

SHOCam: A 3D Orbiting Algorithm

Michael Ortega1, Wolfgang Stuerzlinger2, Doug Scheurich3
1Laboratoire d’ Informatique de Grenoble, UMR 5217 F-38041, Grenoble, France,
2Simon Fraser University, Vancouver, Canada, 3York University, Toronto, Canada

Figure 1. Orbit comparison between HoverCam (left) and SHOCam (middle). Discontinuities in HoverCam’s camera motion are
visible in corners where the camera motion stops. Discontinuities in HoverCam’s camera direction are visible along the path
through the irregular spacing of the view vectors. SHOCam generates substantially smoother paths and view direction changes.
The right image shows interaction with SHOCam on a touchscreen.

ABSTRACT
In this paper we describe a new orbiting algorithm, called
SHOCam, which enables simple, safe and visually
attractive control of a camera moving around 3D objects.
Compared with existing methods, SHOCam provides a
more consistent mapping between the user’s interaction and
the path of the camera by substantially reducing variability
in both camera motion and look direction. Also, we present
a new orbiting method that prevents the camera from
penetrating object(s), making the visual feedback – and
with it the user experience – more pleasing and also less
error prone. Finally, we present new solutions for orbiting
around multiple objects and multi-scale environments.

Author Keywords
3D user interfaces; 3D navigation; 3D orbiting

ACM Classification Keywords
H.5.2. Information interfaces and presentation (e.g., HCI):
Interaction styles.

INTRODUCTION
Thanks to recent technological advances, 3D graphics is
ubiquitous today. Based on this capability, interactive 3D
environments are now accessible on phones, tablets,

desktop computers, and even on public displays. 3D user
interfaces are concerned with the interaction with such
virtual 3D graphics environments. One of the most frequent
actions is viewing of 3D models, e.g., before 3D printing an
object. To support this kind of interaction, it is critical to
provide intuitive, easy to learn, and efficient 3D navigation
techniques for novices as well as for experts. Recent work
has introduced advanced methods to facilitate orbiting, i.e.,
moving around an object while facing it from a constant
distance. Yet, the proposed methods still have limitations
and can lead to situations that can confuse the user or yield
undesirable behaviors, such as jittery navigation paths.

3D orbiting can be considered as an “observation task”.
Observing an object involves (1) navigation around it for
observing said object or its parts from different angles, and
(2) moving closer to or further from it for seeing details or
getting an overview. This can be achieved with only 3
degrees of freedom (3 DOF) control [10]: two DOF’s for
moving “along” the surface of the object (a combination of
rotation and translation around the object), and a single
DOF for moving closer/further away from the object. This
kind of navigation method, which automatically combines
rotation and translation around the object, is something that
even novices easily understand, as evidenced by the many
3D viewing systems on the web that use these conventions.

3D orbiting can also be seen as a “navigation task”. Here a
new constraint appears: the whole scene affects the camera
behavior, as the system ideally should never permit the user
to move the camera into objects. The (unexpected) view of
an interior of an object can be confusing, especially for
novices. This is well known from computer games. In such
situations, novices may get “lost” and then have to recover
a reasonable camera pose with trial and error. Here, the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
UIST '15, November 08-11, 2015, Charlotte, NC, USA

© 2015 ACM. ISBN 978-1-4503-3779-3/15/11…$15.00
DOI: http://dx.doi.org/10.1145/2807442.2807496

above-mentioned 3 DOF interaction method is still a good
solution, but the algorithm that determines the camera path
and velocity should take the rest of the scene into account.

Existing methods do not address all of these constraints. We
first review previous work and then present our new 3D
orbiting methods. In the discussion section we illustrate our
method with several examples and finish with future work.

Previous Work
There is a large body of literature for 3D navigation.
Camera control methods [4] are also related. We focus here
only on orbiting methods and automatic speed control.
Early work on orbiting, such as Unicam [23], focused on
orbiting around points or the center of an object. Safe 3D
Navigation [7] highlighted that off-screen orbit points cause
many forms of navigation problems. Moreover, orbit points
that are not on, or close to, the surfaces of the scene are also
problematic. Smooth view transitions were already
identified to be desirable [18]. Recent work confirmed that
smoother camera motions reduce cybersickness [6]. Phillips
[18] introduced a method that avoids obstructing the view
of the object during orbiting. Niewenhuisen [15] presented
an automatic approach to navigate a camera between
objects with collision avoidance, but only for 2D scenarios.

The HoverCam orbiting method [10] keeps the viewer at a
constant distance relative to the surface of the object.
McCrae et al. [13] improved HoverCam’s efficiency in
their multi-scale navigation approach. They also identified
that HoverCam may switch to other close-by objects during
orbiting, but then simply ignored other objects while
orbiting or stopped the viewer when they would orbit into
another object. Trindade et al. emphasized that the user
needs to stay in front of a surface while orbiting [21].

Recently, touch-based 3D navigation has become popular.
Navidget [8] uses overlaid widgets with different zones to
activate different navigation behaviors, such as orbiting,
which leads to a constant switch in attention between the
zones and scene. Drag’n Go [14] implements steering
towards a point of interest. Finally, ScrutiCam [5] presented
a touch-based orbiting method, which does not handle
objects with concavities very well.

Some 3D sketching systems ensure that the system controls
the view position to facilitate drawing on curved surfaces
[2], which is similar to orbiting. A new method has
extended this to drawing on 3D surfaces [16], to ensure that
the viewer can always see the surface straight on and access
the whole surface of an object in a single drawing gesture.

Mackinlay [12] first observed that setting the camera speed
proportional to the current distance to a target point works
well. Ware confirmed this [22]. In speed-coupled flying
with orbiting [20] and whenever the viewer is flying fast,
the viewer eye-level is automatically elevated to give the
user a better overview of the environment. In a comparison
of multi-scale steering methods, Kopper [11] identified that
automatic size or speed control worked far better than

manual size or speed control in multi-scale scenes. Zhang
[21] confirmed that linking size and speed in a multi-scale
traveling approach is beneficial. McCrae et al. [13]
computed a vector to push the viewer away from nearby
geometry. Trindade [21] identified that speed control via
the global minimum distance can slow the user down
unnecessarily. They detect situations where the viewer can
speed up with a ray in the view direction. Argelaguet found
no strong difference between distance-based speed control
and a method that keeps optical flow constant [1].

Motivation
The overarching objective of our work is to generate
smooth camera movements for 3D navigation. Several
existing navigation methods, such as look-around, already
generate smooth camera motions. Look-around is
universally mapped directly to 2 DOF control. Another
common design decision is that the viewer is prevented
from “flipping over”, i.e., looking at the scene upside down,
as people easily become confused by this.

In 3D modeling and computer games, panning/strafing
moves the viewer orthogonal to the view direction in the
horizontal plane. In orbiting/circle-strafing the camera
moves around a specific object. Our work targets such
orbiting around objects. We believe that the fundamental
idea of having the camera stay at a constant distance to the
surface is appropriate for this kind of navigation task. Yet,
we also believe that said distance can vary to a limited
degree, if this leads to better camera motions. One common
problem with both panning and orbiting is that the user can
easily pan or orbit into other objects if the system does not
prevent the camera from doing this. With camera collision
detection, the camera motion may be stopped or altered
abruptly upon such a collision. This issue is exacerbated by
the fact that most graphics applications use a FOV of less
than 90 degrees. This prevents humans from using their
peripheral vision to prevent collisions.

A common problem for driving or flying methods with
manual speed control is that users overshoot their targets.
Then, users must stop, reverse and then move forward
again, or stop, turn around, move forward at a reduced
speed, and turn again towards their original destination.
Following previous work [1,11,21,22,21], we use automatic
speed control, even during orbiting. Another issue with
manual speed control is that users can fly into objects. This
is especially tricky when reversing, because most 3D
systems do not enable users to see behind themselves, i.e.,
provide no rearview mirror. This makes it hard to predict
when the user will back into an object. Worse yet, backing
into an object yields visually surprising results and causes
confusion. Automatic speed control avoids all these issues.

Finally, we also want to target orbiting for scenes with
whole groups of objects. One shortcoming of existing
methods is that the orbit center always stays fixed when the
user moves further away or comes closer. Yet, if the object
becomes (too) small or too large, this heuristic fails.

Contributions
The main contributions presented here are:
• a method for smoother interactive orbiting;
• a new way to avoid collisions with surrounding objects

during orbiting;
• a new method for multi-scale orbiting, i.e., orbiting of

object groups.

A NEW METHOD FOR 3D ORBITING - SHOCAM
With previous orbiting methods, such as HoverCam, the
camera always stays at a constant distance to the surface
and faces the closest point of the object surface. This simple
principle is not quite powerful enough and different
methods were proposed for avoiding sudden changes of the
camera direction [10,13]. There are three main issues that
have to be solved in this kind of orbiting approach: “how to
turn around a corner”, “how to turn to the next closest
surface”, and “how to guarantee smooth camera motions”.
We now discuss each one of them. As we investigate
orbiting for complex scenes, such as multi-scale
environments, and dynamic geometry, such as CAD editing
or animation, we do not consider pre-computation [3,9,17].

Turning around corners: In the HoverCam approach, the
optical flow changes on convex corners (see Figure 2a).
When the camera reaches a “corner” of a convex surface,
i.e., an edge between two non-coplanar polygons of the
mesh or even a vertex, the closest point of the surface will
temporarily be “glued” to the feature until the camera faces
the new polygon. As the camera still moves while the
viewpoint stays on the edge, the optical flow changes
abruptly, making this a very noticeable discontinuity in the
visual feedback. This is critical for curved surfaces, as such
surfaces are traditionally approximated and represented as a
mesh of small polygons. Orbiting around such a surface
then generates frequent start and stop camera motions. At
some distance this can even look like camera tremor.

Figure 2. Issues with existing orbiting methods: a – viewpoint
stops on edges of convex objects; b – camera stops on
concavities (figure from [10]); c – both viewpoint and position
of the camera may move up and down on complex surfaces.

In HoverCam, the authors proposed to address this
“shakiness” issue by smoothing the model mesh or its
normals. Yet, the degree of tessellation can affect only a
limited range of camera distances. For smoothing normals,
the authors propose to enable this only when the camera is
further away from the object, in order to keep the ability of

traveling along a flat polygon when the camera is close to
it. However, this implies that the mesh tessellation has to be
globally consistent in terms of the size of the output
polygons, which is non-trivial to maintain in all situations.

In an improved HoverCam version [13], the authors
proposed an image-based technique to approximate a local
smoothing of the geometry. The authors specifically
mentioned a box-filter. Yet, such smoothing does not work
well around concavities or holes due to steep depth
discontinuities in such areas. Indeed, when the camera
travels forward, any geometry that comes into view at the
sides of the view may suddenly become the closest point.
Image-based smoothing cannot address this problem.

Turning to the next closest surface: The camera motion
generated by HoverCam stops abruptly on concavities or
surface holes (see Figure 2b). Here, HoverCam stops the
camera motion completely and only interpolates the
viewpoint direction. Camera movement resumes only when
the final direction is reached. This leads to abrupt changes
in the camera behavior. Sometimes a jump in the view
direction also implies a discontinuous jump in the camera
position. Then, HoverCam slows the camera down for
interpolating the camera position. Overall this leads to
piecewise constant optical flow, with discontinuities in
between. Informally speaking, stopping or slowing down
the camera motion in this way can cause the impression that
the camera is “sticky”, which may perturb the user. In the
presence of several concavities, the camera motion is not
fluid, and the start-stop nature of the motion can become
annoying. Normally the user manipulates the camera in two
dimensions (up/down and left/right) during orbiting. Yet, in
concavities, the user loses control of one dimension, as user
input is not mapped to movements anymore, but to the
interpolation parameter to turn to the next closest point.
This leads to a mismatch between user input and the
viewpoint motion, especially when the direction of the
interpolation is orthogonal to the initial user movements.

Smooth camera motion: Existing methods always look at
the closest point on the object and thus both the look
direction and the camera position correspond to the closest
distance to the object. With this and during horizontal
orbiting, both camera direction and position can still move
vertically on geometrically complex surfaces (see Figure
2c) and vice versa. Yet, in the presence of concavities or
holes in the object, the closest point will never stay at the
same height, causing rapid and potentially large changes in
camera direction. This again leads to tremors in the visual
flow and to undesirable orbiting behaviors. Existing
methods do not mention adequate solutions for this
“shakiness” issue. Smoothing the normals or the geometry
does not solve this issue, as both methods do not take the
distance and relative pose of the camera into account.

All of the methods proposed by HoverCam and its
evolutions smooth the changes in camera direction only for
a subset of all potential situations. Moreover, they do not

prevent large variations in camera motions. Depending on
the particular geometry of the object, the camera thus can
unnecessarily slow down and speed up, giving the user
inconsistent visual feedback. This constantly varying
mapping between the visual flow and the user’s movements
makes it more difficult for the user to navigate around an
object in an easily predictable and controllable manner.

The following sections describe our new SHOCam (Smooth
HoverCam Orbiting Camera) method, which guarantees
smooth and constant camera motions, as well as smooth
changes in camera direction for any geometry.

Constant Camera Motion
One of the main objectives of SHOCam is to maintain a
constant camera motion while orbiting an object. Critical
situations can occur around concave corners or holes, where
the closest point suddenly jumps from a polygon to a far
one. Existing methods propose to interpolate the camera
direction and positions, but they do not work sufficiently
well, as explained above.

Here we propose to compute new camera positions in
iterative steps. In each step, we start with the traditional
HoverCam algorithm. As this algorithm does not guarantee
that the distance between the new viewpoint position and
the last one (d) is equal to the length of the desired
displacement distance (|V|), we repeatedly iterate
HoverCam computations until d >= |V| - α*|V|, where
α corresponds to the maximum percentage of variation in
displacement distance we accept.

For this, each new computation uses a new displacement
vector, whose size and orientation depends on the previous
computation result: its orientation is orthogonal to the
computed viewpoint direction and the size is equal to
|V| - d. Here is the algorithm:

 Initial Parameters
 - D: orbiting distance
 - CC: Current Camera position
 - V: current displacement vector
 - α: maximum percentage of accepted variation

Algorithm
1 – Compute the New Camera position (NC) with
HoverCam(CC,D,V)
2 – Compute d =distance(CC,NC)
3 – If d >= |V| - α*|V| or iteration ==4:
 then stop algorithm
 else:
 Compute new V from NC
 |V| = |V| - d
 CC = NC
 Go back to step 1

To avoid the camera penetrating into the orbited object, |V|
(the initial displacement vector length) should never exceed
the orbiting distance. Our algorithm guarantees that the
distance that the camera moves between two consecutive

cameras is always in [|V| – α*|V|,|V|] (see Figure 3). As
with all iterative algorithms, the algorithm might not
terminate. If the camera does not move, we stop after 4
steps, which corresponds to the situation that the camera is
in the center of a spherical cavity and the displacement
distance is close to its radius. This can only happen if the
user increased the target distance after navigating into a
cavity through a smaller gap (or started there). In this case
we issue an auditory alert and reduce the displacement
distance temporarily by 10% to keep the user mobile.

Figure 3. Iteration for SHOCam. a) orbiting around a convex
surface. For clarity of illustration, the length of V is here
higher than the distance between CC and the surface. b)
orbiting on a concave surface.

The computation of the closest point is the most expensive
part of the algorithm. One solution is to compute this
analytically. As the closest point has to be on a polygon of
the orbited object, we compute the distance between the
camera and each polygon of the object and take the
minimum of all distances. For more complex scenes,
another solution is the use of an image-based approach,
e.g., through the cubemap method [13], which identifies the
closest point from the depth buffer. The 3D position of the
pixel with the smallest depth value together with the camera
position defines a 3D ray. Intersecting that ray with the
scene yields the closest point (up to discretization errors).

This approach provides a regular discretization of the
theoretical path of the camera. This then ensures a constant
mapping between user interaction and the theoretical
camera displacement around the object. Yet, as with all
discretization algorithms, this is not enough for
guaranteeing G1 continuity of the camera path. G1
continuity is an appropriate criterion for smooth visual
feedback and optical flow. In the next section we present
how we generate a G1 camera path.

Smooth Interpolation of Camera Paths
The different camera positions computed by the iterative
algorithm are spread regularly along the theoretical camera
path. However, using these positions directly does not
guarantee G1 continuity for the camera path. In Figure 3b
we see that if the camera jumps from its current position

a

d

Iter. 3

b

FC

Iter. 2
d > |V| - α*|V|

d

Iter.1
d < |V| - α*|V|

d
V

V

CC

Init

Iter. 2

d
V

Iter. 1

dCC

V

b

Init

b

V
FC

(CC) to the final one (FC), the displacement is not G1
continuous relative to the previous one. Consequently, we
compute a smoother camera path by interpolating positions
from a set of pre-computed local cameras around the main
camera (see Figure 4). To simplify the description, we first
describe navigation of a camera in 2D along a 1D path.

Figure 4. Left: in this 2D example, the final path of the camera
is a Catmull-Rom spline, computed from the local camera set
defined by five pre-computed camera positions (A to E). When
the current camera reaches D, a new camera position (F) is
computed and the set adjusted to contain B to F. Right:
example camera direction computation via two dimensional
interpolation. As camera direction does not change vertically
within the camera set, we use 1D cubic Bezier interpolation at
each of the three horizontal sub-sets (blue vectors).

When orbiting is initiated, five new camera positions are
computed, two in the forward direction and two backwards.
The length of the displacement vector for computing these
new positions has to be higher than the final camera
velocity. We describe below how we choose these lengths.
With these five camera positions, we compute the final
camera path with spline interpolation. The interpolation
should satisfy the two following constraints: (1) as our
iterative viewpoint computation method provides “correct”
camera positions, where the distance between the camera
and the object surface is constant, the final camera path
should pass through these positions, and (2) the
interpolation should guarantee G1 continuity of the path.
For simplicity, we choose the Catmull-Rom interpolation
spline. Figure 4-left illustrates the resulting path.

Once the first camera set is computed, the camera can then
easily travel in one dimension along the spline, with a direct
mapping between the user’s device displacement and main
camera position. A new camera position for the set is
computed only when the main camera reaches the next
forward or backward position, which then triggers the
update of the camera set. For efficiency, the computation of
the new camera set can be done in a separate thread, while
the camera is still traveling on the current set (see the
discussion section).

The length of the displacement vector V used for computing
the camera set has to be higher than the current camera
velocity (v). We use Mackinlay’s approach [12], i.e., the
camera velocity depends on the orbiting distance (D). Also,

to guarantee that the camera never penetrates the surface of
the orbited object, we keep the camera speed in the interval
[|v|, D]. SHOCam offers then a large amount of possible
camera paths, illustrated in Figure 13.

We generalize our new method to (horizontal) 3D orbiting
by computing two more horizontal camera sets (see Figure
4-right), one above and one below the current set (relative
to its current coordinate frame). The vertical distance
between the sets is equal to the distance for the horizontal
set (using the same camera velocity limits as above [12]).
The final camera then navigates on this 2D camera surface.
Its position is defined via 3D Catmull-Rom interpolation
from the whole camera set. When the camera moves far
enough, additional cameras in the corresponding direction
are computed in separate threads. As the next set overlaps
the current one, only a few cameras need to be computed at
a given time. Vertical orbiting is handled analogously.

Smooth Interpolation of Camera View Directions
Interpolating the previously presented camera set can
provide smooth changes in view directions. However, in
order to maintain a comfortable optical flow, the change in
look direction has to be minimized at each time step, and
spread along the movement when the camera reaches a
corner. Thus, we cannot use interpolating splines for
direction, as they compute a spline that passes through its
control points. Consequently, we use cubic Bezier
interpolation, which takes the cameras in the camera set as
control “directions”. Cubic Bezier interpolation requires
four control points and this determines how many cameras
are necessary around the current camera. We then compute
three directions per camera set. These directions correspond
to the B, C and D positions in Figure 4-left. In general, final
view directions will rarely be exactly equal to the initial
view directions in the camera set. In other terms the camera
will not always look precisely at the closest point. Yet, this
flexibility permits us to minimize of the variations in both
camera positions and view directions, which in turn reduces
the variations in the optical flow. Figure 4-left illustrates
this, and one can notice the “anticipation” of the corner.

As SHOCam does not vary the camera direction
“vertically” (along the camera up vector), the interpolation
for camera directions only has to respect cubic Bezier
characteristics in its “horizontal” dimension. The 3D
camera set is then made of three horizontal 2D “sub”camera
sets, and a cubic Bezier is applied on each of them
independently (see Figure 4-right) before computing the
final direction. The latter is then a simple Catmull-Rom
interpolation from the sub-sets’ directions.

Constraining the Camera Path
Assuming a horizontal camera movement, one issue of the
existing methods presented above is the vertical shakiness
implied by the erratic positions of the closest point on
detailed surfaces (see Figure 2c). This may also imply
vertical changes in the camera path, even if the user makes
a pure horizontal movement. To avoid this, we constrain the

Camera set
Directions from Bezier
Final directions

A
B

CE
D

positions of each camera of the set to the plane defined by
its local position and its up vector. This method constrains
the final camera movement and also further reduces
changes in the optical flow. As illustrated in both the
numerical and the user evaluation below, the added stability
in terms of camera direction makes a significant difference.

Figure 5. Navigation with horizontal or vertical camera sets.
The camera navigates on a 2D shape, and its position is a
Catmull-Rom interpolation from one of the camera sets,
depending on the initial movement of the user.

Orbiting in both directions
With the camera set shown in Figure 4, both horizontal and
vertical movements are constrained by the orbiting distance.
Yet, the view direction is always horizontal. Thus the view
direction will never be rotated down to see, e.g., the top of
the dragon’s head (Figure 5). We thus propose a new
interaction technique that uses two camera sets, for
horizontal and vertical movements respectively (Figure 5
left and right). For this we initially compute both camera
sets (note that the 3x3 interior camera positions are shared).
When the user starts to interact, we analyze the initial path
of the user to determine if the user is moving horizontally
or vertically and then use only the corresponding set. Then,
if the user has been navigating in the orthogonal direction
previously, the camera direction may not face the surface.
Thus we blend the camera direction in the first second of
the interaction between the direction computed from the
camera set and the old camera direction.

Orbiting in Multi-Objects Scenes
The presented method is efficient and generates consistent
camera paths for single object orbiting. However, orbiting
an object in close proximity to other objects can potentially
cause problems as the user may lose sight of the orbited
object if these objects can influence the camera path. Here,
a camera path should respect two main constraints:

• The camera should only focus on the orbited object. For
example, when orbiting one particular tree in a forest,
the camera should never face another tree.

• When displaying other objects transparently is not an
option, the camera should never permit the user to move
into objects. Moving the camera into another object also
leads to loss of the context of the orbited object.

Based on these constraints, we see that the camera orbiting
behavior (both camera positions and view directions) might

need to be influenced by other objects in some limited
manner in some situations.

Figure 6. The orbited object is always the closest. The camera
moves along its view direction and never penetrates into the
rest of the scene.

Due to the dependency on the availability of transparency,
there are two fundamental choices, based on the task
constraints and/or rendering capabilities.

Figure 7. Illustration of the adaptation of the orbiting path to
other geometry in SHOCam. The camera always faces the
object along the path. Due of the other bunnies, the camera
distance varies between the initial distance to the orbited
bunny (thicker black bars) and smaller distances.

1) In an observation/inspection task, the user mainly
concentrates on the orbited object. Thus the camera should
stay at a constant distance to the orbited object. Here, the
easiest solution is to keep the initial orbiting path and to
make other objects transparent when necessary, i.e., when
the camera moves into them or when parts of them appear
in the field of view of the camera. For this option, we use
Ortega et al.‘s approach [16]. At each camera motion step,
we compute both the closest point on the orbited object
(cPO) and the closest point on the rest of the scene (cPS). If
cPS is the closer one and is in the camera field of view, we
compute two camera frustums: one from the camera’s near
plane to the cPS, and a second from the cPS to the camera’s
far plane. The first frustum is used to render the scene in a
texture, which is transparently superimposed onto the final
rendering of the second frustum. This method guarantees
that only parts of the scene that could affect the view of the
object are shown transparent.

cPSicPOi

V

Orbited Object

Initial Distance

2) In navigation tasks, such as orbiting around a wall corner
in a First-Person-Shooter game, constraints imposed by the
environment may play a significant role for navigation.
There, the camera path should take the whole scene into
account. The transparency method is not sufficient in such
situations and should not be used as it radically changes the
visual appearance of the scene and also leads to a potential
loss of visual context. Moreover, in many situations it is
undesirable if the camera can move into other objects. A
classic example is a game where a user inside a wall is able
to shoot others without ever getting hit.

-Compute the closest point on the orbited object (cPO) and
 on the whole scene (cPS).
-if dist(camera,cPO) < dist(camera,cPS):
 -if the previous cPS was closer:
 -move camera backward along its line of sight,
 keeping dist (camera,cPS) >= dist (camera,cPO)
 -else:
 use normal orbiting behavior
-else:
 -move camera frontward along its line of sight,
 until dist (camera,cPS) > dist (camera,cPO)

Figure 8. Pseudo-code for adapting the orbit to other objects
in the scene.

Here we propose a new solution that uses both the closest
distance to the orbited object cPO and also to the rest of the
scene cPS. According to these distances, the camera then
moves along its view direction to ensure that the camera
always faces the orbited object, and never penetrates into
the rest of the scene. The amount of translation of the
camera is dynamically adjusted so that the orbited object is
always the one that is the closest to the camera. According
to our algorithm, the camera moves forward when the rest
of the scene comes closer, and backwards to the initial
distance when the distance to the rest of the scene increases
again. Figure 8 shows pseudo-code for this algorithm.

Figure 6 illustrates the resulting camera path. As camera
speed is directly proportional to camera distance in the rest
of our system (see above) we also reduce the speed of the
camera whenever it gets closer to the orbited object. Figure
7 represents such a path in between 3 bunnies.

GROUP ORBITING
Another interesting issue in orbiting behaviors is that small
objects close to large objects or other far away objects can
negatively influence orbiting behaviors. For example, when
orbiting a planet that has close by satellites, the method
presented above can force the camera to be “squeezed”
between the satellite and the planet. But orbiting the large
object can also have the camera orbit into the satellites.

To address this issue, we use the bounding volume
hierarchy for the whole scene to automatically determine
the group to orbit with a criterion that adapts itself to the
scale of the viewer. When the user initiates an orbiting
action, the system first determines the current projected size

of the bounding volume of the chosen object/group. We
then use two user-configurable thresholds, with empirically
determined defaults of 30% and 15% of the screen area, to
adjust the group. Three scenarios are possible:

a) The selected object/group projects to a size that is too
large (greater than the larger threshold). In this case, the
system searches for smaller groups whose projection size is
smaller than this threshold (if they exist) to be included in
the orbited group (see Figure 9).

Figure 9. Orbiting objects with a wide disparity in size. As
both satellites project to a small size on the screen (s1,s2),
orbiting around either of them from this distance will result in
the camera orbiting around the whole group instead.

b) The selected object/group projects to a small size on the
screen (smaller than the smaller threshold). In this case, we
assume that most of the time the user would like to orbit a
larger group, if available (see Figure 10). The system then
searches for progressively larger groups until it finds one
that is larger than the smaller threshold. Sometimes the user
would like to orbit a single object. This still requires that
the object is large enough to be (easily) selectable by the
user, which may require moving closer.

c) If the user does not explicitly select an object and starts
orbiting, the system detects the closest object to both the
camera position and the view vector, and then applies the
appropriate above logic. If the viewer is too close to
geometry to identify an object that fits into the view
frustum, the first object along the view vector is chosen.

Once a group is selected, explicitly or automatically, the
system then orbits around that whole group, i.e., around all
the objects in the group simultaneously. Figure 9 illustrates
how the SHOCam method adapts the orbiting path in the
presence of other objects around the viewer. Finally, Figure
10 illustrates how the orbit is affected when the method
orbits around a group of objects. While the above-
mentioned heuristic thresholds work well for all examples
shown here, they may have to be adapted to other use cases.

NUMERICAL EVALUATION
For this evaluation, and for the accompanying video, we
implemented HoverCam and SHOCam in Python, with
PyOpenGL and PyCollada. The computation of the closest
point is done analytically, using several functions in C. As
the camera set used in SHOCam needs intermittently the
computation of many camera positions at the same time, we
parallelized the computation of “next” sets. These
computations are done in the background, while the user is

s1
s2

B.Box of the orbited group

Selected
Object

manipulating the viewpoint within the current set. For our
implementation of SHOCam, we set α = 0.9 and length of
V (the vector used to compute the camera set) equal to half
the distance from the camera to the object surface.

Figure 10. Group orbiting illustration: a) the user is fairly
close to a car and likely wants to orbit around this particular
one; b) the user is further from any individual car. Here our
algorithm automatically treats the group of six cars as a
“single” object and orbits around the entire group.

Optical flow
The difference in the quality of the camera paths generated
by SHOCam is easily visible in terms of the camera paths
and view directions in the figures of this paper as well as in
the accompanying video. As additional support, we perform
here a numerical comparison of HoverCam and SHOCam.

Figure 11 first illustrates the variations in viewpoint
direction for a path around 3 bunnies. The curve represents
the angles (in degrees) between each consecutive camera
direction vector. Two observations can be made: (1) the
path is 38.4% longer with HoverCam, and (2) HoverCam
suffers from a lot of abrupt variations in viewpoint direction
while SHOCam is much more stable. As HoverCam’s
viewpoint is interpolated in concavities, this is another
source of velocity variations and causes the longer path.
The abrupt variations are due to the very detailed geometry.

Figure 11 also illustrates the variations of the viewpoint
velocity along the same path. The curve represents the
distances between the viewpoint positions. Compared to the
previously mentioned curve, one more observation can be
made: Hovercam is prone to abrupt “braking”. Indeed, 30%
of viewpoint movements are only rotations. Also, the
standard deviation (stdev) of tangential speed is 42.07%
with HoverCam vs. 0.39% with SHOCam.

To summarize, the path is smoother with SHOCam and the
rotational speed has also smaller variations. The shown
results are representative for all the models presented here.

Computational Complexity
The bottleneck of all considered methods is the
computation of closest points (CCP), regardless if
computed analytically or image-based. Thus, comparing the
computational complexity of each method by investigating
the number and the frequency of CCPs is more objective
than comparing times. For a final camera position,
HoverCam uses a single CCP most of the time, and
sometimes no CCP (when interpolation is used). SHOCam
uses no CCP most of the time, as the camera is interpolated,
and only uses CCPs to update the camera set. However,

SHOCam always computes less CCPs than HoverCam. For
example the dragon orbit (around 414 viewpoints for
SHOCam and 635 for HoverCam), involve 225 CCPs for
SHOCam vs. 450 for HoverCam (77% more).

Figure 11. Variations of viewpoint direction (in degrees) and
viewpoint velocity vector (in arbitrary 3D distance) with
HoverCam and SHOCam for a path around the bunnies. Point
a marks the end of SHOCam path, HoverCam needs more
steps and velocity variations are significantly higher .

SHOCam reuses cameras when updating the camera set,
which decreases “bursts” in computation, which is further
“hidden” via multi-threading. As most cameras are
interpolated, this yields similar frame rates for both
techniques and most all the models presented in Figure 12.

Figure 12. Percentage of CCP relative to total camera positions
during one orbit around 4 models (three models shown in
other figures, the single cube not shown). HoverCam always
needs more CCPs: from 17% to 28% more. Dots show the
frame rate (in Hz) for each technique.

In all the presented paths, with SHOCam, the number of
CCPs for a single camera of the camera set is never higher
than three. Our future investigations will try to link this
number, the CCPs and the frame rate with the scene
complexity in order to evaluate how HoverCam and
SHOCam deal with very complex scenes.

USER EVALUATION
In order to evaluate perception of any potential differences
between the Hovercam and SHOCam, we conducted a user

HoverCam SHOCam

aViewpoint direction

0

12

438

4380

12 Viewpoint velocity

evaluation. The goal was to detect if (1) the difference
between the two techniques is perceivable by users, and if
(2) this makes a difference in orbiting manipulation. The
evaluation was conducted on a Wacom CINTIQ, i.e., a
touch screen with 1920x1200 pixels.

Protocol
We presented three objects to 14 participants (between 22
and 38 years old, 6 women). Each participant orbited
around each object with HoverCam and with SHOCam. We
used counter-balanced presentation to cancel potential
learning effects. We first introduced each technique with an
automatically computed orbit path and then let users orbit
interactively. For the latter, we mapped 2D touch
movements to up/down and left/right movements of the
viewpoint. We used (1) a Stanford bunny (Figure 7) as a
standard and “compact” object, (2) a Stanford dragon
(Figure 1) as a more complex object (different aspect ratio
and with a lot of concavities and convexities) and (3) a
lollipop star (Figure 13) as an object that should stress both
techniques. In the interactive part, people were free to
explore the objects. For the star-lollipop we asked users to
turn around the object as fast as possible, and to judge
which technique seemed more efficient. After the
automated and interactive exploration phases, participants
filled out a questionnaire. They first rated their perception
of each technique, followed by more specific questions.

Results
All participants perceived and were disturbed by the
“sudden jumps” and “shakiness” of the camera direction
with HoverCam. No one complained about this for
SHOCam. 11 participants estimated that they were faster in
exploring the objects with SHOCam. They especially
mentioned the lollipop exploration, where the viewpoint
would get temporarily “stuck” in concavities, but also for
the dragon. The bunny did not suffer from this issue. Three
participants did not perceive a difference in interaction
velocity between the two techniques. 9 participants
perceived cybersickness with HoverCam, and one
complained about both techniques. Cybersickness was
mainly perceived when exploring the dragon. All but one of
the participants were satisfied with the SHOCam interaction
control, but only 4 with HoverCam. Indeed, 11 participants
complained about the “unpredictable” behavior of
HoverCam, especially with the dragon because of (1) visual
jumps and (2) because HoverCam restricts user input to a
single dimension during interpolations. Indeed, when the
user is horizontally orbiting around the dragon, the closest
point can jump between the head and a foot. This makes the
optical flow suddenly vertical, creating a mismatch between
user movement and viewpoint behavior.

All but two participants preferred SHOCam for all kinds of
orbiting tasks, such as navigation around, global overview,
and quick exploration. Two participants noted that each
technique has its own advantages. Indeed, they felt that
HoverCam would be better for “precise” exploration. As we

were surprised by this comment, we asked for more details
and identified that this is side effect caused by the “sticky”
effect of HoverCam around corners or salient areas. Indeed,
as the viewpoint lingers on such points, users focus more
attention on them. However, this only happened on specific
points (convexities), and was only determined by the
geometry and not the user. The interaction asymmetry and
the fact that it is somewhat unpredictable make us believe
that this is not an inherent benefit of HoverCam.

Figure 13. Camera paths that illustrate HoverCam and
SHOCam behaviors around a “star-lollipop” (used in the user
evaluation). D (in 3D arbitrary length) is the distance between
the camera and the object’ surface (lollypop length is about
1600). Length of camera set vector (CSV) varies from |V| to D.
When |CSV| = |V|, SHOCam’s behavior is close to HoverCam,
but without interpolation in concavities and without vertical
variations in camera directions.

DISCUSSION
To illustrate the camera paths that SHOCam generates, we
show a side-by-side comparison of orbits in Figure 1. For
better clarity, the viewpoint has been controlled only
horizontally: the viewpoint path is then horizontal. One can
see the notable differences in the way the camera behaves
around convex vertices and/or concavities. In specific
cases, e.g., when the camera is very close or very far from
the object surface, the HoverCam and SHOCam trajectories
are very similar. Yet, SHOCam will still require less CCPs
than HoverCam, i.e., be more efficient.

In the top part of Figure 13 the camera does not directly
face the flat parts of the green rod, close to the star part.
Participants did not notice this during the evaluation.
However, if the user needs to precisely observe these
locations, one should consider alternatives. We will
investigate this in future work.

In the presence of other geometry, the orbiting behavior of
SHOCam around objects is also smoother. We initially

debated to have SHOCam permit the user to get much
closer to geometry behind the camera. Yet, this is a double-
edged sword. The closer one gets to geometry behind the
camera, the more it will influence the path of the camera.
Imagine moving with your back to a wall that has spikes.
The path would then be very jagged. Thus, we believe that
SHOCam’s approach is an interesting “middle ground”
(both in approach and camera path) relative to existing
approaches. Still, for inspection/drawing tasks where the
distance to the object has to stay constant we recommend an
approach where the camera can orbit into other objects. In
this case we recommend that parts of objects in front of the
camera be rendered transparently [16].

One of the nice features of the group orbiting method is that
it obviates the need to select an orbiting center in most
situations. If the user moves further away, the system
automatically adapts to the larger context and orbits around
larger groups. Conversely, when moving closer, the system
orbits around smaller groups or individual objects. Having
said that, we recognize that our heuristic may fail and may
not always correspond to the intentions of the user. Hence,
we believe that this approach should be used judiciously
and preferably when the user has not set an explicit entity to
orbit and/or when the user has moved enough so that a
previously set orbiting center is not relevant, e.g., because it
is now invisible or too small to be practically useful.

CONCLUSION
We presented SHOCam, a new orbiting algorithm that
guarantees simple, safe and visually attractive camera paths
for orbiting around 3D objects in 3D scenes. Compared
with existing methods, SHOCam provides a more
consistent mapping between the user’s interaction and the
path of the camera by substantially reducing variability in
both camera motion and look direction. Moreover, we
presented a new method that prevents the camera from
orbiting into other objects, making the visual feedback, and
so the user experience, more pleasing and also less error
prone. Finally, we present a new method for automatically
determining the group of objects to orbit.

AKNOWLEDGMENTS
This work was partially funded by the FUI project 3DCI
(AAP14), ANR ISAR, the GRAND NCE, NSERC, and
Persyval Labex.

REFERENCES
1. Argelaguet F., Adaptive navigation for virtual environments,

Proc. IEEE 3DUI 2014, pp. 123-126
2. Bae S., Balakrishnan R., Singh K., ILoveSketch: as-natural-as-

possible sketching system for creating 3d curve models. Proc.
ACM UIST 2008, pp. 151-160

3. Burtnyk N., Khan A., Fitzmaurice G., Kurtenbach.G.,
ShowMotion: Camera motion based 3D design review. Proc.
ACM I3D 2006, pp 164-174

4. Christie M., Olivier P., Camera control in computer graphics:
models, techniques and applications. Proc. ACM SIGGRAPH
ASIA Courses 2009, Art. n.3

5. Decle F., Hachet M., Guitton P., Scruticam: Camera
manipulation technique for 3D objects inspection. Proc. IEEE
3DUI 2009, pp. 19-22

6. Dorado J.L., Figueroa P. A., Ramps are better than stairs to
reduce cybersickness in applications based on a HMD and a
gamepad, IEEE 3DUI 2014, pp. 47-50

7. Fitzmaurice G., Matejka J., Mordatch I., Khan A., Kurtenbach
G., Safe 3D navigation. Proc. ACM Symposium on Interactive
3D Graphics 2008, pp. 7-15

8. Hachet M., Decle F., Knoedel S., Guitton, P., Navidget for
easy 3d camera positioning from 2d inputs. Proc. IEEE 3DUI
2008, pp. 83-89.

9. Hanson, A. J., Wernert, E. A. Constrained 3d navigation with
2d controllers. Proc. IEEE VIS 1997, pp 175–183

10. Khan A., Komalo B., Stam J., Fitzmaurice G., Kurtenbach G.,
HoverCam: Interactive 3D navigation for proximal object
inspection. ACM I3D 2005, pp. 73-80

11. Kopper, R., Ni T., Bowman D.A., Pinho M., Design and
evaluation of navigation techniques for multiscale virtual
environments, Proc. IEEE VR 2006, pp. 175-182.

12. Mackinlay J. D., Card S. K., Robertson G.G., Rapid controlled
movement through a virtual 3D workspace, Proc. ACM
SIGGRAPH 1990, pp. 171-176.

13. McCrae J., Mordatch I., Glueck M., Khan A., Multiscale 3D
navigation. ACM I3D 2009, pp.7-14

14. Moerman C., Marchal D., Grisoni L., Drag'n Go: Simple and
fast navigation in virtual environments, Proc. IEEE 3DUI
2012, pp. 15-18

15. Nieuwenhuisen D., Kamphuis A., Overmars M.H., High
quality navigation in computer games. Science of Computer
Programming 67, no. 1 (2007): pp. 91-104.

16. Ortega M., Vincent T., Direct drawing on 3D shapes with
automated camera control. Proc. ACM CHI 2014, pp. 2047-
2050

17. Oskam T., Summer R.W., Thuerey N., Gross M., Visibility
transition planning for dynamic camera control. Proc. ACM
Eurographics 2009, pp.47-57

18. Phillips C.B., Automatic viewing control for 3D direct
manipulation. Proc. ACM I3D 1992, pp.71-74

19. Schmidt R., Khan A., Kurtenbach G., Singh K., On expert
performance in 3D curve-drawing tasks. Proc. ACM SBIM
2009, pp. 133-140

20. Tan D. S., Robertson G.G., Czerwinski M., Exploring 3D
navigation: Combining speed-coupled flying with orbiting.
Proc. ACM CHI 2001, pp. 418-425.

21. Trindade D.R., Raposo A.B., Improving 3D navigation in
multiscale environments using cubemap techniques. Proc.
ACM SAC 2011, pp. 1215-1221

22. Ware, C., Fleet, D., Context sensitive flying interface. Proc.
ACM I3D 1997, pp. 127-130

23. Zeleznik R., Forsberg A., UniCam – 2D gestural camera
controls for 3D environments. Proc. ACM I3D 1999, pp. 169-
173

24. Zhang X., A multiscale progressive model on virtual
navigation. International Journal of Human-Computer
Studies 66(4), 2008, pp. 243-256

