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Abstract

This paper reviews the literature on the visualization of individual mobil-
ity data, with a focus on thematic integration. It emphasizes the importance
of visualization in understanding mobility patterns within a population and
how it helps mobility experts to address domain-specific questions. We ana-
lyze 38 papers published between 2010 and 2024 in GIS and VIS venues that
describe visualizations of multidimensional data related to individual move-
ments in urban environments, concentrating on individual mobility rather
than tra!c data. Our primary aim is to report advances in interactive visu-
alization for individual mobility analysis, particularly regarding the represen-
tation of thematic information about people’s motivations for mobility. Our
findings indicate that the thematic dimension is only partially represented
in the literature, despite its critical significance in transportation. This gap
often stems from the challenge of identifying data sources that inherently pro-
vide this information, necessitating visualization designers and developers to
navigate multiple, heterogeneous data sources. We identify the strengths and
limitations of existing visualizations and suggest potential research directions
for the field.
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1. Introduction

The study of human mobility has always been of great importance, whether
to help understand the dispersion of humankind (e.g., migrations of Homo
sapiens out of Africa, colonization of the New World) or to support decision-
making processes that impact the lives of the individuals in a population (e.g.,
estimating migratory flows, tra!c forecasting, urban planning, and epidemic
modeling) [1]. The term “human mobility” refers to the movement of indi-
viduals and groups, but only individual movement allows for a detailed anal-
ysis of population displacement over time and space. By monitoring these
movements, we can uncover personal motivations for mobility, enhancing our
understanding of its impact on quality of life and spatial usage. Unlike earlier
urbanization models that separated production and residential areas, leading
to daily commutes to job-rich locations [2], modern mobility is shaped by a
broader range of factors. Today, it is influenced not only by employment op-
portunities but also by leisure, tourism, and changing lifestyles, which vary
significantly depending on individuals’ age and geographic origins [3].

Historically, trip-based surveys have been used to assess the relative per-
formance of transformation alternatives [4]. Activity-based surveys have also
been a great source of information to unveil the links between trips and ac-
tivities that explain the individuals’ need for travel [5]. Thanks to recent
technological advances, the wide adoption of the Global Positioning System
(GPS), and the ubiquitous use of tracking technologies in personal devices,
large-scale data collection for individual mobility has become easier. In the
last decades, we have witnessed an exponential increase in the number, di-
versity, and size of datasets describing human mobility through multiple and
diverse sources, such as household travel surveys (HTS), GPS-assisted sur-
veys, or geo-referenced activity data. This multitude of data sources makes
the design of e”ective visualizations challenging, due to the huge volume and
multi-dimensional nature of the data.

Individual mobility data is inherently spatio-temporal (i.e., objects are
defined over space and time) but often includes thematic properties such as
demographics, transportation modes, and trip purposes that describe the in-
dividuals and their trips, respectively [6, 7, 8]. In this paper, we investigate
how thematic information is represented in the (geo-)visualization literature,
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and how it has been used in decision-making processes within urban poli-
cies (such as transportation options, accessibility, air quality control, public
health, or well-being).

This work focuses on individual mobility, and it serves as a complement
to previous surveys that have mainly focused on the tra!c data [9], the
use of vehicles and transportation systems [10, 11], or urban mobility more
broadly [12, 13]. However, while the literature extensively discusses the visual
exploration of mobility data across space and time, it lacks investigation
of the thematic dimension that supports in-depth activity-based analyses of
individual mobility data. This paper provides a comprehensive analysis of the
thematic dimension of individual mobility data by addressing the following
research questions:

RQ1 How are the existing data sources leveraged to facilitate in-
dividual mobility analysis? We seek to identify the di”erent data
sources used to support the visual analysis of individual mobility, as
well as the advantages and limitations of each one to support the an-
swering of domain-specific questions.

RQ2 How do visualization systems incorporate the thematic di-
mension? We seek to identify to what extent and through which in-
teraction and visualization strategies, current solutions integrate space,
time, and the thematic dimensions.

RQ3 Are domain-specific tasks su!ciently supported by current
information visualization systems? We seek to identify the di”er-
ent domain-specific tasks supported by existing visualization solutions.
In particular, we focus on the relationship between thematic proper-
ties and the analysis of presence dynamics, travel flows, and individual
trajectories (see Section 5).

RQ4 How are visualizations evaluated for usability? We investigate
how the surveyed papers evaluate the visualization solutions in terms of
methods, experimental design, and the participant’s sample and profile.

RQ5 How do GIS and VIS communities approach the visualization
of individual mobility data? With research becoming increasingly
interdisciplinary, we aim to identify the various contributions of the
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VIS (Information Visualization) and GIS (Geographic Information Sci-
ence) communities towards our topic and explore whether and how
their approaches di”er or overlap.

The remainder of this document is organized as follows. Section 2 de-
scribes how we approach the literature to answer our research questions.
Section 3 presents an overview of data sources and their classification accord-
ing to geographic, thematic, and temporal information. Section 4 presents
an analysis of the visualization and interaction with individual mobility data.
Domain-specific questions are addressed in section 5. Section 6 presents stud-
ies describing the uses and the usability of visualization techniques. Section 7
analyses the distribution of articles between VIS and GIS venues. Section 8
summarizes the survey’s outcomes, while identifying directions for future re-
search. Lastly, Section 9 presents limitations and conclusions.

2. Methodology

Initial set of papers

2010 to 2018
(n = 35)

Google Scholar & 
Scopus

2010 to 2024
(n = 1439)

“Individual mobility”
“Urban mobility”
“Human mobility”
“Mass mobility”
“Mobility data”

“Space-time cube”
“Visualization”

“Trajectory visualization"

Selection

2010 to 2024
(n = 38)

❏ Individual Mobility Data
❏ Real Data
❏ Visual Illustrations
❏ Intended for End-Users
❏ English Language
❏ Non-survey papers
❏ Non-duplicated papers

Start

ScreeningResult

Selection Criteria

Keywords Search & Filtering

Google Scholar

2010 to 2024
(n = 1211)

Keyword-based search

Venue-based search

Pre-screening and 
venue identification

Figure 1: Overview of the survey’s methodology.

To assemble a comprehensive review of existing studies, we followed a
reference-driven and search-driven approach [14], as shown in Figure 1. We
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started from a core set of 35 state-of-the-art papers on the topic, encompass-
ing publications from 2010 to 2018 [15], initially compiled by the authors
through their previous works on the domain. From this core, we extracted a
set of relevant search keywords: visualization, urban mobility, human mobil-
ity, individual mobility, space-time cube, trajectory visualization, mass mo-
bility, and mobility data. We used those keywords as input to a two-round
coarse search following a search-driven approach. In the first round, we used
Google Scholar ’s search engine to look for papers published between 2010
and 2024 that included any combination of the defined keywords. The last
search dates from October 1st, 2024, which yielded 1,211 papers. For each
keyword combination, we recovered the 80 first papers, sorted by relevance.
After reviewing the abstracts and full texts, we selected 27 papers. The sec-
ond round consisted on a venue-focused search using both Google Scholar’s
advanced search engine and Scopus. For that, we tailored our search to target
papers published in the identified journals and conferences of the previous
phase (see the list of venues in Table 7). This search resulted in 1,439 pa-
pers. The review of abstracts and full texts of the new papers resulted in
the selection of 11 additional papers, comprising a total of 38 papers. The
following exclusion criteria were applied to the selected papers:

• Papers not written in English.

• Duplicate papers.

• Visualizations not intended for end users. We exclude papers that
do not mention the use of visualization by users, which often feature
research questions unrelated to information visualization.

• Secondary studies. We focused on the review of primary studies and
thus did not include surveys.

• Absence of figures. We only consider papers that demonstrate visu-
alizations through illustrations.

• Papers that use simulated data. We only include papers that use
real-world data. Artificially generated datasets were excluded as they
often hide the inherent heterogeneity, sparsity, and subjectivity of real-
world data.
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• Non-individual mobility data. We only include papers that use
data sources describing human mobility data either at the individual
level (e.g., household travel surveys) or allowing it to be derived (e.g.,
smart card data or telecommunication).

After screening the abstracts and full texts, we selected 38 papers pub-
lished between 2010 and 2024, with a notable peak in publications occurring
between 2015 and 2018 (Figure 2). This relatively small number of publica-
tions underscores the limited attention given to the visualization of individ-
ual mobility data in the academic literature, irrespective of the publication
venue. Hereafter, we present the selected papers, organized according to
five aspects: input data, domain-specific questions, interactive visualization,
evaluation aspects, and publication venue.

Figure 2: Distribution of the surveyed papers by publication year.

3. Input Data

To answer RQ1, we identified the di”erent data sources used in the pa-
pers, and classified them according to the collection method, structured by
the dimensions of individual mobility data [8]:
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• Space: the geographic information, for which we identify the (i) spa-
tial positions (i.e., area, origin-destination (O/D), or trajectory), (ii)
granularity (i.e., division-, linear-, or coordinate-based referencing [16]),
and (iii) dimension (i.e., 1D, 2D, 3D).

• Time: It can be described as (i) an event (e.g., a planned public or so-
cial occasion, catastrophes, etc.), (ii) a duration (i.e., a period without
precise beginning or end), (iii) an interval (i.e., a period with known
beginning and end), or (iv) a timestamp.

• Theme: It describes the thematic properties that characterize individ-
uals and trips. The theme includes (i) demographic information, (ii)
transportation modes, and (iii) trip purposes, for which we distinguish
granularity (i.e., 0, 1, or N) and associated values.

Table 1 presents the di”erent types of data sources identified within the
surveyed papers, along with the data dimensions they describe. They are
defined as follows:

• Surveys provide datasets describing single trips through space (i.e.,
origin and destination locations, and possibly travel route), time (i.e.,
start/end), and thematic information (e.g., trip purpose, transporta-
tion mode, and traveler information) [4]. Household Travel Surveys
are the most common type of survey, capturing household members’
travel practices through trip purposes and transportation modes. Al-
ternatively, Qian et al. [17] used the Longitudinal Employer-Household
Dynamics Origin Destination dataset, which describes (O/D) commut-
ing trips within an urban environment.

• Mobile phone data (MPD) are collected via internet connections,
cell towers, or applications running on mobile phones [18]. Call Detail
Records (CDRs) are frequently used. Records generated by telephone
exchanges provide details of phone calls, such as start/end time, du-
ration, caller identifier, and O/D towers [19]. Telco data (exchange
records between mobile phones and cell towers) can be used to an-
alyze when users make calls, send messages, or access the internet.
Senaratne et al. [20] extracted mobility patterns from Global System
for Mobile Communications records, which provide data on network
tra!c, antenna operator, location, cell identifier, signal strength, and
phone activity status.
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• Public Transportation System (PTS) Data describes mobility via
PTS usage. A popular data source in this category is Smart card data
(SCD) from validation cards used in subways and buses, which provide
information on where and when a passenger tapped in/out, i.e., the
O/D locations describing each individual trip. Similarly, Bike-sharing
data o”er details on when and where bikes were rented and returned,
along with information about the renter, such as age.

• Social media data is provided by applications such as Twitter or Sina
Weibo, which allow one to announce their arrival at a hotel, airport,
hospital, and so on. The data is often semantically enriched with users’
impressions on the place or an event linked to that location [21].

• Tra!c sensors data (TSD) is collected through tra!c sensors strate-
gically placed over an urban area to record pedestrians, bicycles, cars,
and other vehicles passing a particular street. These sensors can detect
a vehicle moving and estimate the speed, time, and direction of the
vehicle.

• GPS data (collected via a GPS receiver) provides latitude and lon-
gitude information allowing one to geo-locate a person on the earth’s
surface. In this category, we identified Taxi and personal vehicle data.

• Point of Interest (POI) data provide thematic information describ-
ing spatial locations that may be of interest to individuals, businesses,
or applications. It is typically used to derive the function of visited
places and, thus, estimate trip purposes.

Data Source Space Theme Time

Survey O/D
Travel Mode, Trip

Purpose, Demographics
Start/End (HH:MM)

Mobile Phone Records Area None Timestamp
Public Transportation System Point Travel Mode Timestamp

Social Media Point None Timestamp
Tra!c Sensor Data Point None Timestamp

GPS Trajectory None Timestamp
Point of Interest Point Locations’ description None

Table 1: Overview of data sources classified according to geographic, thematic and tem-
poral information they provide.
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Figure 3: Distribution of data capture methods according to the type of information
described (i.e., mobility or theme), the type of data source, and the spatial and thematic
information provided.

Every data source considered in this survey contains individual move-
ments over space and time. However, the level of granularity of information
depends on the method used to capture data. The temporal information is
always represented through timestamps, while spatial information exhibits
variability in terms of location (area, individual point, or origin/destination
points), granularity (ranging from division-based, coordinate-based, to linear
representations), and dimensionality (1D or 2D). The diagram in Figure 3
shows the distribution of 18 unique capture methods identified according to
the type of information they describe (i.e., movement or thematic informa-
tion), the types of geographic and thematic information provided, and the
type of data source.

It is worth noting that the thematic information needed to explain peo-
ple’s motivations for mobility is often absent from the data sources. Survey-
like data sources are nearly unique in gathering thematic and mobility in-
formation. Thus, combining data from diverse sources is a growing practice,
observed in 14 of the 38 surveyed papers. In particular, the goal is often to
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(i) complement the data with thematic information such as trip purpose and
transportation mode, a practice observed in previous work [22, 23, 17, 24]
or (ii) increase data accuracy, such as by combining O/D segments from
SCD with bus line and station data to derive the actual trajectory traveled
by each person [25]. Thematic data from real estate data has been used to
support filtering operations, such as to focus the analysis on neighborhoods
characterized by high and cheap housing prices respectively [17].

Although most of the papers (n=24) do not explicitly mention the vol-
ume of data, the information we could gather indirectly still gives a glimpse
into the magnitude of data processed for the visualizations. The reported
values span from 119 to a staggering 272 million trips (M = 24 million trips).
Additionally, 27 papers in our survey provide information about the number
of individuals whose movements are documented within the dataset. These
figures fluctuate between 180 and 88.9 million individuals (M =3.2 million
people).

Regarding the type of data, the majority of papers rely on O/D seg-
ments (constituting 44.7% of the papers), followed by trajectories (39.4% of
papers), and events (featured in 13.1% of papers). Over half of the papers ex-
plore the spatial information at the level of geographic coordinates, usually
to represent individual trajectories or spatial distribution of people, while
8% aggregate the data at the level of administrative partitions, and the re-
maining ones adopt custom spatial division depending on their analysis (e.g.,
Voronoi partitions [26, 27], hierarchical grids [23]), or the data source (e.g.,
household travel surveys often describe the space through custom pooling ar-
eas based on the population to ensure statistical significance [28]). The time
dimension is frequently treated at the level of intervals of one to three hours
(60% of papers), or at the level of timestamps (36% of papers), typically
when representing individual trajectories over time. Other aggregations are
used according to the analysis, such as dividing the day into periods that
describe the morning peak, the afternoon, and the night valley [22]. While
the majority of data sources lack intrinsic information regarding the the-
matic attributes of trips and individuals, it is noteworthy that 26 out of the
38 examined papers do incorporate such information. Often, these thematic
attributes are derived from external data sources to enrich the analysis and
understanding of the mobility data.
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Paper
Trip

Purpose
Travel
Modes

Demogra-
phics

Travel
Distance

Travel/Stay
Duration

Travel
Speed

[29]
[30]
[24]
[31]
[32]
[33]
[34]
[35]
[23]
[25]
[36]
[37]
[38]
[39]
[40]
[41]
[22]
[42]
[43]
[44]
[45]
[21]
[46]
[47]
[20]
[18]

Table 2: Classification of the 26 papers that include the theme dimension based on the
properties they represent.

4. Visual Mapping and Interaction

Individual mobility data is intrinsically multidimensional. Thus, diverse
visualization techniques can be used alone or in combination to support ana-
lytical tasks, such as identifying the distribution, comparisons, and relation-
ships among the di”erent dimensions of the data. In the surveyed papers
the number of visualization techniques vary from one to seven, with a me-
dian of 4 techniques per visualization system. Two papers employ a single
technique for visualization (i.e., the space-time cube and isochronous map).
To address RQ2, we classified the visualization techniques according to the
supported functions and data dimensions, with particular focus on how the
theme dimension is addressed.

We did not consider a timeline as a visualization technique, as it was
mostly used to filter the data. We identified a total of 25 distinct visual-
ization techniques. Table 3 presents each technique and the user tasks they
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support. In general, the majority of the techniques support fundamental
analytical tasks, such as pattern recognition (36 papers), distribution analy-
sis (34 papers), location identification (33 papers), comparison (33 papers),
exploring relationships (28 papers), representation of data over time (26 pa-
pers), and movement or flow visualization (24 papers). Notice that di”erent
visualization techniques are used to address similar analytical tasks.

Space and time form the foundation for nearly every visualization de-
signed to communicate individual mobility data. Representation-wise, there
is little novelty: space is often represented via geographic maps, such as con-
nection maps, flow maps, and choropleth maps, while time is represented
either via time-juxtaposing or animation. Four studies explored the usage of
abstract visualizations through Voronoi diagrams [27, 26] and treemaps [48].
Only one study does not provide a spatial representation of the data, as they
focus on exploring individual activity patterns over time [36].

Figure 4 depicts the distribution of papers over the years according to
the type of data used to represent people’s movements, the data source, and
the thematic representation, in terms of data and visual variables. Table 2
presents the diversity of thematic attributes considered by those papers. The
most commonly represented property is trip purpose (16 papers), followed
by travel mode (8 papers), individuals’ demographics and travel distance (5
papers), travel or stay duration (3 papers), and travel speed (2 papers). Five
papers (i.e., [29, 30, 32, 24, 31]) visually depict multiple thematic properties,
whereas the others typically focus on a single thematic property, using the
rest as filtering criteria. Particularly, demographics information are often
used as a means of data filtering to support domain-specific tasks, such as
understanding the mobility patterns of particular ethnic groups [45]. When
visually integrated, thematic information is primarily depicted through visual
cues like color, texture, or icons, integrated into visualization techniques
that already represent space, time, or both. Hereafter, we summarize the
visualization techniques employed by the surveyed papers, emphasizing how
they integrate the theme dimension.

Thematic Maps. Thematic maps often convey thematic information that
characterizes the usage of di”erent regions within the studied territory. Choro-
pleth and bubble maps have been used to represent mobility metrics such as
the spatial distribution of stays per activity [30, 29], thus revealing the reason
people occupy the di”erent regions of the territory. Similarly, density maps
represent people entropy (i.e., the magnitude of resources a person is con-
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Dim. Technique Analytical Task Papers

Space
flow map view the distribution of OD flows

[22, 49, 37, 41, 18, 50,

46]

heatmap
view the variance of OD flow magnitude and density of

population
[22, 20, 50, 38, 40]

space-time cube view individual trajectories or OD relationships
[32, 45, 27, 15, 51, 37,

33, 20, 24]

connection map view individual trajectories or OD relationships

[23, 25, 45, 21, 27, 52,

53, 26, 37, 33, 41, 31, 50,

42, 40, 47]

density map view people or transportation mode distribution
[25, 21, 27, 48, 54, 24,

41, 31]

dot map view people distribution
[45, 52, 53, 37, 41, 50,

34]

spatial 3D bar

chart
view the variance of phone calls or areas of activity [27, 37]

choropleth map view people distribution, density or fluctuation [27, 15, 17, 54, 30, 44]

bubble map view variance of people presence [15, 41]

chord diagram view OD flows [15, 55]

isochrone map view reachable areas [43]

contour-based

treemap
view starting locations of incoming trips [48]

sankey diagram view OD flows [42]

network diagram view OD relationships [42]

Time
space-time cube view individual trajectories

[32, 45, 27, 15, 51, 37,

33, 20, 24]

glyph view the weekly distribution of daily stays [23, 40, 38]

histogram
view the distribution of trips, mobility descriptors (e.g.

speed, distance) or infection risk

[25, 21, 37, 49, 33, 53,

24, 41, 18, 44, 46, 47]

multi-ring donut

chart
view the distribution of people or trips [25, 21, 15, 33, 18, 50]

stacked-bar chart
view the distribution of activities or transportation

modes
[23, 36, 15]

activity-time cube view the distribution of activities [36]

parallel sets view mobility transition patterns [53]

stacked-area chart
view the distribution of people purpose or transporta-

tion modes over a day
[15, 26, 33, 31, 38, 40]

line chart
view the distribution of people or mobility descriptors

(e.g. speed, distance)

[17, 52, 20, 33, 30, 24,

34, 46]

contour-based

treemap
view the distribution of visitors and visiting locations [48]

heatmap view the distribution of purposes over a month [56, 46]

radial chart view the distribution of visitors and visiting locations [40]

sankey diagram view the distribution of OD flows, visitors over a day [42]

alluvial diagram view the distribution of OD flows, visitors over a day [40]

Theme
heatmap

represent transportation mode, duration or geo dis-

tance (color)
[22, 21, 39]

scatterplot
represent distance (x-axis) and transportation mode

(color)
[22]

space-time cube represent socioeconomic aspects or trip purpose (color) [32, 45, 15, 33, 20, 24]

glyph
represent trip purpose and transportation modes

(color)
[23, 44, 46, 40]

multi-ring donut

chart

represent trip purpose, transportation mode or socio-

demographic aspects (color)
[25, 21, 15, 33, 44]

stacked-bar chart
represent trip purpose, transportation mode or socio-

demographic aspects (color)
[36, 15, 33, 31]

activity-time cube represent trip purpose (color) [36]

parallel coordinate

plot

represent socio-demographic aspects (axes) and ethnic

groups (color) or POIs
[45, 31]

dot map represent ethnic groups or trip purpose, POI (color) [45, 37, 38, 35]

connection map represent ethnic groups (color) [45]

histogram represent POIs (x-axis) and transportation modes [54, 24, 44]

spatial 3D bar

chart
represent activities (color) [27, 37]

bubble map represent activities (color) [15]

stacked-area chart represent trip purpose or transportation modes (color) [15, 30, 33]

line chart represent activity (color) [33, 34]

semantic chart represent activities and transportation modes [31]

sankey diagram represent trip distribution over trip purpose [39]

pie chart represent activities and transportation modes [38]

Table 3: Overview of visualization techniques and supported user tasks and data dimen-
sions by each paper.

nected to and the commutation frequency in daily jobs) and segment entropy
(i.e., the diversity and fluidity of spatial locations based on the visits’ length)
metrics [54]. Gortana et al. [43] superimposed multiple isochrone curves over
a map to display reachable distances for a particular spatial location accord-
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Figure 4: Distribution of papers according to the data type used to describe movements,
the data source, the thematic information with the visual variables used to represent it,
and the publication year.

ing to di”erent transportation modes, travel time, and hours of the day. Yu
et al. [37] represented spatial locations (i.e., home and workplaces) using a
dot map, where a given spatial location (shown as a dot) can be selected to
reveal the incoming and outgoing flows.

Flow-based representations. While line thickness is conventionally used to
represent flow magnitude in flow maps and chord diagrams, it has also
been used to represent trip distance [46] (Fig. 5A). In these techniques, the
color has been used to encode thematic properties such as transportation
modes [22, 29], flow direction [49, 55] (Fig. 5C), trip purpose [37, 29], or
trip frequency [46]. Pérez-Messina et al. [22] used an O/D matrix to repre-
sent travel flows between spatial locations, which cells are color-coded based
on the trip’s transportation mode (e.g., private, public, or active). Zeng et
al. [42] employ a three-component Sankey diagram to simultaneously illus-
trate the magnitude of flows between O/D locations, with the corresponding
metro lines represented by color (Fig. 5B).
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A B

C D

E F G

H I

Figure 5: Thematic integration in flow- and time-based representations. (A) Sankey dia-
gram [42]. (B) Flow map [46]. (C) Chronogram [23]. (D) Chord diagram [55]. (E) Multi-
ring donut chart [33]. (F) Contour-based Treemap View [48]. (G) Multi-ring stacked-area
chart [44]. (H) Semantic graph [31]. (I) Parallel coordinates plot [56].

Linear time-based representations. Line charts and histograms are used to
represent the distribution of stays [17], trip count [52, 33], segregation in-
dex [30], and mobile network usage amounts [20]. In this context, color has
been used to encode thematic information, such as the purpose of trips [33,
49] and trip direction [37, 33]. Stacked-area charts are often used to represent
the distribution of trips over time per trip purpose [29, 30, 33], transporta-
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A B C D

Figure 6: Glyph-based representations commonly placed on top of geographical maps: (A)
distribution of an individual’s activities over the day and week [23], (B) the proportion of
arrivals, departures, and stays [49], (C) the distribution of arrivals, departures, and stays
via taxi and metro [44], and (D) the distribution of arrivals, departures, and activities [38].

tion mode [40, 29, 30] and travel speed [26]. Similarly, chronogram techniques
are used to represent the sequence of activities or transportation modes that
comprise the trajectory of a person during the day [29, 36, 23] (Fig. 5D).

Treemaps. Traditionally used for representing hierarchical data, treemaps
have been employed in innovative ways to illustrate individual mobility data.
Wu et al. [48] present a Contour-based Treemap View that combines treemaps
and a radial chart to visualize human co-occurrence (Fig. 5E), displaying the
spatial origins of visitors at a selected location. The radial chart is divided
into seven sectors representing 2-hour intervals from 6 am to 8 pm, and a
sector for the nighttime period from 8 pm to 6 am. Each sector corresponds
to the arrival time of visitors in a region indicated as a rectangle inside the
sector. The size of the region encodes the number of visitors, while the color
indicates the distance between the origin and the destination of visitors.

Cyclic time-based representations. Inspired by clock designs, multi-ring donut
charts have been used to visualize the distribution of stays or trips over time-
based on factors such as trip purpose or transportation mode [29, 23], as well
as socio-demographic characteristics like gender, age, and occupation [33],
either for specific spatial locations or across an entire area (Fig. 5F). This
method involves multiple concentric donut charts, each divided into sectors
representing time intervals. These sectors are either color-coded to indicate a
particular thematic variable or further subdivided to display the distribution
of stays or trips for each variable within that period. In a variation of this
approach, Wu et al. [44] use stacked-area charts in place of color-coded sec-
tors to depict the distribution of trips in- and outbound, via metro or taxi,
alongside the fluctuation of stays throughout the day (Fig. 5G).
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Theme-specific representations. Parallel coordinates plots are e”ective for
representing multiple attributes simultaneously and have been utilized to il-
lustrate the variation of trips across POIs [56] (Fig. 5H), trip aspects such
as distance, number of people, and time periods [48], and demographic char-
acteristics [45]. In the latter, factors like age, language, education level, and
income are plotted as vertical axes, with color-coded lines connecting them
to represent di”erent ethnic groups [45] (fig ref). Scatterplots have also been
employed to depict the influence of geographic distance and transportation
mode on travel flows [22], where the y-axis indicates the number of individ-
ual trips and the x -axis represents varying travel distances. The intersecting
values are illustrated by circles, with color and size encoding transportation
mode and trip count, respectively. Sankey diagrams have been used to rep-
resent the variation of trips over trip purpose [39], Additionally, Huang et
al.[31] introduced a novel technique called the semantic graph, which rep-
resents individual trajectories as polylines within a topic hexagon (Fig. 5I),
where the vertices correspond to points of interest (POIs). This design en-
ables users to identify (i) trajectories associated with specific purposes and
(ii) the purposes that drive varying activity levels.

A B C

Figure 7: 3D-based representations. (A) Space-time cube (STC) for GPS-type trajectories
with color encoding inter-sample time interval [20]. (B) STC for O/D trajectories with
color encoding activities [15]. (C) Activity-time cube representing activity sequences over
time [36].

Glyph-based representations. As noted by Borgo et al. [57], due to their abil-
ity to convey multiple attributes within a compact visual space, promot-
ing enhanced cognitive engagement during the visualization process, glyphs
are popular for representing individual mobility data. A common practice
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observed in the surveyed papers is to position glyphs on a map based on
geographic coordinates, thereby characterizing a location by the temporal
distribution or aggregation of attributes such as trip purpose, transportation
mode, or trip direction. For instance, Chen et al. [23] proposed a glyph in
the form of a multi-ring donut chart to represent the temporal distribution
of activities of an individual at a particular location (Fig. 6A). Often, glyphs
are used to represent the repartition of trips in and out of a particular spa-
tial location [46, 49, 44, 40, 38]. For instance, Silva et al. [49] proposed a
donut-shaped glyph with a filled center to characterize spatial locations as
a local activity, departure, arrival, or pass-by point according to the trip di-
rection and destination (Fig. 6B). A stacked elliptical glyph design [44] was
proposed to summarize and compare activities in di”erent spatial locations
according to number of stays and trips per transportation mode (Fig. 6C).
Cyclic stacked-area charts are employed to visualize the temporal distribu-
tion of activities [40] as well as the arrivals and departures of people [38].
Zeng et al. [38]’s glyph positions the stacked-area chart along the circumfer-
ence of a pie chart, representing both the arrivals and departures of people
and the distribution of activities at a given location (Fig. 6D).

3D-based representations. Due to the multidimensionality of individual mo-
bility data, 3D representations are becoming popular. A frequent example
is the space-time cube (STC) [58], a technique that represents geographical
space on the cube’s base and time along its height. In nine of the surveyed
papers, the STC has been used to simultaneously represent space, time, and
thematic properties through symbols and colors. For instance, Kveladze et
al. [45] used the technique to represent individual trajectories across socioe-
conomic aspects, such as ethnicity and education level. Senaratne et al. [20]
used the STC to inspect data uncertainty by coloring the individual tra-
jectories according to the inter-sample time interval (i.e., the time interval
between two data records) (Fig. 7A). The STC by Yu et al. [37] supported
the exploration of mobility patterns by representing individual trajectories
or clusters, where color encoded the trip direction (i.e., going home or to
work). In general, the STC was used to represent individual activity pat-
terns across space and time, where color encoded the di”erent activities or
trip purposes [29, 33, 32] (Fig. 7B). Alternatively, the activity-time cube, pro-
posed by Vrotsou et al. [36], encoded the temporal distribution of activities
per individual through a three-dimensional space, where the x -axis holds the
individuals, the y-axis is the time axis and the z -axis can display activities,
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places, or companionship (Fig. 7C).

User Task Mobility elements / indicators Papers

Select

Data and view parameters
[45, 21, 15, 17, 52, 43, 49, 48, 54, 51,
26, 24, 41, 31, 18, 44, 40, 56, 46, 35,
39, 47]

Time periods
[23, 32, 45, 21, 29, 17, 52, 43, 49, 48,
54, 53, 26, 30, 20, 24, 42, 40, 47]

Spatial locations
[29, 52, 48, 54, 26, 37, 20, 24, 31, 50,
38, 40, 56, 47]

Individuals trajectories or trips
[22, 25, 36, 27, 29, 52, 49, 53, 31, 50,
42, 47]

Filter

Individuals trajectories or trips
[23, 32, 45, 21, 29, 17, 43, 49, 51, 53,
31, 50, 42, 39, 47]

Socio-demographic aspects
[48, 26, 30, 29, 23, 25, 32, 30, 34, 44,
40, 56, 46]

Spatial locations [32, 29, 45, 21, 54, 53, 26, 24, 38]
Time periods [54, 29, 24, 41, 31, 18, 55, 46]
Mobility indicators [29, 54]
Purposes [35]

Change over Time

Mobility flows or trajectories
[22, 23, 27, 52, 49, 26, 37, 33, 24, 31,
18, 50, 55, 56]

Mobility indicators [29, 48, 54]
Travel time [43]
Socio-demographic aspects [30]

Pan Map view
[36, 32, 45, 21, 29, 52, 43, 49, 51, 24,
44, 40, 56, 46, 47]

Zoom
Spatial locations

[23, 36, 32, 45, 21, 27, 29, 17, 52, 43,
48, 51, 53, 20, 24, 31, 18, 50, 44, 40,
56, 46, 47]

Get more or less details [49, 41, 55]
Rotate Camera [36, 32, 45, 29, 51]

Reorder
Mobility patterns [21, 53, 42, 34, 40]
Sort activities [38, 35]
Spatial locations [31]

Annotation
Identify activities [38, 35]
Spatial locations [34, 31]

Table 4: Classification of papers based on user tasks and the mobility elements or indicators
they address.

Interaction. Table 4 provides an overview of the user actions supported by
the di”erent visualization tools as well as the data items (e.g., spatial loca-
tions, time units, etc.) or mobility indicators (e.g., activity patterns, presence
density, etc.) that can be manipulated through user actions. Overall, the
visualization tools support familiar analytical tasks–including selection, fil-
tering, zooming, change over time, panning and rotation, reordering, and
annotation–which are widely recognized in visualization [59]. Most papers
rely heavily on the mouse and keyboard for physical interaction, even in 3D
visualizations. However, one study [29] explores spatial interaction using a
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tablet’s tilting motion to control time-based changes. In this approach, tilt-
ing angles are mapped to time units on a timeline, which then animates a
thematic map.

5. Domain-specific questions

To answer RQ3, we categorize the papers based on three common ques-
tions frequently raised by mobility experts, including geographers and urban
planners: (i) What are the commuting and travel patterns of individuals
within urban areas and how do these patterns influence the configuration
of the urban landscape?, (ii) How do the socioeconomic attributes of indi-
viduals and the activities they engage in influence land usage within urban
regions?, and (iii) How does the geographic context of a given area influ-
ence the scheduling of individuals’ activities and journeys throughout the
day? [15]. We further classify the papers according to the addressed mobil-
ity issue and the di”erent mobility indicators derived from the data. Using
the pyramid framework introduced by Mennis et al. [8] as a foundation, we
classified the queries into four distinct categories that define the connections
between the di”erent aspects of the data needed to support users in address-
ing domain-specific questions. These queries are defined as follows:

• when + where + theme → what : describe a particular (set of) object(s)
based on a particular (set of) thematic attribute(s) existing at a given
(set of) location(s) at a given (set of) time(s);

• when + what + theme → where: describe a particular (set of) loca-
tion(s) occupied by a given (set of) object(s) based on a particular (set
of) thematic attribute(s) at a given (set of) time(s);

• where + what + theme → when: describe a (set of) time(s) that a
particular (set of) object(s) occupied a given (set of) location(s) based
on a particular (set of) attribute(s); and

• when + where + what → theme: give the (set of) thematic attribute(s)
describing the (set of) object(s) existing at a given (set of) location(s)
at a given (set of) time(s).

Table 5 presents the surveyed papers classified by domain-specific task,
according to the above taxonomy. The papers mostly focused on explor-
ing human behavior within an urban environment in terms of when people
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Type Task Papers
Identify who is performing an activity at a given place and time [29, 37, 32, 23, 38]
Identify demographic groups visiting a location at a specific time [25, 45, 30]
Compare trajectories over space, time and demographic groups [29, 45]
Identify trips using a given travel mode at a given place and time [22, 29]
Compare individual trajectories per trip purpose [37, 23]
Identify trips with a given purpose at a given place and time [29]

when + where + theme
→ what

Identify events at given location and time [56]

Identify the individuals visiting a specific location at a given time
[29, 17, 30, 37, 32, 27, 53,

55, 42, 34, 40, 46]

Identify similar trajectories at a given location and time
[49, 21, 52, 27, 20, 45, 51,

24, 37, 39]

Identify the number of trips at a specific location and time
[33, 26, 30, 50, 31, 29, 18,

20, 37]
Identify the number of individuals sharing the same O/D locations [49, 29]

when + where → what

Count the trips to or from a specific location at a given time. [48, 49]
when + theme → what Count the individuals engaged in a given activity and time. [23, 29, 36, 31, 30]
where + theme → what Count the individuals engaged in a given activity and location. [23, 29, 30]

Identify where people engage in a given activity and time [29, 30, 37, 32, 34]
Compare locations over time based on land use [33, 29, 30, 44]
Identify reachable locations by a given travel mode in a given time [43, 22, 52]

when + what + theme
→ where

Identify locations visited by various demographic groups [30, 45]

Explore visitation patterns of spatial locations over time
[49, 41, 18, 21, 27, 37, 31,

32, 54]
Explore movement patterns on roads (locations) over time. [24, 18, 21, 26, 55, 46, 35, 47]
Identify the locations where other locations co-occur [48, 49, 50]

when + what → where

Identify spatial locations where people co-occur [48, 49, 40, 47]
what + theme → where Identify working and residential locations [18, 37, 56]
when + theme → where Characterize locations by travel modes at a given time [22, 29]

Identify when locations are visited for various purposes [30, 29, 37, 32, 42]where + what + theme
→ when Identify when given demographic groups visit given locations. [30, 45]

Identify when given locations are visited [29, 27, 21, 37, 32, 17, 48, 40]
where + what → when

Identify when people co-occur in given locations [48, 23, 34]
theme + what → when Identify when individuals engage in given activities [32, 29, 36, 23, 31, 33]

Identify when di”erent demographic groups stayed at given locations. [33, 29, 30]
where + theme → when

Identify when people visit places for a given purpose or travel mode [29]
Identify and compare individual activity patterns [29, 23, 37, 32]
Compare activity distribution over space and time [29, 30, 33, 38]
Identify the main travel mode to reach a location at a specific time. [43, 29, 22]
Compare travel mode distribution over space and time [29, 44]
Identify the trip purposes of trajectories [31, 29]

when + where + what →
theme

Compare the demographic share at a location over time. [33]
Identify the distribution of activities over time [33, 29]
Compare activity patterns over time [29, 31]
Identify shared activities at a given time [36, 29]

when + what → theme

Compare modal share of trips for a given distance and time [22]
Identify the activities individuals engage in at given locations. [33, 29, 30, 35]

where + what → theme
Identify the demographic share of people at a given location [33]
Identify activities performed in a given location and time [33, 29, 30, 46]

when + where → theme
Identify the travel modes to reach a given location at a given time. [29, 30]

Table 5: Classification of papers according to domain-specific tasks.
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visit di”erent spatial locations or where people are at a given time. A few
papers focus on understanding the commuting behavior of the population,
which supports the identification of residential and working locations [37, 18].
Similarly, Le Roux and Vallée [30] supported a deeper analysis through the
exploration of a segregation index revealing the temporal evolution of land
use within the urban environment. According to the domain-specific ques-
tions, we classified the papers according to three distinct objects of interest:
(i) presence dynamics, (ii) travel flows, and (iii) individual trajectories, re-
spectively. Twenty-five publications represent presence dynamics through
the variation of people present at di”erent spatial locations and time inter-
vals while eighteen support the visualization of travel flows and trips and
sixteen represent individual trajectories of people or activity sequences.

Although every task in the taxonomy is supported at some level by the
set of surveyed papers, a domain expert would have to perform an ad-hoc
analysis by combining the visualization solutions provided by several di”er-
ent papers to be able to answer all three domain-specific questions. Only
three visualization solutions [27, 37, 29] enabled the analysis of individual
mobility data through the exploration of all three objects of interest. Both
Gao et al. [27], and Yu et al. [37] employed 3D visualization techniques to
simultaneously represent spatial and temporal information. However, these
solutions have limitations when examining thematic data, which is restricted
to describing the trip as going home or to work. Menin et al. [29] had a
deeper focus on the spatiotemporal evolution of individual mobility across
diverse thematic aspects. For instance, they covered trip purpose over eight
categories (i.e., home, work, leisure, education, shopping, business, personal
business, and escort trips, and travel modes over four categories (i.e., bik-
ing, driving, PTS, and walking), while providing a clustered exploration of
individual trajectories based on daily activity sequences.

6. Usability Evaluation

To addressRQ4 and understand whether and how user-based evaluations
are employed to assess the usability and e”ectiveness of visualizations in
the domain, we classified the papers according to their experimental design,
the evaluated features (e.g., e”ectiveness, usability, satisfaction, etc.), the
sample size, and whether the participants meet the profile of the target users
of the application, i.e., mobility experts, including researchers in geography
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or transportation and urban planners. Table 6 presents the classification of
papers according to these criteria.

The 38 papers analyzed in detail in this survey consistently provided some
sort of validation of the proposed visual analytics system, mostly through case
studies, where the visualization approach was applied to a real dataset or
the usefulness of the approach was demonstrated through use case scenarios.
For instance, Chen et al. [21] applied their approach to datasets describing
the movements of tourists within two di”erent cities, showing step-by-step
how their system supports the discovery of knowledge such as typical tourist
routes and popular destinations.

Twenty-two papers (about 60%) conducted user-based experiments to
evaluate of their systems. Seventeen evaluations were conducted through a
non-experimental design (i.e., without comparison [60]). Among these, fif-
teen studies interviewed a small group of experts (from 1 to 14 individuals).
These experts were then presented with the system’s interactive components,
visual encoding, and a series of case studies and asked to provide feedback
on the visual encoding and the suitability of the visualization for explor-
ing the dataset. Three studies used a quasi-experimental design, where the
visualization solution was compared across non-randomly assigned groups.

Experimental design Sample size Profile Papers

Experimental
7 expert [45]

7-20 non-expert [36, 45, 29]

Quasi-experimental
3-7 expert [29, 40]
24 quasi-expert [29]

10-20 non-expert [29, 49, 40]

Non-experimental

1-11 expert
[22, 23, 48, 53, 26, 41, 31, 18,

38, 42, 44, 56, 47]
unknown expert [52, 50]

4-14 non-expert [24, 35]

Table 6: Classification of papers according to experimental design, sample size, and par-
ticipants profile.

Three studies conducted formal experiments involving a larger sample of
participants (from 7 to 20 individuals), Vrotsou et al. [36] investigated the
e!ciency of 2D (stacked-bar chart) and 3D (activity-time cube) represen-
tations of individual activity sequences, showing that search time and error
rate increases proportionally to the number of activity sequences displayed
in either technique. Kveladze et al. [45] investigated the performance of two
distinct groups of users (i.e., expert and non-expert relative to the application
domain) while exploring individual mobility data using a system comprising
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a 2D base map of the study area, a parallel coordinate plot, and four views
on the 3D STC, each representing the trajectories of di”erent ethnic groups
of individuals. They observed that domain experts performed the tasks us-
ing logical and strategical reasoning while the non-experts did not follow
the logical sequence of task execution. Probably due to more experience
with the type of data and the di”erent representations, the expert users also
used all the available visualizations while the non-experts focused mainly on
the STC, which the authors suggested was due to their enthusiasm toward
the 3D visualization. Finally, Menin et al. [29] investigated the usability
and e”ectiveness of a movement-based animation technique compared to the
traditional one, and their results showed that both are equally e”ective for
simple identification and comparison tasks.

Almost two decades ago, Ellis and Dix [61] highlighted the limited pres-
ence of user-based evaluations in the field. In their survey of over 65 papers,
they found that only 12 of them included evaluations. In the context of indi-
vidual mobility, we observed more promising numbers, although the number
of formal experiments remains limited. The challenges associated with re-
cruiting real users are evident in the limited group sizes of domain experts
and the reliance on non-expert participants in experiments that require larger
sample sizes.

7. Publication Venues

The problem of visualizing individual mobility data can be addressed
from multiple perspectives, which can vary across research communities. We
hypothesize that the VIS community addresses the visual representation of
multiple data dimensions while dealing with human cognitive and percep-
tual limitations, while the GIS community mostly addresses the challenge of
understanding the dynamics of people and their impact on the urban environ-
ment, where visualizations are used to support the study, instead of being the
main goal. Thus, to address RQ5, we classified the surveyed papers based
on the type of venue where they were published, i.e., VIS or GIS.

Table 7 presents the papers according to the publication venue. The ma-
jority of papers were published in VIS venues (n=22, such as IEEE TVCG,
PacificVis, IEEE VIS), or other subareas of Computer Science (n=3). Ten
papers were published in GIS venues, such as the Journal of Transport Ge-
ography and IEEE Transactions on Intelligent Transportation Systems, and
three papers were published in interdisciplinary venues (i.e., the Interna-
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tional Conference on Cross-Cultural Decision Making and the International
Conference on Computer Supported Cooperative Work in Design).

Type Venue Papers
IEEE Transactions on Visualization and Computer Graphics
(TVCG)

[21, 52, 48, 24,
41, 31, 18, 50]

Computer Graphics Forum [55, 42, 40, 47]
IEEE Pacific Visualization Conference (PacificVis) [34, 44, 56]
Journal of Visualization [53, 35]
IEEE Conference on Visual Analytics Science and Technology
(VAST)

[37]

IEEE Visualization & Visual Analytics (VIS) [43]
International Conference Information Visualization (IV) [36]
International Conference on Graphics, Patterns and Images SIB-
GRAPI

[29]

VIS

International Joint Conference on Computer Vision, Imaging and
Computer Graphics Theory and Applications (VISIGRAPP)

[49]

GIS

IEEE Transactions on Intelligent Transportation Systems [26, 20, 38]
Journal of Transport Geography [32, 30, 33]
ACM International Conference on Advances in geographic Informa-
tion Systems (SIGSPATIAL)

[51, 39]

International Journal of Geographical Information Science [45]
Cartography and Geographic Information Science (Taylor & Francis) [46]

CS

ACM Transactions on Intelligent Systems and Technology [23]
MDPI Journal Algorithms [22]
Human-centric Computing and Information Sciences Journal [54]

MULTI
IEEE International Conference on Computer Supported Cooperative
Work in Design (CSCWD)

[25]

Advances in Cross-Cultural Decision Making [17]
Spatial Cognition & Computation (Taylor & Francis) [27]

Table 7: Classification of papers according to publication venue (VIS: Visualization, GIS:
Geographic Information Science, CS: Computer Science, MULTI: multi-disciplinary.

In VIS and Computer Science-related venues, the motivations are typi-
cally centered on the challenges of extracting mobility patterns from hetero-
geneous data and the design of novel visualization approaches. The latter
is also a motivation in the GIS community, which is also often interested
in knowledge extraction. Regardless of the venue, the papers often cover
mobility-related issues such as urban dynamics, activity patterns, popula-
tion distribution, crowd behavior, and commuting patterns. VIS and other
Computer Science communities often exploit huge datasets extracted from
sources such as mobile phone records, social media, POI data, and CDRs.
Moreover, the combination of multiple data sources is more prevalent in the
VIS and Computer Science communities. In contrast, GIS studies predomi-
nantly focus on survey data. The most outstanding di”erence concerns the
user-based evaluations, which seem to be more prevalent within the VIS
community (18 out of 22 assessments involving users) compared to the GIS
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community (only 3 out of 10 assessments with users).

8. Discussion and Research Agenda

In this paper, we surveyed 38 papers covering the visual analysis of indi-
vidual mobility data. We focused on understanding how the thematic data
dimension is integrated into existing visualization solutions. Below, we also
highlight potential research perspectives within the domain.

8.1. Theme integration

The six key thematic dimensions covered in the surveyed papers include
trip purpose, travel mode, demographics, travel distance, travel duration,
and travel speed. While these provide valuable insights into mobility pat-
terns, several critical aspects remain underexplored. For example, spatiotem-
poral factors like climate change (temperature, air quality, CO2, pollution)
can significantly impact movement. Mobility also varies widely, from short
commutes to global travel, requiring a broader view of both routine and ex-
ceptional movements. Complex patterns, such as those of migrants, often
involve interrelated reasons and collaboration among individuals, highlight-
ing the influence of economic conditions and policies. These factors shape
mobility by a”ecting the distribution of services like healthcare and educa-
tion. Despite the availability of data, these elements are rarely considered
in mobility studies. Expanding research to include such correlations could
o”er a fuller understanding of how policies and environmental factors a”ect
human mobility across di”erent contexts.

8.2. 3D Visualizations

Due to its capacity to represent multiple data dimensions, 3D visualiza-
tion is inherently an asset for visualizing individual mobility data. In particu-
lar, the Space-Time Cube (STC) is a prominent 3D visualization technique in
the domain and has been widely employed in the surveyed papers. Although
the STC was introduced as early as 1976 [62], research questions about its
e”ectiveness in supporting data exploration remained [63]. The more recent
studies by Kveladze [45] and Gonçalvez et al. [64] have shown that combining
the STC with 2D representations of data can be beneficial for the analysis
and even preferred by the users, who gain multiple perspectives on the data.
The main limitation of the STC, and every other 3D representation for that
matter, is the perceptual and interactive restrictions imposed by conventional
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desktop setups [65]. For that, we suggest that immersive visualizations and
spatial interaction can help overcome some of the limitations of the STC.

Immersive Visualization. One option for achieving immersion in the past
was through confined spaces surrounded by retro-projected walls, known as
CAVE environments. When coupled with head-tracking technology, such se-
tups provided users with an immersive experience [66]. However, more a”ord-
able o”-the-shelf Head-Mounted Display technologies such as the Meta Quest
have exhibited significant traction in the field. This is primarily due to the
rapid technical advancements in the industry, leading to increased a”ordabil-
ity and ease of integration into the work environments of data analysts [67].
Interactive STCs have been applied to visualize movement trajectories in
various domains, including vessel navigation [68], running sports [69], his-
toric events [69], and urban mobility [70, 71, 72, 73]. In individual mobility
visualization, the closest approach in the literature involves using an immer-
sive STC to explore simulated trajectories [74]. This immersive method has
been shown to improve usability and reduce mental workload. However, it
lacks integration of the thematic dimension. Future research should focus
on leveraging the benefits of immersive visualization for individual mobility
data exploration, where it could significantly enhance analysis.

Spatial Interaction. Spatial interaction facilitated by mobile controllers has
the potential to bridge the gap between the physical and virtual information
realms [75]. This interaction paradigm involves mapping real-world move-
ments in directions such as forward/backward, up/down, and left/right to
manipulate the virtual camera, enabling users to navigate and explore vir-
tual environments more naturally [76, 77]. Although spatial interaction is
not widely applied in the surveyed papers, it could enhance user engagement
with 3D visualizations. With the widespread availability of smartphones,
which can serve as intuitive physical interaction devices, this approach could
also become more accessible and impactful.

8.3. Geo-collaborative and Immersive Visualization

As data volumes and complexity grow (in terms of uncertainty, more
ambiguous definitions, and larger scopes [78]), tackling analytical problems
becomes more challenging and might require the collaboration of multiple ex-
perts. The concept of geo-collaborative visualization, where data and models
utilized by participants are closely tied to geographical locations [79]) emerges
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as a suitable approach to enact the collaboration of multiple experts. Collab-
oration can happen in physical spaces, e.g., in front of wall-sized visualiza-
tions [80], or virtually, through video-conference tools. In this context, and
building on previous research in this area [78], immersive VR technologies
o”er new possibilities for collaborative visualization. Although immersive
collaborative visualization has been explored in other fields, its use in indi-
vidual mobility analysis is still underdeveloped, presenting an opportunity
for future research.

8.4. Understanding Users Reasoning through Analytical Provenance

Analytical provenance research is dedicated to understanding users’ rea-
soning processes by examining their interactions with visualizations [81]. The
surveyed visualization tools often support individual mobility data analy-
sis through various indicators that describe mobility across dimensions like
space, time, and theme. Users employ multiple interactive visualization tech-
niques to explore this data, and the specific path of exploration–comprising
queries, visualization choices, and interactions–can vary depending on the
user’s analytical task or profile [45]. Thus, gaining insight into how domain
experts utilize a visualization system to answer domain-specific questions,
such as through which mobility measures, spatiotemporal granularity levels,
and thematic attributes they select and in what sequence, can be valuable
for enhancing user experience and e”ectiveness, leading to the development
of tailored exploratory workflows that align well with di”erent tasks and
user needs. However, the surveyed papers barely tapped into the potential
of analytical provenance. Although Menin et al. [29] records some informa-
tion, such as when and where a specific visualization was opened, closed, or
modified, no provenance studies based on this data have been reported.

8.5. Data Management through Knowledge Graphs

The heterogeneous nature of individual mobility data poses a significant
challenge for the field. Our analysis revealed that most studies combine data
from multiple sources to reconstruct individual movements and enrich them
with thematic information. Each paper introduces a distinct data collection
and combination process based on (i) the type of data source and (ii) the
analytical objectives of the proposed visualization system. In this context,
Resource Description Framework (RDF) knowledge graphs (KGs) could be
beneficial for data management, through the use of innovative methods for
structuring, publishing, discovering, and integrating data. The strength of
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the RDF lies in its inherent interoperability and capacity to link resources
and properties across the web, enabling access to additional information [82].
We observe a growing use of KG-based representations in the domain, such
as modeling territorial changes [83], urban mobility events [84], and urban
mobility data [85]. Future research should explore KG representations to
enhance data transparency and improve analyses of individual mobility data

8.6. Visualization of Spatial Changes underlying Individual Mobility

All surveyed papers concentrate on individual mobility over short time
frames, such as days or weeks. While this approach addresses many domain-
specific questions, there is a notable absence of longitudinal studies examining
mobility behavior over extended periods, like years. This gap likely stems
from changes in territorial nomenclatures and geographical boundaries, which
hinder the comparability of mobility data over time. Without recalculating
past data according to current geographic areas—a complex process that
obscures territorial changes—statistical series experience breaks, leading to
potential misinterpretations or biases in the statistics if not properly docu-
mented [83]. We have yet to encounter visualization solutions that simul-
taneously convey changes in both mobility and spatial context. Given the
importance of understanding historical mobility behavior to support more
sustainable transportation modes, we believe this topic warrants further ex-
ploration in the future.

9. Conclusion

In this paper, we presented a comprehensive survey of the literature focus-
ing on the visualization of individual mobility data, i.e., data that describes
the trajectories of individuals within urban environments. We analyzed 38
papers published since 2010 in GIS and VIS venues. While the literature
has extensively covered the spatiotemporal visualization of movement data,
relatively little attention has been devoted to the representation of thematic
information describing individuals’ motivations for mobility.

Our findings indicate that while thematic attributes are frequently in-
cluded in visualization solutions, they are often represented only partially.
We examined the visualizations based on three domain-specific questions
for presence dynamics, travel flows, and individual trajectories. Only three
solutions e”ectively assist mobility experts in addressing all three questions.
Furthermore, consistent with prior research [61, 86], we observed a deficiency
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in formal experiments to assess the e”ectiveness and value of the proposed
visualizations for practical applications. Expert-based interviews were con-
ducted in more than half of the papers; however, they typically involved
a limited number of participants, highlighting a persistent challenge in the
field. Notably, publications in VIS venues exhibited a higher tendency to
incorporate evaluations than those in GIS venues.

Based on our analysis of the existing literature, we identified several re-
search opportunities. These include the need for analytical provenance stud-
ies to gain insights into user reasoning during data exploration, the develop-
ment of novel visualizations capable of e”ectively integrating spatial changes,
the design of collaborative setups and virtual environments to support visual
analytics, the exploration of 3D visualization using immersive technologies
and spatial interaction, and the need of interoperable technologies such as
RDF KGs to facilitate data integration from multiple sources.
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