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ABSTRACT 
Gestural interaction has become increasingly popular, as 
enabling technologies continue to transition from research 
to retail. The mobility of miniaturized (and invisible) 
technologies introduces new uses for gesture recognition. 
This paper investigates single-hand microgestures 
(SHMGs), detailed gestures in a small interaction space. 
SHMGs are suitable for the mobile and discrete nature of 
interactions for ubiquitous computing. However, there has 
been a lack of end-user input in the design of such gestures. 
We performed a user-elicitation study with 16 participants 
to determine their preferred gestures for a set of referents. 
We contribute an analysis of 1,632 gestures, the resulting 
gesture set, and prevalent conceptual themes amongst the 
elicited gestures. These themes provide a set of guidelines 
for gesture designers, while informing the designs of future 
studies. With the increase in hand-tracking and electronic 
devices in our surroundings, we see this as a starting point 
for designing gestures suitable to portable ubiquitous 
computing. 
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INTRODUCTION 
In recent years, several techniques have been proposed to 
detect skin-based input [5, 7, 16, 23, 26], where touching an 
appendage to another part of the body serves as an input 
modality. There is a major advantage of skin-based input 
over traditional methods, since there is no (a-priori) need of 
any apparatus acting as a medium. Skin-based touch 
gestures such as tapping, pinching, and swiping, have been 
explored on several parts of the body. Most commonly, 
palms and forearms were used as touch surfaces given their 
relatively flat anatomy and perceived accessibility [7, 16, 

27]. As gesture detection technologies become more 
miniaturized, gestures that are subtler and more discrete 
become possible. Given these developments, single-hand 
microgestures (SHMGs) are promising and in need of 
further study. 

A SHMG is unique relative to other touch inputs or 
microgestures, resulting in its moniker. Examples of 
SHMGs are seen in Figure 1. Traditional touch-input is 
performed by a user, often with her hands, on some sort of 
detection device, such as a digitizer or a camera-driven 
touch sensor. In comparison, a single-hand gesture is 
defined here not only as performed by a single hand, but 
also performed on that same hand. This is significant 
because it allows the gesture to be performed anytime and 
anywhere. In addition, the gesture can easily be performed 
secondarily with one hand while performing another task. 
In a previous elicitation study, users preferred single-hand 
gestures over bimanual ones; users were observed mirroring 
gestures on either hand to adapt to different contexts [20]. 
The microgesture designation suggests SHMGs are 
commonly performed, but rarely noticeable; SHMGs tend 
to be subtle yet informative. These features of SHMGs 
allow them to be performed naturally in public contexts 
where large gestures may be perceived as socially awkward 
[19]. 
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Figure 1: Participants performing a variety of SHMGs. 
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Given their potential, SHMGs have been discussed as both 
primary and secondary topics by other researchers. Some of 
these discussions focus on enabling technologies such as 
body-mounted cameras [8] or sensors [9]. One study has 
elicited a gesture set from experts [30]. This work offers 
some insights to consider in designing gestures, yet the 
authors did not consult end-users directly. The result is an 
expert-based gesture set which differs from the user-elicited 
gesture set we discovered. We aim to address this lack of 
user input in the design and implementation of SHMGs. To 
better realize their potential, we are interested in going 
beyond technical compromises to fully understand human 
preferences. We accomplish this by employing Wobbrock 
et al.’s elicitation methodology [28], which has been used 
by numerous studies to explore user preferences and the 
nature of symbolic inputs. We can then compare and 
validate our results to the existing studies. One such study 
by Vatavu et al. elicited gestures similar to our work from 
end-users, but only in the context of TV interfaces using a 
LEAP Motion input device [26]. 

Our contributions begin with the classification of 1,680 
elicited gestures, followed by the statistical analysis of the 
data using Vatavu et al.’s revised agreement rate [25]. We 
conclude with a set of design guidelines that offer 
qualitative insight into end-user thinking when designing 
SHMGs. The versatility of SHMGs make them suitable to 
many scenarios, and we see our work as a preliminary 
effort to designing better SHMGs for enhanced adoption 
and user experience.  

RELATED WORK 
A main concern with designing gestures is how well users 
resonate with such gesture sets, and whether a set is “easy 
to use.” Many implementations of gesture recognition exist, 
and an earlier work lists 37 such implementations just for 
3D gesture recognition [32]. Researchers continue to 
present improved technologies and new implementations, 
and implicitly make gestures easier to adopt and use by 
users. Many finger-based user interfaces involve user input 
performed on a passive or electronic device, such as a touch 
display or trackpad. These systems are ubiquitous in our 
surroundings now. However, a major drawback to using 
gestures on such devices is precisely the requirement of the 
device itself. Without the device, gestures cannot be used. 
The “surface-independent” Tickle interface [31] attempted 
to solve this, by permitting gestures to be made on any 
surface. This is an improvement, yet still requires the use of 
a foreign object for gesticulation. The Magic Finger 
similarly afforded touch input anytime and anywhere 
through a small device attached to a finger [33].  

Device-free Hand Gestures 
Device-free hand gestures require no other object to interact 
with, making them highly portable and literally as natural as 
using your hands. The earliest approaches often used some 
sort of Data Glove equipped with a whole set of sensors, 

which is well documented in Dipietro et al.’s survey of 
such systems [4]. However, wearing a glove is often 
inconvenient or inappropriate, which does not encourage 
adoption. Therefore, more recent approaches use alternative 
recognition methods. SixthSense [9] is worn like a necklace 
and makes use of a camera, projector, and fiduciary 
markers. Another example is the wrist-mounted camera 
approach used by Rekimoto et al. in GestureWrist [18], and 
later by Kim et al.’s Digits [6]. PinchWatch is a similar 
device and uses a chest-mounted camera system [8]. 
Saponas et al. presented an approach based on muscle-
computer interfaces [21]. One of the latest innovations is 
the CyclopsRing [3], an input method for gestures including 
SHMGs, which achieved ~84.75% accuracy. This 
technology can detect most of the SHMGs we studied in 
this paper. All these alternatives were designed with the 
user in mind, but only looked at the gestures afforded by the 
system and not the usability of the technology. We sought 
to remedy this with the results of our study. 

User Elicitation 
Gesture interfaces are often designed without fully 
consulting end-users, or sacrifice usability for ease of 
implementation and practical reasons. As motivated by 
previous elicitation studies, designers and developers often 
do not share the same conceptual models as the end-users 
that should be catered to [15]. In many cases, end-users 
blend concepts from other systems that they have previous 
experience with [1]. These may include common household 
objects, phones, handheld controllers, etc. When comparing 
user-elicited and expert-elicited gesture sets, Wobbrock et 
al. discovered a user preference for user-elicited gestures. 
Gestures proposed by both users and experts were most 
preferred by users [12]. In addition, Nacenta et al. found 
that user-defined gestures are easier to remember [13]. To 
understand end-users, Nielsen et al. [15] proposed a 
procedure for eliciting and developing user-defined 
gestures. User elicitations using this procedure have offered 
contributions towards the design of the studied gestures and 
the overall user design process, despite eliciting unique 
types of gestures. Wobbrock et al. provided an agreement 
measure [28] to analyze and interpret elicited data, which 
has been widely adopted by prior elicitation studies [1, 10, 
23, 26, 29, 30]. Vatavu and Wobbrock later refined this 
measure [25] to more accurately represent findings. Morris 
et al. [11] examined the issue of legacy bias, offering 
methods to reduce its effects. 

Wobbrock et al. [29] discussed several intriguing concepts 
including dichotomous references, reversible gestures, and 
simplified mental models. Seyed et al. [23] noted the 
importance of aliasing gestures as a solution to varied user 
preferences, while offering atomic gestures and themes to 
help map gestures to users’ conceptual models. Angelini et 
al. [1] looked at gestures performed on a steering wheel. 
Albeit different from our own study, their work identified 
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Category Tasks Category Tasks
Transform 1. Move Editing 19. Cut

2. Rotate 20. Copy
3. Enlarge 21. Paste
4. Shrink 22. Delete
5. Minimize 23. Accept
6. Maximize 24. Reject

Simulation 7. Volume up 25. Undo
8. Volume down 26. Save
9. Mute Menu 27. Help
10. Play 28. Open menu
11. Pause 29. Close Menu
12. Stop 30. On

Browsing 13. Pan 31. Off
14. Zoom in Selection 32. Select single
15. Zoom out 33. Select group
16. Scroll 34. Find
17. Next
18. Previous

Table 1: The list of 34 referents used in the study. 

similar metrics, such as body parts used in gesticulation, 
and the frequency of gesture actions, such as swipe or tap. 

A recent work proposed a taxonomy of microinteractions 
[30], defining microgestures based on ergonomic and 
scenario-dependent requirements. While the premise of 
investigating gestures performed in relation to hand grips 
(due to holding objects or devices) differed from our 
device-free gestures, their study produced a framework for 
some of our findings. Indeed, their consultation with four 
experts of hand anatomy helped to define the physical traits 
that limit SHMGs. One participant was a sports therapist, 
while the remaining three were physiotherapists. We will 
relate to their findings in our discussions of physical 
limitations and discomforts encountered while performing 
gestures. 

Classifying Gestures 
We based our classification of elicited gestures on the 
Descriptive Labeling proposed by Nielsen [15], with 
gestures being recorded by their actions rather than their 
semantic meaning. Gestures were chunked and phrased 
according to Buxton’s work [2], with phrases delimited by 
periods of tensions and relaxation. Given that each referent 
shown to users is a task, i.e., an action, it made sense to also 
describe the gestures for these tasks as distinct actions. 
These distinct actions, termed atomic gestures by Buxton, 
are sometimes combined by users to create compound 
gestures. We employ descriptive labeling, chunking, and 
phrasing to present our data for interpretation. An example 
of a compound gesture is shown here: 

USER STUDY 
An elicitation study was conducted to identify user 
preferences for SHMGs. 

Participants 
Sixteen paid volunteers participated in the study (7 male, 
9 female). Participants were recruited using email lists and 
word of mouth. The participants ranged in age from 16 to 
39 years (Mean = 22, SD = 4.97), and came from differing 
backgrounds including marketing, arts, psychology, and 
high school students. Of the 16 participants, 4 reported 
having experience with microgesture devices such as the 
MYO armband or LEAP Motion sensor. All participants 
had some experience with touch gestures, along with 
frequent use of devices such as smartphones, computers, or 
gaming consoles. 

Apparatus 
Since SHMGs are defined as device-free, users did not 
interact directly with any device. Before starting, 

participants were shown sample SHMGs on a laptop 
computer to illustrate the potentials and limitations of 
SHMGs. For the elicitation, referents were listed on a 
printout, with each referent being demonstrated on the 
laptop computer. 

Video recording was done with a 1080p webcam mounted 
on a tripod, and users were able to see the live recording so 
they could keep their hands in view. The recording captured 
each of the user’s gestures, as well as communication 
between the user and author. 

Referents 
We wanted to form a list of common tasks which users 
could relate to and which they may perform frequently. To 
do so, we looked at Wobbrock et al.’s list of referents [29] 
as a starting point. We then added several actions that are 
commonly performed on devices such as phones or 
computers (eg. “Play”, “Next”, “Copy”). The gestures were 
grouped into the six categories used in Piumsomboon et 
al.’s elicitation study for augmented reality [17]. Table 1 
lists the final set of referents that we used in the study. 

Procedure 
At the start of each session, participants were asked to fill 
out a short survey regarding prior experience with related 
devices. Participants were then informed of the purpose of 
the study, before being primed [11] with a short 
introduction to SHMGs. This included defining SHMGs as 
gestures performed on the surface of the hand, from the 

TAP on INDEX with THUMB, then 
SWIPE on INDEX with THUMB 

Figure 2: A proposed gesture for the 
referent "Zoom in". 
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wrist to the fingertips, using only the fingers of the same 
hand, without interaction with other objects or devices. 
Participants were allowed to use either hand. Several types 
of actions, e.g., tap or swipe, were shown to the participant, 
with variations of each explained to give them a better 
understanding of what gestures might be considered unique. 
Examples of such variations are shown in Figure 3. 
Participants were encouraged to design gestures based on 
preference without concern for implementation feasibility. 
However, participants were undoubtedly affected by 
previous associations with other input methods or 
implementations; this is further discussed in the results and 
analysis sections. We also specified gestures could be 
reused for different tasks if it made sense to participants. 

Participants were presented with a list of 34 referents and 
asked to design three gestures for each task, before 
identifying their preferred gesture for the task. Referents 
were always presented in the same order to participants. By 
requiring three gestures, we apply the production technique 
to reduce legacy bias [11]. Each referent was demonstrated 
on the laptop computer, and participants were allowed to 
ask for clarification if required (for example, about the 
difference between “Move” and “Pan”). Sometimes, 
participants were asked to explain their choices for greater 
understanding of their thought process. After they 
completed each of the referents, we performed a semi-
structured interview to elicit feedback about their 
experience, including potential use cases and difficulties 
encountered. Participants were generally enthusiastic to 
provide their opinion, which was encouraging for both the 
study and use of SHMGs. 

RESULTS 
From our 16 participants, we collected a total of 1,632 
gestures (16 participants x 34 referents x 3 gestures).  These 
gestures were classified with the aforementioned 
methodology; this process is explained in detail in the 
following section. From the resulting set of gestures, we 
calculate agreement rates between participants and interpret 

them. A consensus set, as defined by Wobbrock et al. [29], 
is presented for SHMGs. 

Classification of Gestures 
In previous work by Wobbrock et al. [29], their consensus 
set of gestures is constructed from the most common 
gesture elicited for each referent. In our study we followed 
a similar approach, but accounted for some interesting 
factors, which affected our results. Our approach resembles 
that of Piumsomboon et al. [17], since we group gestures 
that are similar rather than identical. 

The primary distinction of gestures used is the type of 
action performed in the gesture. We were able to categorize 
all the gestures into four actions: Tap, Swipe, Circle, and 
Draw. Definitions and examples of each action are 
illustrated in Figure 3. 

During the study, participants were asked to pick their 
preferred gesture after coming up with three unique 
gestures. In many cases, the participant would remember 
the action performed, but mix up the exact finger(s) used. 
This observation is consistent with another study, in which 
users expressed little concern about how many fingers were 
used in a gesture [30]. The confusion was also seen when 
comparing hand poses, where the fingers not used in the 
gesture would be bent in one variation but not the other. 
When reviewing the recordings, we were surprised by how 
often this happened. To account for this confusion in 
recalling gestures, we separated gestures that used two or 
less fingers from those with three or more fingers. This is 
less restrictive than matching the exact finger(s) used in 
each gesture, and seems to better represent the thought 
behind gestures. Some participants commented on using 
one or two fingers for more precise actions (such as “Select 
Single”) while using three or more figures for tasks that 
seemed to need more space (such as “Select Multiple” or 
“Move”). 

From the original 1,632 gestures, we isolated the 544 
preferred gestures (140 unique gestures). By following the 

Figure 3: The four types of actions are illustrated and defined. 
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approach defined above, we were able to reduce the set to 
47 unique gestures. By taking the maximum consensus 
gesture for each referent in this set, we were left with 8 
unique gestures, which represented 220/544 gestures or 
40.4% of the entire set. 

Agreement Between Participants 
Previous studies [10, 17, 23, 29] used Wobbrock et al.’s 
Agreement Rate formula [28], which did not accurately 
represent gestures with no agreement. Gestures that had 
zero agreement trivially agreed with themselves. Therefore, 
gestures with zero agreement actually did not have an 
agreement rate of 0. This formula also did not account for 
the degrees of freedom; a gesture with 15/20 matching 
entries had the same agreement rate as a gesture with 30/40 
matching entries, despite the latter clearly showing greater 
agreement for the consensus gesture [25]. 

A new agreement rate formula was proposed by Vatavu et 
al. [25], which accounts for the missing factors in the old 
formula. We measured agreement between participants 
using this new formula and the accompanying AGATe 
(AGreement Analysis Toolkit) software. The revised 
agreement formula is defined in Equation 1:  

       

  (1) 

 

where “P is the set of all proposals for referent r, |P| the size 
of the set, and Pi subsets of identical proposals from P” 
[25]. 

Agreement rates ranged from 0.042 (low agreement, AR ≤ 
0.100) to 0.650 (very high agreement, AR > 0.500). The 
mean AR was 0.191 (medium agreement, 0.100 < AR < 
0.300). The agreement rates of all referents are shown in 

Figure 4. Since the new formula calculated AR less 
optimistically, Vatavu et al. recalculated the AR of 18 
previous studies [25]. In these studies, the average sample 
size was 19.1, while mean AR was 0.221. 

Along with a new formula for agreement rate, Wobbrock et 
al. also introduced the Coagreement Rate, which looks at 
“how much agreement is shared between two referents r1 
and r2.” This is interesting because we can observe patterns 
previously left unnoticed. Existing work had already shown 
a significant relationship between gestures of dichotomous 
pairs [17, 23, 29] such as “Next”/”Previous” or “Zoom 
In”/”Zoom Out”. Most of the pairs described were 
directional, where consensus gestures opposed each other 
directionally (e.g., swipe left/right). Less focus has been 
placed on toggles such as “On”/”Off” or “Play”/”Pause”. 
With the new Coagreement Rate, we not only found that 
“On”/”Off” (as well as “Play”/”Pause”) have the same 
consensus gesture, but that participants who picked one 
gesture in r1 often picked the same gesture in r2. We know 
this since the AR for r1 and r2 are close to CR(r1,r2). For 
example, AR(On) = 0.200, AR(Off) = 0.250, and 
CR(On,Off) = 0.197. This is different from only knowing 
that the same number of participants picked the consensus 
gesture in both referents, and suggests referents of this type 
should use the same gesture. 

Consensus Gesture Set 
As mentioned earlier, the original gesture set was reduced 
to 8 unique gestures. This set is rather small and even 
within each of the six categories of referents, there were 
conflicts where one gesture was preferred for several 
referents. This was an expected outcome, since we 
classified five fingers with only two types: two fingers or 
less, and three fingers or more. To resolve the conflicts, we 
looked at each instance of the consensus gesture for each 
referent and identified which fingers were used most. The 

Figure 4: Agreement rates for the 34 referents. 
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idea behind this resolution comes from observing the 
participants. While participants often mixed up the exact 
finger they suggested for a gesture, there was a recurring 
theme of choosing similar gestures for seemingly related 
tasks. Several participants exhibited this pattern when 
choosing gestures for “Cut”, “Copy”, and “Paste”, as well 
as “Accept” and “Reject”. We observed a strong preference 
for keeping these gestures “close to each other” or “next to 
each other”. 

Sometimes participants arbitrarily chose different fingers 
for a similar gesture (such as tapping any finger and the 
thumb together), when they had difficulty coming up with 
three meaningful gestures. We tried to reduce this source of 

randomness by taking the most used finger(s) for each 
consensus gesture. Very interestingly, assigning fingers 
with this procedure resolved all but one conflict in the 
consensus gesture set. 

The only remaining conflict was between “Stop”, “On”, and 
“Off”. Since the top two preferred gestures for each of these 
referents were the same (make a fist, or tap the 
index/middle/ring ringers on the palm), we included both 
gestures for all three referents. We suggest using the same 
gesture for both “On” and “Off”, as we previously 
mentioned a significant Coagreement Rate between the two. 
The resulting consensus set of 16 gestures representing 35 
referents in 6 categories is shown in Figure 5. 

Figure 5: Consensus Gesture Set 
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Actions 
To better understand the distribution and makeup of the 
gestures elicited, recall our classification method which 
separates gestures by actions, based on Bill Buxton’s work 
on Chunking and Phrasing [2]. When we examined the 
actions chosen for consensus gestures, we discovered 
several motifs. 

Of the four action types, Taps were the most common (19 
of 34 referents). During the think-aloud sessions, users 
offered some potential reasons for picking Taps. Taps were 
popular amongst users because of their ease with which 
they can be performed and their conceptual simplicity, 
making them easy to reproduce. Many Tap gestures were 
also preferred due to their resemblance to interaction with 
other devices, such as mice, trackpads, gaming devices, or 
remote controllers. This is apparent in the Selection 
category, where all three consensus gestures used Taps. A 
Tap gesture provided the precision desired when selecting a 
specific set of objects.  

Swipes (14 of 34 referents) were frequently used when the 
task involved picking a value inside a continuous range, 
such as turning the volume up or down. In many cases they 
reminded users of the fluid action of sliders or radial dials. 
Swipes were also often used for tasks that were directional, 
such as moving something or scrolling in any direction. Of 
the six referents in the Transforms category, five made use 
of Swipes. The “Rotate” task used a Circle action, which 
was likely chosen due to the circular motion associated with 

rotation. 

The Draw action appeared with six of the participants, but 
did not make it into the consensus set. Although drawing a 
question mark for “Help” or drawing an ‘X’ for “Close” 
seemed more intuitive and easier to recall, participants only 
resorted to the Draw action when experiencing difficulty 
devising three gestures. 

Compounds gestures made up 12% of all gestures elicited, 
and were preferred for approximately 10% of tasks. These 
were mostly used for tasks that users instinctively split into 
smaller modules. For example, when asked to select a 
group of items, a participant said, “I swipe across my 
fingers like I am choosing the items, then I tap on my 
fingers to select them.” In another example where a 
participant was asked to perform the Save task, the 
participant responded, “I have something here, then I want 
to make a copy here to save it.” 

In Figure 6, we present the distribution of action types in 
the preferred gestures set. The preferred gestures set 
represents the preferred gestures of every participant, rather 
than just the gestures in the consensus set. By examining 
the graph, we can easily tell which actions were preferred 
for specific gestures. For example, we can tell that Swipes 
were preferred for dichotomous pairs, which are discussed 
in more detail later. 

Figure 6: Distribution of action types in the preferred gesture set. 
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Actors 
Given the physical constraints of SHMGs where gestures 
are performed using only a single hand, it made sense that 
all gestures were performed using one or more finger(s). 
Knowing which fingers were most common in our data 
helps us to quantitatively assert which actors are most 
suitable for SHMGs. We can then combine qualitative 
observations from the study with insights from existing 
work to suggest reasons for some of the actors standing out 
as most commonly used by participants. The frequencies of 
each finger appearing in the gestures elicited can be seen in 
Figure 7.  

Unsurprisingly, the thumb was involved in 88% of all 
gestures. As explained by existing work relating hand 
anatomy and gestures [30], our hands are opposable 
through the use of our thumbs. Because of this special trait 
of thumbs, as well as its unique ability to rotate, the thumb 
can easily touch other parts of the hand, which by definition 
of SHMGs constitutes a gesture. Whereas other fingers 
have difficulty interacting with their neighbors, thumbs can 
touch most areas of the other fingers quite naturally. 
Capable of rotating, the thumb is often used for controls 
that involve rotation or multiple axes. For example, many 
gaming controls use the thumb for the D-Pad or joystick, 
while (two-dimensional) phone screens are often interacted 
with the thumb. Similarly, all the elicited Swipe gestures 
were performed with the thumb. 

The preference of the index and middle fingers, when 
compared to the ring and pinky fingers, can also be 
explained by Wolf et al.’s summary of the anatomy of the 
hand [30]. Due to biomechanics and more specifically the 
muscles involved in moving each finger, the index finger is 
most suited to independent movement, followed by the 
middle finger. The ring finger is considered to be the least 
feasible, because “two muscles (M. flexor digitorum 
profundus & M. flexor digitorum superficialis) are bending 
synergistically the index, middle, and little finger to bring 
them into the palm position. In addition another muscle is 
responsible for stretching the ring finger (M. extensor 
digitorum), but because this muscle is also responsible for 
stretching the other fingers and because the ring finger has a 

physical connection to the middle finger (Connexus 
intertendineus), the middle finger will always move a bit in 
the same direction as the ring finger does.” 

While the pinky finger is also able to move independently 
like the index finger, it was seldom used in the consensus 
set (2 of 34 referents). Possible explanations include the 
greater distance between the thumb and pinky finger, as 
well as the reduced strength of the pinky finger compared to 
the index finger. Some participants avoided using the pinky 
finger due to potential discomfort and fatigue. 

IMPLICATIONS FOR DESIGN 
Combining the results above as well as the results of the 
interviews conducted with users at the end of each study 
session, we derived several guidelines for the design of 
SHMGs. 

Previous Experience 
While the agreement rate was comparable to existing 
studies, we believe previous experience of participants 
strongly affected our results. This motif has been previously 
documented [23, 26], and generally led to greater 
agreement amongst participants. However, we found that 
the previous experience of our participants both positively 
and negatively affected agreement rates. An example where 
it contributed positively to agreement is the “Cut” referent, 
which users easily associated the task with a common 
symbol for scissors (tapping the index and middle fingers 
together). In another example where previous experience 
may have negatively influenced agreement rates, the 
proposed gestures for “Mute” included using the sign 
language representation of the letter “m” and also 
simulating the action of reaching towards the back of a 
handheld gaming console to reduce volume. While there are 
physical representations for “Mute”, such as a clenched fist 
in music performances (a gesture that participants had little 
prior experience with), users drew on a large variety of 
other previous experiences for such actions. Regardless of 
whether previous experiences affected agreement rates 
positively or negatively, the impact of these experiences 
was apparent in the behavior of participants. 

As documented by Nebeling et al., we also noticed a trend 
where referents which related to physical actions (such as 
“Cut”) resulted in greater recall and agreement when 
metaphors were used [14]. This observation suggests that 
gesture designers must consider the nature of each referent, 
the existing metaphors, and whether these metaphors are 
commonly used by the expected users of the system. For 
referents that do not benefit from the use of metaphors, 
abstract gestures are more suitable as indicated by the 
numerous cases when users recalled specific details 
incorrectly. 

Fingers and Postures: Their Meanings 
Another topic that surfaced in other elicitation studies is the 
cultural meaning of various hand postures and gestures. 

Figure 7: Frequency rates of each finger in consensus set. Sum 
> 100%, as multiple fingers may be used in a single gesture. 
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While symbolic hand gestures have already been discussed 
[23, 26], e.g., “Help” with a beckoning gesture or “Mute” 
with a clenched fist, we found that users often chose 
specific fingers as well for a variety of reasons. Besides 
using the index finger for its dexterity or convenience, users 
frequently referred to the index finger as the pointer finger, 
which evoked a feeling of confidence or direction. A 
particularly interesting case is “Help”, where one user used 
the pinky finger because “pinky is the weaker one, so you 
need more help.” 

SHMGs can be discrete and subtle, but we expect these 
gestures to be performed in both private and public spaces. 
As such, certain gestures may be less suitable than others 
and may need to be substituted for specific user groups. 

Dichotomous Pairs and State Toggles 
Another reason for choosing specific fingers was the motif 
of dichotomous pairings, and in some cases groupings of 
three or more gestures. As previously mentioned, 
dichotomous pairs often resulted in opposing gestures, such 
as swiping left to symbolize previous and swiping right to 
symbolize next. In Figure 6, Swipes are shown to be 
preferred for “Enlarge”/”Shrink”, “Minimize”/”Maximize”, 
“Volume up”/”Volume down”, and “Zoom in”/”Zoom out”. 
As Swipes were heavily preferred for dichotomous pairs in 
the consensus set as well, we again make the 
recommendation to Swipes for these gestures. We also 
recommend using identical gestures for toggles, such as 
“On”/”Off”. Identical gestures are more suited to toggles 
than opposing gestures, as we identified a unique problem 
with hand gestures when applying certain gestures for 
toggles. A good example is when some users suggested 
closing their fist to turn the system “On”, while releasing 
their fist to turn the system “Off”. Although the gestures are 
unique, the hand naturally returns to a relaxed state after 
tension, relating to Buxton’s delimitation of atomic gestures 
through periods of tension and relaxation [2]. As such, 
performing the “On” gesture results in the “Off” gesture 
also being performed. This difficulty was encountered for 
other pairs such as “Enlarge”/”Shrink” or “Volume 
Up”/”Volume Down”, forcing users to choose other 
gestures. 

Level of Detail 
Given the variety of Actors and Actions, there are 
technically hundreds of possible SHMGs. However, while 
some users went as far as using different joints to 
differentiate gestures, most users settled for less detail in 
their gestures. Many users even complained about the lack 
of gestures available, as one participant described: “It’s 
very limited, (the) amount of things you can do with one 
hand and touch.” The difficulties participants experienced 
in recalling gestures in detail prompted the classification 
method used in our study. 

One participant worried “some people would be limited in 
the number of hand gestures they would have based on 

hand mobility.” This was the case for another participant 
who could not form a clenched fist. The dexterity of users 
could influence their preference of gestures.  

Finally, select users were aware of variables for creating 
gestures but opted not to use them, as is the case when one 
participant used double taps instead of holds (long duration 
tap). The participant preferred double tapping, which felt 
more reassuring to them than holding a gesture for a 
specific duration. 

Additional Variables 
Due to the perceived limitation of gesture variety, users 
reported two interesting variables that they could 
potentially control in addition to the suggestions we made. 
First, they suggested varying the speed at which a gesture is 
performed. Performing a gesture slowly was perceived to 
offer finer adjustment, such as when performing the 
“Enlarge” or “Shrink” tasks. The second variable used 
varying forces while performing gestures such as closing a 
hand harder to perform “Stop” instead of “Pause”. These 
variables may enable a larger vocabulary of natural 
gestures, provided the speed and force can be detected 
reliably. These user suggestions were made during an 
interview at the end of the study, and no such gestures were 
chosen by participants in the elicitation part. 

LIMITATIONS 
Here we discuss several limitations and potential extensions 
of our study. 

Spatial Extensibility 
As seen with the additional variables proposed by users, our 
current definition of SHMGs may not fully match the 
mental models of all users. This is after all the specific 
reason that we consulted users in our elicitation study. 
Participants were asked to comment on the feasibility of 
SHMGs as well as the study itself, and all participants 
commented on not being able to use mid-air spatial 
gestures. For example, participants asked if they could 
perform “Move” by tapping the thumb and index fingers 
together, before moving the whole hand in mid-air. 

Although we defined SHMGs as gestures performed on the 
hand from the wrist to the fingertips, many users would 
have liked the option of using spatial tracking of the arm 
itself as well. While larger arm movements may not be 
suitable for discrete microgestures in public spaces, users 
frequently proposed small movements or rotations of the 
arm. This happened despite users being informed during 
priming that such spatial gestures did not fit our criteria, 
suggesting the desire and possible need for spatial 
recognition. 

Elicitation Methodology 
As documented by existing literature [23, 26], legacy bias 
may have a significant effect on results in an elicitation 
study. Although we applied priming and production to 
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offset legacy bias, we encountered the same problems 
mentioned by Morris et al. [11]. That is, there is no way to 
determine the optimal amount of gestures each user should 
propose for each referent. In 55% of all cases, users did 
indeed choose their second or third gestures as their 
preferred gesture. When later asked why they did not 
propose gestures that seemed obvious to the researcher, 
users often replied, “I didn’t even think of that!”  However, 
other users benefited less from production: “I already have 
a gesture in mind, so thinking of three different ones makes 
me start grasping for straws, because I already have a solid 
idea of what I would do.” 

Pairing 
Pairing was also proposed by Morris et al. [11] as another 
way to reduce legacy bias. With previous user experience 
and legacy bias having both positive and negative effects on 
agreement rates, pairing may be useful as a means to 
generate more optimal gestures. In the situation where a 
single user might run out of ideas and therefore offer 
arbitrary gestures as their second or third choice, having a 
partner may help foster additional ideas. When users pick 
gestures based on personal and unique experiences, a 
partner would be able to question the generalizability of 
such a gesture in a consensus set. 

FUTURE WORK 
To address the above-mentioned limitations, it may be 
interesting to perform variations of this study to note how 
additional variables proposed by users would affect the 
resulting gestures and agreement rates. While we do not 
expect significantly higher agreement rates when 
introducing greater variation, the newly available gestures 
may be more natural for users. Such gestures could improve 
recall and therefore be more preferable to users. 

Specific Domains 
It would also by worthy to investigate user preferences in 
more specific domains suited to SHMGs, such as while in 
public transit or while performing a primary task. While the 
inherent nature of SHMGs makes them less susceptible to 
factors which create social awkwardness [19], developing 
generic principles that apply universally to all contexts 
remains a challenge [15]. Further context-specific studies 
may reveal subtle factors specific to SHMGs that affect the 
gestures preferred by users. 

CONCLUSION 
We recognized the potential of single-hand microgestures 
(SHMGs) in ubiquitous computing amidst current 
technological developments. To further inform the design 
of SHMGs we conducted an elicitation study with end 
users, where we recorded a set of 1,680 gestures. We 
presented our findings including agreement rates, frequency 
statistics, and qualitative observations. Based on this we 
discussed several implications for the design of SHMGs. 
Our observations can serve both a guideline to future 

designers of SHMGs, as well as a reference for further 
studies. 
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