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Figure 1. Orbit comparison between HoverCam (left) and SHOCam (middle). Discontinuities in HoverCam’s camera motion are 
visible in corners where the camera motion stops. Discontinuities in HoverCam’s camera direction are visible along the path 
through the irregular spacing of the view vectors. SHOCam generates substantially smoother paths and view direction changes. 
The right image shows interaction with SHOCam on a touchscreen. 

ABSTRACT 
In this paper we describe a new orbiting algorithm, called 
SHOCam, which enables simple, safe and visually 
attractive control of a camera moving around 3D objects. 
Compared with existing methods, SHOCam provides a 
more consistent mapping between the user’s interaction and 
the path of the camera by substantially reducing variability
in both camera motion and look direction. Also, we present 
a new orbiting method that prevents the camera from 
penetrating object(s), making the visual feedback – and 
with it the user experience – more pleasing and also less 
error prone. Finally, we present new solutions for orbiting 
around multiple objects and multi-scale environments. 
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INTRODUCTION 
Thanks to recent technological advances, 3D graphics is 
ubiquitous today. Based on this capability, interactive 3D 
environments are now accessible on phones, tablets, 

desktop computers, and even on public displays. 3D user 
interfaces are concerned with the interaction with such 
virtual 3D graphics environments. One of the most frequent 
actions is viewing of 3D models, e.g., before 3D printing an 
object. To support this kind of interaction, it is critical to 
provide intuitive, easy to learn, and efficient 3D navigation 
techniques for novices as well as for experts. Recent work 
has introduced advanced methods to facilitate orbiting, i.e., 
moving around an object while facing it from a constant 
distance. Yet, the proposed methods still have limitations 
and can lead to situations that can confuse the user or yield 
undesirable behaviors, such as jittery navigation paths.  

3D orbiting can be considered as an “observation task”. 
Observing an object involves (1) navigation around it for 
observing said object or its parts from different angles, and 
(2) moving closer to or further from it for seeing details or 
getting an overview. This can be achieved with only 3 
degrees of freedom (3 DOF) control [10]: two DOF’s for 
moving “along” the surface of the object (a combination of 
rotation and translation around the object), and a single 
DOF for moving closer/further away from the object. This 
kind of navigation method, which automatically combines 
rotation and translation around the object, is something that 
even novices easily understand, as evidenced by the many 
3D viewing systems on the web that use these conventions.  

3D orbiting can also be seen as a “navigation task”. Here a 
new constraint appears: the whole scene affects the camera 
behavior, as the system ideally should never permit the user 
to move the camera into objects. The (unexpected) view of 
an interior of an object can be confusing, especially for 
novices. This is well known from computer games. In such 
situations, novices may get “lost” and then have to recover 
a reasonable camera pose with trial and error. Here, the 
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above-mentioned 3 DOF interaction method is still a good 
solution, but the algorithm that determines the camera path 
and velocity should take the rest of the scene into account. 

Existing methods do not address all of these constraints. We 
first review previous work and then present our new 3D 
orbiting methods. In the discussion section we illustrate our 
method with several examples and finish with future work. 

Previous Work 
There is a large body of literature for 3D navigation. 
Camera control methods [4] are also related. We focus here 
only on orbiting methods and automatic speed control. 
Early work on orbiting, such as Unicam [23], focused on 
orbiting around points or the center of an object. Safe 3D 
Navigation [7] highlighted that off-screen orbit points cause 
many forms of navigation problems. Moreover, orbit points 
that are not on, or close to, the surfaces of the scene are also 
problematic. Smooth view transitions were already 
identified to be desirable [18]. Recent work confirmed that 
smoother camera motions reduce cybersickness [6]. Phillips 
[18] introduced a method that avoids obstructing the view 
of the object during orbiting. Niewenhuisen [15] presented 
an automatic approach to navigate a camera between 
objects with collision avoidance, but only for 2D scenarios. 

The HoverCam orbiting method [10] keeps the viewer at a 
constant distance relative to the surface of the object. 
McCrae et al. [13] improved HoverCam’s efficiency in 
their multi-scale navigation approach. They also identified 
that HoverCam may switch to other close-by objects during 
orbiting, but then simply ignored other objects while 
orbiting or stopped the viewer when they would orbit into 
another object. Trindade et al. emphasized that the user 
needs to stay in front of a surface while orbiting [21].  

Recently, touch-based 3D navigation has become popular. 
Navidget [8] uses overlaid widgets with different zones to 
activate different navigation behaviors, such as orbiting, 
which leads to a constant switch in attention between the 
zones and scene. Drag’n Go [14] implements steering 
towards a point of interest. Finally, ScrutiCam [5] presented 
a touch-based orbiting method, which does not handle 
objects with concavities very well. 

Some 3D sketching systems ensure that the system controls 
the view position to facilitate drawing on curved surfaces 
[2], which is similar to orbiting. A new method has 
extended this to drawing on 3D surfaces [16], to ensure that 
the viewer can always see the surface straight on and access 
the whole surface of an object in a single drawing gesture.  

Mackinlay [12] first observed that setting the camera speed 
proportional to the current distance to a target point works 
well. Ware confirmed this [22]. In speed-coupled flying 
with orbiting [20] and whenever the viewer is flying fast, 
the viewer eye-level is automatically elevated to give the 
user a better overview of the environment. In a comparison 
of multi-scale steering methods, Kopper [11] identified that 
automatic size or speed control worked far better than 

manual size or speed control in multi-scale scenes. Zhang 
[21] confirmed that linking size and speed in a multi-scale 
traveling approach is beneficial. McCrae et al. [13] 
computed a vector to push the viewer away from nearby 
geometry. Trindade [21] identified that speed control via 
the global minimum distance can slow the user down 
unnecessarily. They detect situations where the viewer can 
speed up with a ray in the view direction. Argelaguet found 
no strong difference between distance-based speed control 
and a method that keeps optical flow constant [1]. 

Motivation 
The overarching objective of our work is to generate 
smooth camera movements for 3D navigation. Several 
existing navigation methods, such as look-around, already 
generate smooth camera motions. Look-around is 
universally mapped directly to 2 DOF control. Another 
common design decision is that the viewer is prevented 
from “flipping over”, i.e., looking at the scene upside down, 
as people easily become confused by this.  

In 3D modeling and computer games, panning/strafing 
moves the viewer orthogonal to the view direction in the 
horizontal plane. In orbiting/circle-strafing the camera 
moves around a specific object. Our work targets such 
orbiting around objects. We believe that the fundamental 
idea of having the camera stay at a constant distance to the 
surface is appropriate for this kind of navigation task. Yet, 
we also believe that said distance can vary to a limited 
degree, if this leads to better camera motions. One common 
problem with both panning and orbiting is that the user can 
easily pan or orbit into other objects if the system does not 
prevent the camera from doing this. With camera collision 
detection, the camera motion may be stopped or altered 
abruptly upon such a collision. This issue is exacerbated by 
the fact that most graphics applications use a FOV of less 
than 90 degrees. This prevents humans from using their 
peripheral vision to prevent collisions. 

A common problem for driving or flying methods with 
manual speed control is that users overshoot their targets. 
Then, users must stop, reverse and then move forward 
again, or stop, turn around, move forward at a reduced 
speed, and turn again towards their original destination. 
Following previous work [1,11,21,22,21], we use automatic 
speed control, even during orbiting. Another issue with 
manual speed control is that users can fly into objects. This 
is especially tricky when reversing, because most 3D 
systems do not enable users to see behind themselves, i.e., 
provide no rearview mirror. This makes it hard to predict 
when the user will back into an object. Worse yet, backing 
into an object yields visually surprising results and causes 
confusion. Automatic speed control avoids all these issues. 

Finally, we also want to target orbiting for scenes with 
whole groups of objects. One shortcoming of existing 
methods is that the orbit center always stays fixed when the 
user moves further away or comes closer. Yet, if the object 
becomes (too) small or too large, this heuristic fails. 



 

Contributions 
The main contributions presented here are: 
• a method for smoother interactive orbiting; 
• a new way to avoid collisions with surrounding objects 

during orbiting; 
• a new method for multi-scale orbiting, i.e., orbiting of 

object groups. 

A NEW METHOD FOR 3D ORBITING - SHOCAM 
With previous orbiting methods, such as HoverCam, the 
camera always stays at a constant distance to the surface 
and faces the closest point of the object surface. This simple 
principle is not quite powerful enough and different 
methods were proposed for avoiding sudden changes of the 
camera direction [10,13]. There are three main issues that 
have to be solved in this kind of orbiting approach: “how to 
turn around a corner”, “how to turn to the next closest 
surface”, and “how to guarantee smooth camera motions”. 
We now discuss each one of them. As we investigate 
orbiting for complex scenes, such as multi-scale 
environments, and dynamic geometry, such as CAD editing 
or animation, we do not consider pre-computation [3,9,17]. 

Turning around corners: In the HoverCam approach, the 
optical flow changes on convex corners (see Figure 2a). 
When the camera reaches a “corner” of a convex surface, 
i.e., an edge between two non-coplanar polygons of the 
mesh or even a vertex, the closest point of the surface will 
temporarily be “glued” to the feature until the camera faces 
the new polygon. As the camera still moves while the 
viewpoint stays on the edge, the optical flow changes 
abruptly, making this a very noticeable discontinuity in the 
visual feedback. This is critical for curved surfaces, as such 
surfaces are traditionally approximated and represented as a 
mesh of small polygons. Orbiting around such a surface 
then generates frequent start and stop camera motions. At 
some distance this can even look like camera tremor. 

 
Figure 2. Issues with existing orbiting methods: a – viewpoint 
stops on edges of convex objects; b – camera stops on 
concavities (figure from [10]); c – both viewpoint and position 
of the camera may move up and down on complex surfaces.  

In HoverCam, the authors proposed to address this 
“shakiness” issue by smoothing the model mesh or its 
normals. Yet, the degree of tessellation can affect only a 
limited range of camera distances. For smoothing normals, 
the authors propose to enable this only when the camera is 
further away from the object, in order to keep the ability of 

traveling along a flat polygon when the camera is close to 
it. However, this implies that the mesh tessellation has to be 
globally consistent in terms of the size of the output 
polygons, which is non-trivial to maintain in all situations. 

In an improved HoverCam version [13], the authors 
proposed an image-based technique to approximate a local 
smoothing of the geometry. The authors specifically 
mentioned a box-filter. Yet, such smoothing does not work 
well around concavities or holes due to steep depth 
discontinuities in such areas. Indeed, when the camera 
travels forward, any geometry that comes into view at the 
sides of the view may suddenly become the closest point. 
Image-based smoothing cannot address this problem. 

Turning to the next closest surface: The camera motion 
generated by HoverCam stops abruptly on concavities or 
surface holes (see Figure 2b). Here, HoverCam stops the 
camera motion completely and only interpolates the 
viewpoint direction. Camera movement resumes only when 
the final direction is reached. This leads to abrupt changes 
in the camera behavior. Sometimes a jump in the view 
direction also implies a discontinuous jump in the camera 
position. Then, HoverCam slows the camera down for 
interpolating the camera position. Overall this leads to 
piecewise constant optical flow, with discontinuities in 
between. Informally speaking, stopping or slowing down 
the camera motion in this way can cause the impression that 
the camera is “sticky”, which may perturb the user. In the 
presence of several concavities, the camera motion is not 
fluid, and the start-stop nature of the motion can become 
annoying. Normally the user manipulates the camera in two 
dimensions (up/down and left/right) during orbiting. Yet, in 
concavities, the user loses control of one dimension, as user 
input is not mapped to movements anymore, but to the 
interpolation parameter to turn to the next closest point. 
This leads to a mismatch between user input and the 
viewpoint motion, especially when the direction of the 
interpolation is orthogonal to the initial user movements.  

Smooth camera motion: Existing methods always look at 
the closest point on the object and thus both the look 
direction and the camera position correspond to the closest 
distance to the object. With this and during horizontal 
orbiting, both camera direction and position can still move 
vertically on geometrically complex surfaces (see Figure 
2c) and vice versa. Yet, in the presence of concavities or 
holes in the object, the closest point will never stay at the 
same height, causing rapid and potentially large changes in 
camera direction. This again leads to tremors in the visual 
flow and to undesirable orbiting behaviors. Existing 
methods do not mention adequate solutions for this 
“shakiness” issue. Smoothing the normals or the geometry 
does not solve this issue, as both methods do not take the 
distance and relative pose of the camera into account. 

All of the methods proposed by HoverCam and its 
evolutions smooth the changes in camera direction only for 
a subset of all potential situations. Moreover, they do not 



 

prevent large variations in camera motions. Depending on 
the particular geometry of the object, the camera thus can 
unnecessarily slow down and speed up, giving the user 
inconsistent visual feedback. This constantly varying 
mapping between the visual flow and the user’s movements 
makes it more difficult for the user to navigate around an 
object in an easily predictable and controllable manner. 

The following sections describe our new SHOCam (Smooth 
HoverCam Orbiting Camera) method, which guarantees 
smooth and constant camera motions, as well as smooth 
changes in camera direction for any geometry.  

Constant Camera Motion 
One of the main objectives of SHOCam is to maintain a 
constant camera motion while orbiting an object. Critical 
situations can occur around concave corners or holes, where 
the closest point suddenly jumps from a polygon to a far 
one. Existing methods propose to interpolate the camera 
direction and positions, but they do not work sufficiently 
well, as explained above.  

Here we propose to compute new camera positions in 
iterative steps. In each step, we start with the traditional 
HoverCam algorithm. As this algorithm does not guarantee 
that the distance between the new viewpoint position and 
the last one (d) is equal to the length of the desired 
displacement distance (|V|), we repeatedly iterate 
HoverCam computations until d >= |V| - α*|V|, where 
α corresponds to the maximum percentage of variation in 
displacement distance we accept. 

For this, each new computation uses a new displacement 
vector, whose size and orientation depends on the previous 
computation result: its orientation is orthogonal to the 
computed viewpoint direction and the size is equal to 
|V| - d. Here is the algorithm: 

 Initial Parameters 
        - D: orbiting distance  
        - CC: Current Camera position 
        - V: current displacement vector 
        - α: maximum percentage of accepted variation  

Algorithm 
1 – Compute the New Camera position (NC) with 
HoverCam(CC,D,V) 
2 – Compute d =distance(CC,NC)  
3 – If d >= |V| - α*|V| or iteration ==4: 
             then stop algorithm 
     else: 
            Compute new V from NC 
            |V| = |V| - d 
            CC = NC 
            Go back to step 1  

To avoid the camera penetrating into the orbited object, |V| 
(the initial displacement vector length) should never exceed 
the orbiting distance. Our algorithm guarantees that the 
distance that the camera moves between two consecutive 

cameras is always in [|V| – α*|V|,|V|] (see Figure 3). As 
with all iterative algorithms, the algorithm might not 
terminate. If the camera does not move, we stop after 4 
steps, which corresponds to the situation that the camera is 
in the center of a spherical cavity and the displacement 
distance is close to its radius. This can only happen if the 
user increased the target distance after navigating into a 
cavity through a smaller gap (or started there). In this case 
we issue an auditory alert and reduce the displacement 
distance temporarily by 10% to keep the user mobile. 

 
Figure 3. Iteration for SHOCam. a) orbiting around a convex 
surface. For clarity of illustration, the length of V is here 
higher than the distance between CC and the surface. b) 
orbiting on a concave surface.   

The computation of the closest point is the most expensive 
part of the algorithm. One solution is to compute this 
analytically. As the closest point has to be on a polygon of 
the orbited object, we compute the distance between the 
camera and each polygon of the object and take the 
minimum of all distances. For more complex scenes, 
another solution is the use of an image-based approach, 
e.g., through the cubemap method [13], which identifies the 
closest point from the depth buffer. The 3D position of the 
pixel with the smallest depth value together with the camera 
position defines a 3D ray. Intersecting that ray with the 
scene yields the closest point (up to discretization errors).  

This approach provides a regular discretization of the 
theoretical path of the camera. This then ensures a constant 
mapping between user interaction and the theoretical 
camera displacement around the object. Yet, as with all 
discretization algorithms, this is not enough for 
guaranteeing G1 continuity of the camera path. G1 
continuity is an appropriate criterion for smooth visual 
feedback and optical flow. In the next section we present 
how we generate a G1 camera path. 

Smooth Interpolation of Camera Paths 
The different camera positions computed by the iterative 
algorithm are spread regularly along the theoretical camera 
path. However, using these positions directly does not 
guarantee G1 continuity for the camera path. In Figure 3b 
we see that if the camera jumps from its current position 
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(CC) to the final one (FC), the displacement is not G1 
continuous relative to the previous one. Consequently, we 
compute a smoother camera path by interpolating positions 
from a set of pre-computed local cameras around the main 
camera (see Figure 4). To simplify the description, we first 
describe navigation of a camera in 2D along a 1D path.  

 
Figure 4. Left: in this 2D example, the final path of the camera 
is a Catmull-Rom spline, computed from the local camera set 
defined by five pre-computed camera positions (A to E). When 
the current camera reaches D, a new camera position (F) is 
computed and the set adjusted to contain B to F. Right: 
example camera direction computation via two dimensional 
interpolation. As camera direction does not change vertically 
within the camera set, we use 1D cubic Bezier interpolation at 
each of the three horizontal sub-sets (blue vectors). 

When orbiting is initiated, five new camera positions are 
computed, two in the forward direction and two backwards. 
The length of the displacement vector for computing these 
new positions has to be higher than the final camera 
velocity. We describe below how we choose these lengths. 
With these five camera positions, we compute the final 
camera path with spline interpolation. The interpolation 
should satisfy the two following constraints: (1) as our 
iterative viewpoint computation method provides “correct” 
camera positions, where the distance between the camera 
and the object surface is constant, the final camera path 
should pass through these positions, and (2) the 
interpolation should guarantee G1 continuity of the path. 
For simplicity, we choose the Catmull-Rom interpolation 
spline. Figure 4-left illustrates the resulting path. 

Once the first camera set is computed, the camera can then 
easily travel in one dimension along the spline, with a direct 
mapping between the user’s device displacement and main 
camera position. A new camera position for the set is 
computed only when the main camera reaches the next 
forward or backward position, which then triggers the 
update of the camera set. For efficiency, the computation of 
the new camera set can be done in a separate thread, while 
the camera is still traveling on the current set (see the 
discussion section). 

The length of the displacement vector V used for computing 
the camera set has to be higher than the current camera 
velocity (v). We use Mackinlay’s approach [12], i.e., the 
camera velocity depends on the orbiting distance (D). Also, 

to guarantee that the camera never penetrates the surface of 
the orbited object, we keep the camera speed in the interval 
[|v|, D]. SHOCam offers then a large amount of possible 
camera paths, illustrated in Figure 13. 

We generalize our new method to (horizontal) 3D orbiting 
by computing two more horizontal camera sets (see Figure 
4-right), one above and one below the current set (relative 
to its current coordinate frame). The vertical distance 
between the sets is equal to the distance for the horizontal 
set (using the same camera velocity limits as above [12]). 
The final camera then navigates on this 2D camera surface. 
Its position is defined via 3D Catmull-Rom interpolation 
from the whole camera set. When the camera moves far 
enough, additional cameras in the corresponding direction 
are computed in separate threads. As the next set overlaps 
the current one, only a few cameras need to be computed at 
a given time. Vertical orbiting is handled analogously. 

Smooth Interpolation of Camera View Directions 
Interpolating the previously presented camera set can 
provide smooth changes in view directions. However, in 
order to maintain a comfortable optical flow, the change in 
look direction has to be minimized at each time step, and 
spread along the movement when the camera reaches a 
corner. Thus, we cannot use interpolating splines for 
direction, as they compute a spline that passes through its 
control points. Consequently, we use cubic Bezier 
interpolation, which takes the cameras in the camera set as 
control “directions”. Cubic Bezier interpolation requires 
four control points and this determines how many cameras 
are necessary around the current camera. We then compute 
three directions per camera set. These directions correspond 
to the B, C and D positions in Figure 4-left. In general, final 
view directions will rarely be exactly equal to the initial 
view directions in the camera set. In other terms the camera 
will not always look precisely at the closest point. Yet, this 
flexibility permits us to minimize of the variations in both 
camera positions and view directions, which in turn reduces 
the variations in the optical flow. Figure 4-left illustrates 
this, and one can notice the “anticipation” of the corner. 

As SHOCam does not vary the camera direction 
“vertically” (along the camera up vector), the interpolation 
for camera directions only has to respect cubic Bezier 
characteristics in its “horizontal” dimension. The 3D 
camera set is then made of three horizontal 2D “sub”camera 
sets, and a cubic Bezier is applied on each of them 
independently (see Figure 4-right) before computing the 
final direction. The latter is then a simple Catmull-Rom 
interpolation from the sub-sets’ directions. 

Constraining the Camera Path 
Assuming a horizontal camera movement, one issue of the 
existing methods presented above is the vertical shakiness 
implied by the erratic positions of the closest point on 
detailed surfaces (see Figure 2c). This may also imply 
vertical changes in the camera path, even if the user makes 
a pure horizontal movement. To avoid this, we constrain the 
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positions of each camera of the set to the plane defined by 
its local position and its up vector. This method constrains 
the final camera movement and also further reduces 
changes in the optical flow. As illustrated in both the 
numerical and the user evaluation below, the added stability 
in terms of camera direction makes a significant difference. 

 
Figure 5. Navigation with horizontal or vertical camera sets. 
The camera navigates on a 2D shape, and its position is a 
Catmull-Rom interpolation from one of the camera sets, 
depending on the initial movement of the user. 

Orbiting in both directions 
With the camera set shown in Figure 4, both horizontal and 
vertical movements are constrained by the orbiting distance. 
Yet, the view direction is always horizontal. Thus the view 
direction will never be rotated down to see, e.g., the top of 
the dragon’s head (Figure 5). We thus propose a new 
interaction technique that uses two camera sets, for 
horizontal and vertical movements respectively (Figure 5 
left and right). For this we initially compute both camera 
sets (note that the 3x3 interior camera positions are shared). 
When the user starts to interact, we analyze the initial path 
of the user to determine if the user is moving horizontally 
or vertically and then use only the corresponding set. Then, 
if the user has been navigating in the orthogonal direction 
previously, the camera direction may not face the surface. 
Thus we blend the camera direction in the first second of 
the interaction between the direction computed from the 
camera set and the old camera direction. 

Orbiting in Multi-Objects Scenes 
The presented method is efficient and generates consistent 
camera paths for single object orbiting. However, orbiting 
an object in close proximity to other objects can potentially 
cause problems as the user may lose sight of the orbited 
object if these objects can influence the camera path. Here, 
a camera path should respect two main constraints: 

• The camera should only focus on the orbited object. For 
example, when orbiting one particular tree in a forest, 
the camera should never face another tree. 

• When displaying other objects transparently is not an 
option, the camera should never permit the user to move 
into objects. Moving the camera into another object also 
leads to loss of the context of the orbited object. 

Based on these constraints, we see that the camera orbiting 
behavior (both camera positions and view directions) might 

need to be influenced by other objects in some limited 
manner in some situations. 

 
Figure 6. The orbited object is always the closest. The camera 
moves along its view direction and never penetrates into the 
rest of the scene. 

Due to the dependency on the availability of transparency, 
there are two fundamental choices, based on the task 
constraints and/or rendering capabilities. 

 
Figure 7. Illustration of the adaptation of the orbiting path to 
other geometry in SHOCam. The camera always faces the 
object along the path. Due of the other bunnies, the camera 
distance varies between the initial distance to the orbited 
bunny (thicker black bars) and smaller distances. 

1) In an observation/inspection task, the user mainly 
concentrates on the orbited object. Thus the camera should 
stay at a constant distance to the orbited object. Here, the 
easiest solution is to keep the initial orbiting path and to 
make other objects transparent when necessary, i.e., when 
the camera moves into them or when parts of them appear 
in the field of view of the camera. For this option, we use 
Ortega et al.‘s approach [16]. At each camera motion step, 
we compute both the closest point on the orbited object 
(cPO) and the closest point on the rest of the scene (cPS). If 
cPS is the closer one and is in the camera field of view, we 
compute two camera frustums: one from the camera’s near 
plane to the cPS, and a second from the cPS to the camera’s 
far plane. The first frustum is used to render the scene in a 
texture, which is transparently superimposed onto the final 
rendering of the second frustum. This method guarantees 
that only parts of the scene that could affect the view of the 
object are shown transparent. 

cPSicPOi

V
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2) In navigation tasks, such as orbiting around a wall corner 
in a First-Person-Shooter game, constraints imposed by the 
environment may play a significant role for navigation. 
There, the camera path should take the whole scene into 
account. The transparency method is not sufficient in such 
situations and should not be used as it radically changes the 
visual appearance of the scene and also leads to a potential 
loss of visual context. Moreover, in many situations it is 
undesirable if the camera can move into other objects. A 
classic example is a game where a user inside a wall is able 
to shoot others without ever getting hit. 

-Compute the closest point on the orbited object (cPO) and 
     on the whole scene (cPS). 
-if dist(camera,cPO) < dist(camera,cPS): 
     -if the previous cPS was closer: 
          -move camera backward along its line of sight, 
               keeping dist (camera,cPS) >= dist (camera,cPO)          
    -else: 
          use normal orbiting behavior 
-else: 
     -move camera frontward along its line of sight, 
               until dist (camera,cPS) > dist (camera,cPO) 

Figure 8. Pseudo-code for adapting the orbit to other objects 
in the scene.  

Here we propose a new solution that uses both the closest 
distance to the orbited object cPO and also to the rest of the 
scene cPS. According to these distances, the camera then 
moves along its view direction to ensure that the camera 
always faces the orbited object, and never penetrates into 
the rest of the scene. The amount of translation of the 
camera is dynamically adjusted so that the orbited object is 
always the one that is the closest to the camera. According 
to our algorithm, the camera moves forward when the rest 
of the scene comes closer, and backwards to the initial 
distance when the distance to the rest of the scene increases 
again. Figure 8 shows pseudo-code for this algorithm. 

Figure 6 illustrates the resulting camera path. As camera 
speed is directly proportional to camera distance in the rest 
of our system (see above) we also reduce the speed of the 
camera whenever it gets closer to the orbited object. Figure 
7 represents such a path in between 3 bunnies. 

GROUP ORBITING 
Another interesting issue in orbiting behaviors is that small 
objects close to large objects or other far away objects can 
negatively influence orbiting behaviors. For example, when 
orbiting a planet that has close by satellites, the method 
presented above can force the camera to be “squeezed” 
between the satellite and the planet. But orbiting the large 
object can also have the camera orbit into the satellites. 

To address this issue, we use the bounding volume 
hierarchy for the whole scene to automatically determine 
the group to orbit with a criterion that adapts itself to the 
scale of the viewer. When the user initiates an orbiting 
action, the system first determines the current projected size 

of the bounding volume of the chosen object/group. We 
then use two user-configurable thresholds, with empirically 
determined defaults of 30% and 15% of the screen area, to 
adjust the group. Three scenarios are possible: 

a) The selected object/group projects to a size that is too 
large (greater than the larger threshold). In this case, the 
system searches for smaller groups whose projection size is 
smaller than this threshold (if they exist) to be included in 
the orbited group (see Figure 9).  

 
Figure 9. Orbiting objects with a wide disparity in size. As 
both satellites project to a small size on the screen (s1,s2), 
orbiting around either of them from this distance will result in 
the camera orbiting around the whole group instead. 

b) The selected object/group projects to a small size on the 
screen (smaller than the smaller threshold). In this case, we 
assume that most of the time the user would like to orbit a 
larger group, if available (see Figure 10). The system then 
searches for progressively larger groups until it finds one 
that is larger than the smaller threshold. Sometimes the user 
would like to orbit a single object. This still requires that 
the object is large enough to be (easily) selectable by the 
user, which may require moving closer. 

c) If the user does not explicitly select an object and starts 
orbiting, the system detects the closest object to both the 
camera position and the view vector, and then applies the 
appropriate above logic. If the viewer is too close to 
geometry to identify an object that fits into the view 
frustum, the first object along the view vector is chosen. 

Once a group is selected, explicitly or automatically, the 
system then orbits around that whole group, i.e., around all 
the objects in the group simultaneously. Figure 9 illustrates 
how the SHOCam method adapts the orbiting path in the 
presence of other objects around the viewer. Finally, Figure 
10 illustrates how the orbit is affected when the method 
orbits around a group of objects. While the above-
mentioned heuristic thresholds work well for all examples 
shown here, they may have to be adapted to other use cases. 

NUMERICAL EVALUATION 
For this evaluation, and for the accompanying video, we 
implemented HoverCam and SHOCam in Python, with 
PyOpenGL and PyCollada. The computation of the closest 
point is done analytically, using several functions in C. As 
the camera set used in SHOCam needs intermittently the 
computation of many camera positions at the same time, we 
parallelized the computation of “next” sets. These 
computations are done in the background, while the user is 
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manipulating the viewpoint within the current set. For our 
implementation of SHOCam, we set α = 0.9 and length of 
V (the vector used to compute the camera set) equal to half 
the distance from the camera to the object surface. 

 
Figure 10. Group orbiting illustration: a) the user is fairly 
close to a car and likely wants to orbit around this particular 
one; b) the user is further from any individual car. Here our 
algorithm automatically treats the group of six cars as a 
“single” object and orbits around the entire group. 

Optical flow 
The difference in the quality of the camera paths generated 
by SHOCam is easily visible in terms of the camera paths 
and view directions in the figures of this paper as well as in 
the accompanying video. As additional support, we perform 
here a numerical comparison of HoverCam and SHOCam. 

Figure 11 first illustrates the variations in viewpoint 
direction for a path around 3 bunnies. The curve represents 
the angles (in degrees) between each consecutive camera 
direction vector. Two observations can be made: (1) the 
path is 38.4% longer with HoverCam, and (2) HoverCam 
suffers from a lot of abrupt variations in viewpoint direction 
while SHOCam is much more stable. As HoverCam’s 
viewpoint is interpolated in concavities, this is another 
source of velocity variations and causes the longer path. 
The abrupt variations are due to the very detailed geometry. 

Figure 11 also illustrates the variations of the viewpoint 
velocity along the same path. The curve represents the 
distances between the viewpoint positions. Compared to the 
previously mentioned curve, one more observation can be 
made: Hovercam is prone to abrupt “braking”. Indeed, 30% 
of viewpoint movements are only rotations. Also, the 
standard deviation (stdev) of tangential speed is 42.07% 
with HoverCam vs. 0.39% with SHOCam. 

To summarize, the path is smoother with SHOCam and the 
rotational speed has also smaller variations. The shown 
results are representative for all the models presented here. 

Computational Complexity 
The bottleneck of all considered methods is the 
computation of closest points (CCP), regardless if 
computed analytically or image-based. Thus, comparing the 
computational complexity of each method by investigating 
the number and the frequency of CCPs is more objective 
than comparing times. For a final camera position, 
HoverCam uses a single CCP most of the time, and 
sometimes no CCP (when interpolation is used). SHOCam 
uses no CCP most of the time, as the camera is interpolated, 
and only uses CCPs to update the camera set. However, 

SHOCam always computes less CCPs than HoverCam. For 
example the dragon orbit (around 414 viewpoints for 
SHOCam and 635 for HoverCam), involve 225 CCPs for 
SHOCam vs. 450 for HoverCam (77% more).  

 
Figure 11. Variations of viewpoint direction (in degrees) and 
viewpoint velocity vector (in arbitrary 3D distance) with 
HoverCam and SHOCam for a path around the bunnies. Point 
a marks the end of SHOCam path, HoverCam needs more 
steps and velocity variations are significantly higher . 

SHOCam reuses cameras when updating the camera set, 
which decreases “bursts” in computation, which is further 
“hidden” via multi-threading. As most cameras are 
interpolated, this yields similar frame rates for both 
techniques and most all the models presented in Figure 12. 

 
Figure 12. Percentage of CCP relative to total camera positions 
during one orbit around 4 models (three models shown in 
other figures, the single cube not shown). HoverCam always 
needs more CCPs:  from 17% to 28% more. Dots show the 
frame rate (in Hz) for each technique.  

In all the presented paths, with SHOCam, the number of 
CCPs for a single camera of the camera set is never higher 
than three. Our future investigations will try to link this 
number, the CCPs and the frame rate with the scene 
complexity in order to evaluate how HoverCam and 
SHOCam deal with very complex scenes. 

USER EVALUATION 
In order to evaluate perception of any potential differences 
between the Hovercam and SHOCam, we conducted a user 
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evaluation. The goal was to detect if (1) the difference 
between the two techniques is perceivable by users, and if 
(2) this makes a difference in orbiting manipulation. The 
evaluation was conducted on a Wacom CINTIQ, i.e., a 
touch screen with 1920x1200 pixels. 

Protocol 
We presented three objects to 14 participants (between 22 
and 38 years old, 6 women). Each participant orbited 
around each object with HoverCam and with SHOCam. We 
used counter-balanced presentation to cancel potential 
learning effects. We first introduced each technique with an 
automatically computed orbit path and then let users orbit 
interactively. For the latter, we mapped 2D touch 
movements to up/down and left/right movements of the 
viewpoint. We used (1) a Stanford bunny (Figure 7) as a 
standard and “compact” object, (2) a Stanford dragon 
(Figure 1) as a more complex object (different aspect ratio 
and with a lot of concavities and convexities) and (3) a 
lollipop star (Figure 13) as an object that should stress both 
techniques. In the interactive part, people were free to 
explore the objects. For the star-lollipop we asked users to 
turn around the object as fast as possible, and to judge 
which technique seemed more efficient. After the 
automated and interactive exploration phases, participants 
filled out a questionnaire. They first rated their perception 
of each technique, followed by more specific questions. 

Results 
All participants perceived and were disturbed by the 
“sudden jumps” and “shakiness” of the camera direction 
with HoverCam. No one complained about this for 
SHOCam. 11 participants estimated that they were faster in 
exploring the objects with SHOCam. They especially 
mentioned the lollipop exploration, where the viewpoint 
would get temporarily “stuck” in concavities, but also for 
the dragon. The bunny did not suffer from this issue. Three 
participants did not perceive a difference in interaction 
velocity between the two techniques. 9 participants 
perceived cybersickness with HoverCam, and one 
complained about both techniques. Cybersickness was 
mainly perceived when exploring the dragon. All but one of 
the participants were satisfied with the SHOCam interaction 
control, but only 4 with HoverCam. Indeed, 11 participants 
complained about the “unpredictable” behavior of 
HoverCam, especially with the dragon because of (1) visual 
jumps and (2) because HoverCam restricts user input to a 
single dimension during interpolations. Indeed, when the 
user is horizontally orbiting around the dragon, the closest 
point can jump between the head and a foot. This makes the 
optical flow suddenly vertical, creating a mismatch between 
user movement and viewpoint behavior. 

All but two participants preferred SHOCam for all kinds of 
orbiting tasks, such as navigation around, global overview, 
and quick exploration. Two participants noted that each 
technique has its own advantages. Indeed, they felt that 
HoverCam would be better for “precise” exploration. As we 

were surprised by this comment, we asked for more details 
and identified that this is side effect caused by the “sticky” 
effect of HoverCam around corners or salient areas. Indeed, 
as the viewpoint lingers on such points, users focus more 
attention on them. However, this only happened on specific 
points (convexities), and was only determined by the 
geometry and not the user. The interaction asymmetry and 
the fact that it is somewhat unpredictable make us believe 
that this is not an inherent benefit of HoverCam. 

 
Figure 13. Camera paths that illustrate HoverCam and 
SHOCam behaviors around a “star-lollipop” (used in the user 
evaluation). D (in 3D arbitrary length) is the distance between 
the camera and the object’ surface (lollypop length is about 
1600). Length of camera set vector (CSV) varies from |V| to D. 
When |CSV| = |V|, SHOCam’s behavior is close to HoverCam, 
but without interpolation in concavities and without vertical 
variations in camera directions.  

DISCUSSION 
To illustrate the camera paths that SHOCam generates, we 
show a side-by-side comparison of orbits in Figure 1. For 
better clarity, the viewpoint has been controlled only 
horizontally: the viewpoint path is then horizontal. One can 
see the notable differences in the way the camera behaves 
around convex vertices and/or concavities. In specific 
cases, e.g., when the camera is very close or very far from 
the object surface, the HoverCam and SHOCam trajectories 
are very similar. Yet, SHOCam will still require less CCPs 
than HoverCam, i.e., be more efficient. 

In the top part of Figure 13 the camera does not directly 
face the flat parts of the green rod, close to the star part. 
Participants did not notice this during the evaluation. 
However, if the user needs to precisely observe these 
locations, one should consider alternatives. We will 
investigate this in future work. 

In the presence of other geometry, the orbiting behavior of 
SHOCam around objects is also smoother. We initially 



 

debated to have SHOCam permit the user to get much 
closer to geometry behind the camera. Yet, this is a double-
edged sword. The closer one gets to geometry behind the 
camera, the more it will influence the path of the camera. 
Imagine moving with your back to a wall that has spikes. 
The path would then be very jagged. Thus, we believe that 
SHOCam’s approach is an interesting “middle ground” 
(both in approach and camera path) relative to existing 
approaches. Still, for inspection/drawing tasks where the 
distance to the object has to stay constant we recommend an 
approach where the camera can orbit into other objects. In 
this case we recommend that parts of objects in front of the 
camera be rendered transparently [16]. 

One of the nice features of the group orbiting method is that 
it obviates the need to select an orbiting center in most 
situations. If the user moves further away, the system 
automatically adapts to the larger context and orbits around 
larger groups. Conversely, when moving closer, the system 
orbits around smaller groups or individual objects. Having 
said that, we recognize that our heuristic may fail and may 
not always correspond to the intentions of the user. Hence, 
we believe that this approach should be used judiciously 
and preferably when the user has not set an explicit entity to 
orbit and/or when the user has moved enough so that a 
previously set orbiting center is not relevant, e.g., because it 
is now invisible or too small to be practically useful. 

CONCLUSION 
We presented SHOCam, a new orbiting algorithm that 
guarantees simple, safe and visually attractive camera paths 
for orbiting around 3D objects in 3D scenes. Compared 
with existing methods, SHOCam provides a more 
consistent mapping between the user’s interaction and the 
path of the camera by substantially reducing variability in 
both camera motion and look direction. Moreover, we 
presented a new method that prevents the camera from 
orbiting into other objects, making the visual feedback, and 
so the user experience, more pleasing and also less error 
prone. Finally, we present a new method for automatically 
determining the group of objects to orbit. 
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