where the following three grouping methods were compared:
directional dragging, anchoring and grouping, and rectangular
selection. Rectangular selection was chosen as a reference, as this
technique is the most commonly used group selection technique in
both 3D and 2D interfaces. The hierarchy/non-hierarchy factor
was added to investigate its effect on grouping techniques. As
strong learning effects were observed in a pilot test for the
hierarchy factor, we chose to perform a between subjects
experiment for the hierarchy factor and a within subjects
experiment for the grouping method factor.

(a)

(b)

Figure 12. The task for the user study. (a) Initial scene, (b) Target
scene.

Twelve paid subjects (4 females, 8 males, age 20-35) from the
local university were recruited and each of them was randomly
assigned to the hierarchy or non-hierarchy group (6 to each
condition). All users had no prior experience with little to no 3D
tool experience.

The task was to “clean up” a scene by aligning chairs and desks
in an office room as illustrated in Figure 12. To complete the task,
users had to perform multiple group selection, movement, and
rotation operations. The task was designed to maximize the effect
of grouping methods, while still being reasonably close to a real
world task.

4.1.1 Results
Table 1 and Figure 13 show the task completion time for each
technique. The difference among the three grouping techniques
was not significant (F2,10=1.63, p>0.05). The difference between
hierarchical and non-hierarchical grouping was marginally
significant (F1,10=4.70, p≈0.055). This was mainly due to the
insignificant difference between anchoring with hierarchical
grouping and anchoring with non-hierarchical grouping
(F1,10=0.28, p>>0.05). If the anchoring technique is excluded from
the analysis, the difference between hierarchical and non-
hierarchical grouping was significant (F1,10=9.69, p≈0.011).
Anchoring seemed to operate most stably regardless of the
existence of hierarchy support or not.

In addition, there was a significant interaction between the
hierarchy factor and the grouping techniques factor (F2,10=4.86,
p<0.05). This means that the performance of the grouping
techniques was affected by the hierarchy factor. Interestingly, the
rectangular selection technique performed the worst when there
was no hierarchal grouping, and it performed the best when using
hierarchical grouping.

Table 1. Average completion time (sec) for each technique

Directional
dragging Anchoring

Rectangular
selection Average

Hierarchy 252.99 273.2 248.83 258.35
No hierarchy 378.61 301.57 392.75 357.64
Average 315.80 287.40 320.79

Figure 13. Completion time for each technique

4.1.2 Discussion
Overall, the hierarchy factor improved grouping operations for the
directional dragging and rectangular selection techniques, but not
for the anchoring and grouping method.

In directional dragging, dragging within a small distance
triggers highlighting of the selected group. If the user drags the
mouse further away, then the selected group separates and moves
away, following the mouse motion. If the user stops at the

highlighted status before dragging further, the highlighted group
stays selected so that users can perform other operations, such as
rotation. Users seemed to be confused by this continuous
operation switch and complained that they had to look carefully to
check if the desired group is selected before dragging further to
move the group. Therefore, users frequently moved unintended
groups of objects, which necessitated (potentially lengthy)
corrective actions. This problem was also observed in a previous
user evaluation of the Virtual Lego system [13]. Overall, we see
this result as an indication that most users cannot easily adapt to
the notion of directional dragging to select objects.

In anchoring and grouping, the relative position between the
anchored object and the selected object is used to identify the
selected group. Users felt that it was easier to predict which group
would be selected based on the anchored objects. It is very
interesting to note here that the support of hierarchy did not
significantly improve the user performance for anchoring and
grouping as it did for the other techniques. We see this as an
indication that users had fewer problems predicting the results of a
selection operation with this technique. We attribute this to the
fact that in anchoring and grouping connected objects are grouped
together by default, as this provides a similar functionality as
hierarchical grouping does. Also, we observed that a few users did
not understand how anchoring worked in the hierarchy condition.
For example, they anchored all neighbouring objects that, due to
the hierarchy, would have stayed in place anyways, thus
increasing the completion time of the anchoring technique under
the hierarchical condition. From this we hypothesize that
anchoring can provide a good solution for group selection when it
is difficult to derive hierarchical information due to the lack of a
reference point – e.g. for a scene with objects floating in the air.

It is interesting to note that hierarchical grouping significantly
improved the rectangular selection technique compared to the
traditional, non-hierarchical method. One possible reason is that
when there is no hierarchical information provided, users had to
carefully check to determine if there were any objects hidden
behind other objects, or they had to make sure that they selected
all of the objects they desired. Users frequently neglected this
confirmation step and later found that small, missed objects were
floating in the air or attached at surprising places, which also
resulted in sometimes lengthy correction episodes. As evidenced
by the results, with the rectangular selection technique supported
by a gravitational hierarchy, users can select groups of desired
objects without much attention to hidden objects. The significant
difference between the hierarchical and non-hierarchical factors
suggests that rectangular selection supported by a gravitational
hierarchy is a more intrinsically obvious selection method for
users that have no training in conventional 3D packages and/or
lack an understanding of 3D graphics.

4.2 Improvement on 3D Grouping Techniques
Based on the observation that the hierarchical grouping factor is
important in scene manipulation, we propose a new simple
grouping technique, called multi-click grouping.

In this technique, the first click on an object selects a
gravitational hierarchical group – the object and objects on top of
it, the second click on the object selects all the connected
components that the object belongs to, and the third click on the
object selects only the object. Clicking on the object again will
revert back to the first alternative. Depending on the configuration
of the scene, this loop of selections can have less grouping options.
For example, if the selected object has another object on top of it,
but no object connected in a bi-directional relationship, then the

selection result will iterate only between the hierarchical selection
and the single object selection options.

This technique is analogous to the multi-click technique for text
selection in Microsoft Word. There, the first click places the
cursor onto the nearest character, the second click selects the word
that the character belongs to, the third click selects the whole
paragraph that the word belongs to, and the forth click loops back
to the first option. However, in our multi-click group selection
method, we placed the single object selection as the third in the
order. We did this, as, according to our observations, hierarchical
selection is more frequent than single object selection in 3D
manipulation. If this does not hold in general, we can easily
accommodate different scenarios by allowing the user to change
the order of group selections via a configuration dialog.

Clearly, the new technique can also be combined with the
traditional shift-click method to provide a way to select arbitrary
groups.

The advantages of this scheme are: 1) it provides a quick way to
select frequently selected groups (i.e. connected components), 2)
it is orthogonal to other conventional grouping techniques and
hence introduces minimum overhead into the user interface, and
3) it conforms with to the fact that most users cannot easily adapt
to the idea of directional dragging.

While our initial experiences with an implementation of this
idea are promising, multi-click grouping requires a more formal
evaluation to determine whether it can really provide a better
grouping scheme. This is clearly outside of the scope of this paper,
and remains a topic for future work.

5 CONCLUSION
This paper presented several grouping techniques for efficient
scene manipulation. We introduced the idea of hierarchical
groupings to describe objects on top of each other, and bi-
directional groupings for objects in proximity of each other. The
novel aspect of these groupings is that they can be dynamically
built based on a contact graph, instead of relying on semantic
information or explicit user specification. Then we applied the
idea of hierarchical grouping to several group selection techniques
for 3D scenes.

The user evaluation results suggested that a gravitational
hierarchy is a very important feature for the efficient selection and
manipulation of object groups in scenes that resemble real world
situations. The anchoring and grouping method also performed
well in general, but did not outperform e.g. rectangle selection
supported by a gravitational hierarchy.

Finally, and based on some of the observations in the user study,
we proposed a new multi-click technique for 3D group selection.
However, this technique needs to be verified through a user
evaluation in the future.

REFERERNCE
[1] Balakrishnan, R., and Kurtenbach, G. (1999). Exploring

Bimanual Camera Control and Object Manipulation in 3D
Graphics Interfaces. Preceedings of CHI'99, ACM, 56-63.

[2] Biederman, I. Recognition-by-Components: A Theory of
Human Image Understanding. Psychological Review, 1987,
94, 115-147.

[3] Bowman, D.et al, Virtual-SAP: An Immersive Tool for
Visualizing the Response of Building Structures to
Environmental Conditions. VR 2003: 243-250.

[4] Bukowski, R. and Sequin, C., Object associations: a simple
and practical approach to virtual 3D manipulation, SI3D’95,
131-138.

[5] Dijk, C., New insights in computer-aided conceptual design.
Design Studies, 1995, 16, pp. 62-80.

[6] Eggli, L., Hsu, C., Bruderlin, B., Elber, G., Inferring 3D
models from freehand sketches and constraints. Computer-
Aided Design, 1997, 29 (2): 101-112.

[7] Ehmann, S.A. and Lin, M.C., Accelerated Proximity Queries
Between Convex Polyhedra By Multi-Level Voronoi
Marching.In Proc. International Conf. on Intelligent Robots
and Systems, 2000.

[8] Gottschalk, S.,Lin, M.C.and Manocha, D., OBB-Tree: A
Hierarchical Structure for Rapid Interference Detection,
Proc. of ACM Siggraph'96.

[9] Igarashi, T., Matsuoka, S., Tanaka, H.,Teddy: A sketching
interface for 3D freeform design. SIGGRAPH’99.

[10] Igarashi, T., Hughes, J., A Suggestive Interface for 3D
Drawing, ACM UIST'01:173-181.

[11] Jung, B., Latoschik, M., Wachsmuth, I., Knowledge-based
assembly simulation for virtual prototype modeling.
IECON'98 – Proceedings of the 24thAnnual Conference of
the IEEE Industrial Electronics Society Vol. 4, IEEE, 1998,
2152-2157.

[12] Marr, D. Visual information processing: the structure and
creation of visual representations, Philosophical
Transactions of the Royal Society of London, Series B,
Biological Science, 1980, 290 (1038)

[13] Oh, J.-Y., Stuerzlinger, W., A System for desktop conceptual
3D design, Virtual Reality 2004, 7: 198-211.

[14] Oh, J.-Y., Stuerzlinger, W., Moving objects with 2D input
devices in CAD systems and desktop Virtual Environments,
Graphics Interface 2005.

[15] Salzman, T., Stachniak, S., Stuerzlinger, W., Unconstrained
vs. Constrained 3D Scene Manipulation, Engineering for
Human-Computer Interaction, Eds. M. Little, L. Nigay,
207-219, May 2001.

[16] Sachs, E., Roberts, A., Stoops, D., 3-Draw: A tool for
designing 3D shapes. IEEE Computer Graphics &
Applications, 1993: 18-26.

[17] Smartscene Technology, available in Multigen-Paradigm
products, see: http://www.multigen-paradigm.com.

[18] Smith, G., Salzman, T., Stuerzlinger, W., 3D Scene
Manipulation with 2D Devices and Constraints, Graphics
Interface 2001, Eds. J. Buchanan, B. Watson, 135-142,
2001.

[19] Stuerzlinger, W. & Smith, G., Efficient manipulation of
object groups in virtual environments, IEEE VR 2002, 251-
258.

[20] Vries, B. & Achten, H.H., DDDoolz: Designing with
modular masses, Design Studies, 2002, 23 (6), 515-531.

[21] Wang, Y., & MacKenzie, C.L., The Role of Contextual
Haptic and Visual Constraints on Object Manipulation in
Virtual Environments. ACM CHI 2000: 532-539.

[22] Zeleznik, R.C., Herndon, K. & Hughes, J.F., SKETCH: An
interface for sketching 3D scenes, SIGGRAPH'96.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

